The Icom IC-7300 vs. WinRadio Excalibur: Which do you prefer?

Icom-IC-7300-Front

[UPDATE: Read the full IC-7300 review–along with listener survey results–by clicking here.]

In the past, receiver shoot-outs in which I’ve provided sample audio for “blind” comparison––meaning, the listener does not know which audio sample is associated with which radio––have produced particularly positive feedback from Post readers.

The WinRadio Excalibur

The WinRadio Excalibur

So I’ve decided to do this for the new Icom IC-7300 transceiver. I’ve pitted the ‘7300 against a benchmark receiver: the WinRadio Excalibur.

I have a number of SDRs (software defined radios) in the shack at the moment, but I picked the Excalibur because it’s the closest in price ($900 US) to the IC-7300 ($1500) as compared to my Elad FDM-S2 ($520) or the TitanSDR Pro ($2500).

Recording notes and disclaimers

Both the WinRadio Excalibur and the Icom IC-7300 offer native digital audio recording (nice touch, Icom!). The Excalibur simply records the AF to a file on my PC’s hard drive, while the IC-7300 records the audio to an SD card which I can later transfer to my PC.

IC-7300

I’ve been using the Excalibur since 2012, so I’m very familiar with its recording feature. I was not, however, familiar with the IC-7300’s digital recorder, so prior to making recordings, I checked to make sure its recorded audio was a fair representation of its live audio. To my ear, the IC-7300 recorded audio was nearly identical to that of the live audio, so I used the 7300’s internal recorder rather than one of my external recorders.

Both receivers shared my large outdoor omni-directional horizontal delta loop antenna for each test.

The Elad ASA15 Antenna Splitter Amplifier

The Elad ASA15 Antenna Splitter Amplifier

To keep the comparison on as equal footing as possible, the receivers shared the same antenna through my Elad ASA15 antenna splitter amplifier. Though the ASA15 has both 12dB amplification and –15dB attenuation, I employed neither.

The ASA15 allowed me to make the following recordings simultaneously.

In each case, I tried to set up both radios using the same filter widths, gain, AGC settings, and (as much as possible), audio level. I didn’t engage a noise-reduction feature on either rig.

Note:  the only exception to the radios’ equal treatment was in the AM mode recordings, in which I used the WinRadio’s AM Sync (AMS) mode. Why? Frankly speaking, 99% of the time during which I use the Excalibur, I do employ its AMS mode as its AM mode often sounds “hot” and over-driven when band conditions are as noisy, as they were last night.

The IC-7300 does not have AM synchronous detection (AMS mode), but I felt it compared very favorably to the Excalibur in AMS mode.  The IC-7300 would have easily beat the Excalibur in this test had I only used the Excalibur’s AM mode. In the end, as a shortwave listener, the goal is to compare the total capabilities of broadcast performance between the two receivers (thus using sync mode if available, to maximize broadcast listening performance).

Please vote!

At the end of this post, I have an embedded a survey in which you can vote for the sample recordings you like best. Each recording is clearly labeled to denote that it’s either from “Radio A” or “Radio B” (I had my wife draw names from a hat to determine which radio would be labeled as A or B).

Since there are quite a few recordings, I’d suggest jotting down your notes separately before completing the survey.

Or, alternately, you can open the survey in a separate window by clicking here.

And now…here’s the recordings.

Ham Radio Band recordings

The following recordings were made on the 40 meter ham radio band yesterday evening. Both radios have the same filter width: 250 Hz in CW, 3 kHz in SSB.

Weak Signal CW (40 meter band)

Radio A

Radio B

Weak/Strong SSB QSO (40 meter band)

Radio A

Radio B


Shortwave Broadcast recordings

The following recordings were made on the 31 meter broadcast band yesterday evening. Both radios have the same filter width: 9 kHz and 8.2 kHz.

Weak Shortwave AM (Radio Bandeirantes 31 meter band)

Radio A

Radio B

Strong Shortwave AM (Radio Romania International, French 31 Meter Band)

Radio A 

Radio B


Mediumwave Broadcast recordings

Note that the following mediumwave recordings were made during the morning hours (grayline). The strong station is the closest AM broadcaster to my home; it’s not a blow-torch “Class A” type station, merely the closest local broadcaster.

In the “weak” sample, I tuned to 630 kHz, where multiple broadcasters could be heard on frequency––but one was dominant.

Both radios are set to a filter width of 9.0 kHz.

Strong Mediumwave AM (1010 kHz)

Radio A

Radio B

Weak Mediumwave AM (630 kHz)

Radio A

Radio B


We want to hear from you!

