Tag Archives: Raspberry Pi

Dan’s take on ADS-B with the Raspberry Pi B model

Many thanks to SWLing Post contributor, Dan Srebnick (K2DLS), who recently posted a detailed overview of his ADS-B installation on his blog:

Monitoring NextGen ATC (on the cheap!)

A key component of next generation air traffic control is Automatic Dependent Surveillance – Broadcast (ADS-B). The current FAA mandate is for all included aircraft to output ADB-B transmissions no later than January 1, 2020. But you don’t have to wait to receive and map ADS-B. There is a lot of air traffic to be seen.

[…]I decided to use a spare older RTL-SDR stick based on the RTL2832U and R820T chips. This USB device comes with a small antenna that I hoped would be good enough to get me started. It is not in any way optimized for the 1090 MHz signals that are used by ADS-B and is roughly 19 parts per million (ppm) off frequency. It cost a bit over $10 at a hamfest a couple of years ago. The designs have improved since the early models were offered. Newer models include a TCXO (thermally compensated crystal oscillator) for stability and accuracy.

I needed software to take signals from the RTL-SDR stick and plot them on a map. That software is “dump1090”, originally written by Salvatore Sanfilippo. I added an install stanza to the Makefile, along with a systemd service file, for a smooth system install. I also needed to install the RTL-SDR USB drivers. The complete installation runs “headless”, meaning no monitor, keyboard or mouse need be connected. Remote management can be done via ssh.[…]

Continue reading on Dan’s blog…

This is fantastic, Dan! Thank you for taking the time to share all of the code snippets you needed to do the installation on the Raspberry Pi B as well. Post Readers: if you have an older Raspberry Pi and RTL-SDR sitting on a shelf, use Dan’s guidance to turn them into an ADS-B feeder!

Click here to read my ADS-B feeder tutorial based on the Raspberry Pi 3.

Raspberry Pi WiFi Radio with touch screen

For those of us who like to tinker with the Raspberry Pi, this looks like a fun weekend project.

It’s multi-step, but I believe this project could be completed by almost anyone–you wouldn’t have to be a Raspberry Pi or Python guru (code snippets can be downloaded, for example).

Here’s a short video demonstration of the finished Raspberry Pi Touchscreen WiFi Radio:

Click here to view on YouTube.

The whole project is documented on the superb AdaFruit website. 

Build a Raspberry Pi-powered SDR

Many thanks to SWLing Post contributor, Jeremy Clark (VE3PKC), who writes:

I have developed an SDR receiver that may be of interest to your readers. It can be used directly with the Raspberry Pi2B/3B. It comes in several versions DIP/SMD.

Check out this MP4 movie:

I have two eBooks which are basically design manuals for the DIP and SMD version of my SDR receiver. Each eBook has an Internet linked parts list, so that the reader can get their own parts to keep costs down. The DIP eBook is $7.90 CAD and the SMD book is $14.90 CAD.

Click here to view Jeremy’s website.

Thank you, Jeremy–this looks like a fascinating construction project!

Readers: just to be clear, Jeremy is selling eBooks detailing construction–not kits. He did mention if you’re interested in obtaining the PCB, he can sell this as well.

Guest Post: Richard builds a WiFi radio with the Raspberry Pi

Many thanks to SWLing Post contributor, Richard Schreiber (KE7KRF), who shares the following guest post:


Yet Another Internet Radio!

by Richard Schreiber (KE7KRF)

After deciding that an internet radio could be an important source of entertainment in our household, we formulated a few general guidelines:

  • We opted not to use an aggregator but would pick and choose stations we enjoyed and discover the URL’s ourselves. Also would be satisfied with a couple of dozen stations. Based on a recent decision to pare down the number of TV channels we were paying for, having access to hundreds of stations seemed impractical and unnecessary.
  • The price had to be affordable, thus eliminating many stand-alone, commercially available internet radios.
  • We already owned a quality portable speaker (Bose SoundLink Mini) so the internet radio didn’t need to duplicate that component.
  • Didn’t want to tie up nor be tethered to a laptop, tablet, or netbook. We predicted that would eventually lead to less and less use of the radio.

After some research, coupled with the fact I already had some experience with Raspberry Pi computers, that small device appeared to be our best choice. I had recently purchased the newer 2 B model, which has plenty of computing power, and had installed Ubuntu Linaro as the OS. (As an aside, this OS has not to my knowledge been upgraded for the latest Raspberry Pi 3). There are several other operating systems that will work just as well including the official Raspbian OS available through the Raspberry Pi Foundation.

I installed the MPD music player daemon and its client MPC, which is used to add to and delete station URL’s from the playlist, control volume, etc. An important find was the iPhone app called MPod which provides remote wireless access to the features of MPC. At the moment it is a free app for the iPhone (in my case the iPod Touch).

For portability, my Raspberry Pi is being used “headless”, meaning it is not connected to a monitor, keyboard or mouse. If maintenance is required you can use PuTTY, a SSH and telnet client, wirelessly from a Windows (or MAC?) PC, using a command-line interface. Mainly this is needed to shut down the Raspberry Pi properly before turning off the power, but it boots completely on its own when powered up. The MPod app will then load the playlist of stations and let you start playing the radio without direct access to the Raspberry Pi.

The sound output of my Raspberry Pi is connected to the auxiliary port of our Bose SoundLink Mini Bluetooth speaker. But instead of trying to implement Bluetooth on the Raspberry Pi, I took the easy way out and use a direct connection. The sound reproduction from this setup is very good, though audiophiles might be somewhat more critical.

The above represents a minimal investment if you already have a good speaker on hand. It does require some on-line research and learning at least enough to install the OS and software. The good news is that there are many websites and forums providing step-by-step instructions and helpful hobbyists willing to explain some of the more cryptic aspects. A few of the websites that I found to be helpful:

http://www.instructables.com/id/Arduino-Raspberry-Pi-Internet

http://cagewebdev.com/raspberry-pi-playing-internet-radio

https://learn.adafruit.com/raspberry-pi-radio-player-with-touchscreen

A couple of these also explain how to add a display to your Raspberry Pi internet radio.

Our Raspberry Pi radio is on each evening and has been trouble free. It is worth mentioning that this is a very portable setup, and can even be powered by a battery pack (the kind used for recharging tablets and cell phones) for a few hours. Of course you need to be near a wifi hotspot.


Thank you, Richard! What a great way to use the inexpensive Raspberry Pi. I have a spare Pi2 and an amplified speaker here at the house. Though I don’t need another WiFi radio, it would be fun putting this little system together. 

A Raspberry Pi touchscreen case

462657_015107_01_front_zoom

Many thanks to SWLing Post reader, Ken (N2VIP), who writes:

I was at Microcenter.com the other day and saw a case for their 7″ touchscreen for the Raspberry Pi, it includes a ‘bump’ in the back of the case to hold a Radpberry Pi.

http://www.microcenter.com/product/462657/Raspberry_Pi_Touchscreen_Case_-_White

Very cool, Ken! Load this up with a Raspberry PI, touchscreen and attach a Pi-compatible SDR (like the SDRplay RSP), and you could have a neat portable SDR kit.

I’m curious if the RSP Pi app would work well with a touchscreen. Has anyone tried?