Use the form below to vote for the recordings you prefer in each section.

I’ll close voting at 12:00 UTC on Thursday April 21, 2016. Thank you in advance for your participation in this survey!

23 January 2015: A Friday morning 31 meter band scan

31-Meter-Waterfall-SpectrumThis morning, I tuned around the 31 meter band and was surprised with favorable propagation out of Asia (see spectrum waterfall above–click to enlarge).

I started logging a few stations, but the effort quickly turned into a full band scan/survey.  I logged everything I could easily hear between the 9,390-10,000 kHz portion of the 31 meter band.

I logged 52 stations and omitted eight that I considered too weak for good copy.

I used my WinRadio Excalibur SDR connected to a large horizontal delta loop wire antenna.

The number of broadcasts originating in or targeting China is pretty phenomenal: the 31 band is your oyster, if you speak Chinese.

31 Meter Band 1200 – 1300 UTC, all frequencies in kHz

  • 9390 Radio Thailand Malaysian (1200Z) then English (1230Z)
  • 9410 China National Radio 5 Chinese
  • 9430 FEBC Radio Chinese
  • 9440 China Radio International Cambodian
  • 9460 China Radio International English
  • 9475 Radio Australia English
  • 9490 Voice Of America Korean
  • 9500 China National Radio 1 Chinese
  • 9515 China National Radio 2 Chinese
  • 9530 Voice Of America Chinese
  • 9540 China Radio International Chinese
  • 9550 China Radio International Vietnamese (covered by CRI Cantonese distortion)

    Note the CRI signal on 9,570 kHz which is blanketing the surrounding spectrum with noise.

    Note the blowtorch CRI signal on 9,570 kHz which was blanketing the surrounding spectrum with noise.

  • 9570 China Radio International Cantonese (transmitter spewing distortion 50 kHz wide)
  • 9580 Radio Australia English (covered by CRI Cantonese distortion)
  • 9590 China Radio International Russian (covered by CRI Cantonese distortion)
  • 9600 China Radio International English
  • 9620 China National Radio 6 Chinese
  • 9635 Voice of Vietnam 1 Vietnamese (slightly below freq)
  • 9640 Radio Havana Cuba Spanish
  • 9645 China Radio International English
  • 9655 China Radio International Chinese
  • 9660 Radio Taiwan International Chinese
  • 9680 Radio Taiwan International Chinese
  • 9700 Lower Sideband communication (UNID)
  • 9710 China National Radio 1 Chinese
  • 9720 China Radio International Filipino
  • 9730 China Radio International English
  • 9735 Radio Taiwan International Indonesian
  • 9740 BBC English
  • 9745 Guanghua zhi Sheng Chinese
  • 9750 Radio Kuwait Arabic
  • 9730 China Radio International English
  • 9770 KBS World Radio Chinese
  • 9775 China National Radio 2 Chinese (vy weak)
  • 9785 China Radio International Laotian
  • 9790 Voice Of Islamic Republic of Iran Pashto
  • 9810 China National Radio 2 Chinese and All India Radio Telugu
  • 9820 Radio Havana Cuba Spanish
  • 9825 Voice Of America Chinese
  • 9830 China National Radio 1 Chinese
  • 9840 Voice of Vietnam English
  • 9850 Radio Habana Cuba Spanish
  • 9855 China Radio International Chinese
  • 9860 China National Radio 1 Chinese (vy weak)
  • 9880 KSDA-AWR Guam Korean (vy weak)
  • 9900 Radio France International Chinese
  • 9920 FEBC Radio Bahnar (w/Jamming)
  • 9940 Reach Beyond Australia (HCJB) Indonesian
  • 9955 Radio Slovakia International English (via WRMI/WRN)
  • 9975 KTWR Guam Chinese
  • 9990 Radio Farda Persian
  • 10000 WWV Fort Collins English

I recorded two broadcasts during the scan–both at 12:30 UTC: Radio Thailand (9,390 kHz) and Radio Slovakia (9,955 kHz). I will post them soon.

Chrome Remote Desktop: another application choice

chromeDesktop

In response to my post about SWLing in a hospital waiting room via TeamViewer, Stephen Cooper comments:

“Google Chrome Remote Desktop also works well for this.

[Click here to download]

Allows me to listen to my Elad when I am in work. Although it doesn’t transfer sound on Android (not sure about iPad) which isnt that good if you haven’t got a PC/Mac to use to login to home.”

Thanks for the suggestion, Stephen!

Shortwave listening in a hospital lobby

ExcaliburviaTeamviewer

This morning, at 6:00 am, I had to take a friend to the hospital for a scheduled (minor) operation.

The hospital waiting room is spartan for a projected three hour wait, but the complimentary wi-fi Internet is quite speedy. I had planned to catch up on a movie or two via Netflix, but the hospital blocks video streaming.

Fortunately, I just noticed that the hospital does not block TeamViewer–my remote PC application of choice.

Remote listening

I just logged into my home PC and launched both the Elad FDM-S2 and WinRadio Excabur SDR applications–fortunately, I discovered that the Excalibur was hooked up to an external antenna.

Not only does TeamViewer allow me to control a software defined radio, but it actually streams the receiver audio from my PC. With my inexpensive in-ear Sony headphones, the sound isolation and audio fidelity are quite good for a compressed audio stream. Indeed, other than a one second delay in response, the user experience is nearly as good as being home.

I should note that I could also use the TeamViewer app on my iPhone, but 4G reception in the hospital is very poor and controlling an SDR from a small touch screen is less than desirable (though works in a pinch–no pun intended).

I’m currently tuned and listening to Radio Australia, Radio Mali and the Voice of Korea.

The 31 meter band seems to be wide open at this morning. At this point, I don’t think I care if my friend’s out-patient procedure takes a while longer!

Recording the 2014 World Cup Final

WorldCupBall-001Sunday was the FIFA World Cup Final, and not only was I looking forward to the game, but (to tell the truth) I was also looking forward to recording the game via the BBC World Service for the Shortwave Radio Audio Archive. Due to the BBC WS cuts, part of me fears this may be a last chance to capture this radio and sports history.

If you would like to hear the recordings of the World Cup Final, skip to the bottom of this post. But if you want to know how I managed to make the recordings, and why I made the choices I did, feel free to continue reading…Warning: full-on radio geek tech ahead!

Making the recording

I had two SDRs (software defined radios) at my disposal: the Elad FDM-S2 and my trusty WinRadio Excalibur.  To record this match, I choose to use an SDR rather than a tabletop receiver for several reasons, namely:

  1. I wanted to make a spectrum recording so that I could record more than one frequency at a time;
  2. SDRs make recording radio content on the fly much easier than using a tabletop receiver, which must be connected to an external audio recorder, and I wanted ease of use so I could enjoy the game, too.

Propagation was rather mediocre Sunday, and there were only three feasible BBC World Service English frequencies I could tune in mid-afternoon, none of which, of course, were targeting North America:

  • 11,810 kHz from Ascension Island
  • 13,660 kHz from Woofferton, UK
  • 15,400 kHz from Ascension Island
  • 9,915 kHz from Woofferton, UK (starting at 20:00 UTC)

My hunch was that either 13,660 or 15,400 kHz would be my best bet for the early part of the match (pre-game starting at 18:30 UTC, half time at 20:00 UTC), however, I knew they would drop off after the first half of the game. And 11,800 kHz would be my best bet in the latter part of the game, unless 9,915 kHz happened to be stronger.

In the past, 11,800 had served me quite well for afternoon BBC listening, but yesterday there was an unscheduled religious broadcaster on 11,825 that was causing interference a full 30 kHz on either side of their carrier! During my pre-game check of the frequency, each attempt I made to block this broad interference was unsuccessful–very frustrating.

Which SDR?

The FDM-S2 is a fine SDR, and I was very tempted put it to the test.  But while the Elad FDM-S2 is quite capable of making very wide spectrum recordings (up to 6 MHz) and could easily record all four frequencies on four different meter bands at the same time, I decided to use the WinRadio Excalibur, instead.

Why? If 11,800 kHz was my only viable frequency option in the latter half of the game, I needed a receiver that could sync to the less noisy lower sideband of 11,800 kHz. While Elad plans to add USB/LSB selectable synchronous detection in the next version of their SDR application, it currently does not have this capability.

I suppose, too, I feel more comfortable with the WinRadio Excalibur; I’ve been using it now for well over two years. If something were to go wrong during the broadcast, I knew I could diagnose it quickly on the Excalibur.

In addition, the Excalibur can do both a spectrum recording and up to three individual AF recordings at the same time (though limited within a 2MHz bandwidth). I’m not sure if Elad has plans for this in their next SDR.

Setting up the Excalibur

The Excalibur only has a 2 MHz bandwidth for spectrum recordings. I knew if I focused on the middle frequency of 13,660, I would be able to record it and either 15,400 or 11,810 at the same time, but not all three.

The first half of the match, I recorded both 13,660 kHz and 15,400 kHz in a 2 MHz wide spectrum recording. At the same time, I recorded the audio (an AF recording) from 13,660 kHz, which was consistently the stronger of the two frequencies.

Half time

By 20:00 UTC, I knew both 13,660 and 15,400 kHz would stop transmitting and I would need to either hop to 11,810 kHz or 9,915 kHz.

While maintaining a good audio recording of 13,660, I stopped the 2 MHz spectrum recording and moved it to encompass 13,660 and 11,810 kHz. A quick check proved that 11,810 was the strongest station. Fortunately, the interference above 11,810 had quieted somewhat at that point, and by using the LSB sync lock, this noise was successfully mitigated a bit.

Still, I could hear a chuffing sound coming from the splatter 11,825 was producing. So I enabled the notch filter and widened it to 2 kHz. By shifting it around in the upper side band, I was able to find the “sweet spot” where most of the splatter noise was canceled. I then started the audio recording on 11,810 a few minutes prior to 20:00 UTC, making a little audio overlap with simultaneous recording on 13,660.

Syncing on the lower sideband and using the notch filter in the upper sideband mitigated most of the interference.

Syncing on the lower sideband and using the notch filter in the upper sideband mitigated most of the splatter interference.

In the end, I was very pleased with the results of the recordings. While capturing the BBC World Service isn’t exactly like snagging rare DX, I felt I had a lot riding on this recording, so pre-game preparations were necessary, especially since the Excalibur couldn’t record spectrum from 9,915 to 15,400 kHz.

And in theory, had I used the Elad FDM-S2, I could have recorded the entire chunk for three hours and then revisited the material later to make audio recordings from the AF.

The recordings

For your listening pleasure: the full 2014 World Cup final via the BBC World Service. This broadcast is broken into 3 sections: pre-game and the first half, second half, and extra time. Enjoy!

Pre-game and first half (13,66o kHz):

Second half (11,810 kHz):

Extra time and game wrap-up (11,810 kHz):

AM sync lessens noise in this The Voice of Greece broadcast

TheParthenonAthensSometimes, the Voice of Greece plays very little Greek music; October 10th was one of those occasions.  Nonetheless, I recorded that evening’s broadcast.

Using AM sync for sideband noise

In the first hour of the 10/10 VOG broadcast, you’ll hear a pulsating noise from an unknown origin (possibly a jammer?). The noise was centered about 20 kHz above VOG.

Fortunately, most of the noise was in the upper side band of the VOG signal, so I was able to mitigate it by using an AM sync lock on the lower side band. Without AM sync, this VOG broadcast––and its music mix––was almost inaudible.

If you have a synchronous detector on your receiver and tune in a station with interference, always try turning on sync lock and locking it on either the upper or lower sideband. If most of the noise resides in one of the sidebands, the lock can help tremendously. I often use this method while listening to AM pirate radio stations in noisy conditions.

A confession…

I have no idea what she’s talking about–it could be something absolutely mundane–but I love this radio host’s voice as she speaks and Pink Floyd’s Comfortably Numb begins(Start listening around 26:00)

Click here to download more than two hours of the Voice of Greece, recorded on October 10, 2013, starting around 03:15 UTC on 9,420 kHz, or simply listen via the embedded player below. Most of the noise disappears around 00:21:

WinRadio Excalibur owners take note: 2013 may require a software update

WinRadioExcaliburFullScreenYesterday, when I attempted to start my WinRadio Excalibur software, I received an error message from Windows 7. No matter if I restarted my PC, re-installed the control software or the USB driver, I simply could not get the Excalibur software to launch.

I navigated to WinRadio’s software download page and found that on December 20th, 2012, they made a new version of the Excalibur software available to download: version 1.61.  This is the first official upgrade I have seen in months.

I uninstalled my old version (important: being careful to tell WinRadio not to remove my shared libraries!) and installed 1.61. I restarted my PC, launched WinRadio and all was back to normal (save, back to default settings, of course).

I then received a message from my buddy, Dave, describing the same problem with his Excalibur and noted that other users had complained about this in a WinRadio discussion group. This morning, I received a comment from a user on the SWLing Post describing the same problem.

I think it’s safe to assume the previous version of the WinRadio Excalibur control software could not deal with the year changing from 2012 to 2013. Not exactly Y2K, but a bit odd.

If you own the WinRadio Excalibur, I would encourage you to visit WinRadio’s software download page and upgrade to version 1.61.