Tag Archives: WinRadio Excalibur

Now’s the time to grab longwave DX!

If you’ve been wanting to log France Inter as longwave DX, you’re running out of time. France Inter is shutting down their 162 kHz longwave service on December 31, 2016.

I’m grateful to SWLing Post contributor, Ron, who has persistently reminded me that these are some of the last days to catch France Inter as LW DX here in North America.  Indeed, he shared a bit of interesting and encouraging news a couple weeks ago:

On the Radiodiscussions DX forum, Jim Farmer over in San Antonio got and recorded France Inter on 162 khz using a PK loop and Sony 7600GR.

The PK Loop he’s referring to is this one and, of course, the Sony ICF-SW7600GR is one of my staple portables.

While I’d love to try to grab France Inter with my Sony, my schedule makes it very difficult to arrange. Fortunately, I have SDRs which allow me to record spectrum throughout the night, then review the recordings in the morning.

Throughout the month of December, I’ve been recording a small chunk of longwave spectrum–with my WinRadio Excalibur–during the night and reviewing it in the morning in hopes that I could grab an opening from France Inter.

I was rewarded on December 19, 2016 around 0300 UTC. Though there was atmospheric noise that night in the form of static crashes, I snagged France Inter on 162 kHz.

My spectrum display from the Excalibur.

The 162 kHz carrier was barely above the noise floor (see above), so it was certainly weak signal DX. Here’s an audio sample:

Click here to download the mp3 file.

When that short LW opening happened, I was also able to snag Medi 1 from Morocco on 171 kHz. Again, not fantastic copy, but I’m happy:

Click here to download the mp3.

Mind you, both France Inter and Medi 1 only transmit at 2,000 watts–that’s flea power compared to our shortwave broadcasters. It’s amazing those signals can even hop the Atlantic.

Correction…an SWLing Post reader, qwerty.am, comments:

Actually, the power of France Inter and Medi1 is 2000 kW and 1600 kW respectively. So the power of most SW broadcasters should be called a “flea power” in comparison to what is used on longwave. The smallest output on LW band in Europe is 50 kW, it’s used by Denmark and Czech Rep. The 162 kHz transmitter is closing on Dec 26th, according to the latest news.

Wow!

Again, if you’d like to grab  longwave stations before they disappear, now is the time! Our LW broadcasters are disappearing rapidly. Fortunately, winter (here in the northern hemisphere) is the best time to chase LW DX.

Thanks, again, Ron for your encouragement! I’ll keep listening and recording!

The Icom IC-7300 vs. WinRadio Excalibur: Which do you prefer?

Icom-IC-7300-Front

[UPDATE: Read the full IC-7300 review–along with listener survey results–by clicking here.]

In the past, receiver shoot-outs in which I’ve provided sample audio for “blind” comparison––meaning, the listener does not know which audio sample is associated with which radio––have produced particularly positive feedback from Post readers.

The WinRadio Excalibur

The WinRadio Excalibur

So I’ve decided to do this for the new Icom IC-7300 transceiver. I’ve pitted the ‘7300 against a benchmark receiver: the WinRadio Excalibur.

I have a number of SDRs (software defined radios) in the shack at the moment, but I picked the Excalibur because it’s the closest in price ($900 US) to the IC-7300 ($1500) as compared to my Elad FDM-S2 ($520) or the TitanSDR Pro ($2500).

Recording notes and disclaimers

Both the WinRadio Excalibur and the Icom IC-7300 offer native digital audio recording (nice touch, Icom!). The Excalibur simply records the AF to a file on my PC’s hard drive, while the IC-7300 records the audio to an SD card which I can later transfer to my PC.

IC-7300

I’ve been using the Excalibur since 2012, so I’m very familiar with its recording feature. I was not, however, familiar with the IC-7300’s digital recorder, so prior to making recordings, I checked to make sure its recorded audio was a fair representation of its live audio. To my ear, the IC-7300 recorded audio was nearly identical to that of the live audio, so I used the 7300’s internal recorder rather than one of my external recorders.

Both receivers shared my large outdoor omni-directional horizontal delta loop antenna for each test.

The Elad ASA15 Antenna Splitter Amplifier

The Elad ASA15 Antenna Splitter Amplifier

To keep the comparison on as equal footing as possible, the receivers shared the same antenna through my Elad ASA15 antenna splitter amplifier. Though the ASA15 has both 12dB amplification and –15dB attenuation, I employed neither.

The ASA15 allowed me to make the following recordings simultaneously.

In each case, I tried to set up both radios using the same filter widths, gain, AGC settings, and (as much as possible), audio level. I didn’t engage a noise-reduction feature on either rig.

Note:  the only exception to the radios’ equal treatment was in the AM mode recordings, in which I used the WinRadio’s AM Sync (AMS) mode. Why? Frankly speaking, 99% of the time during which I use the Excalibur, I do employ its AMS mode as its AM mode often sounds “hot” and over-driven when band conditions are as noisy, as they were last night.

The IC-7300 does not have AM synchronous detection (AMS mode), but I felt it compared very favorably to the Excalibur in AMS mode.  The IC-7300 would have easily beat the Excalibur in this test had I only used the Excalibur’s AM mode. In the end, as a shortwave listener, the goal is to compare the total capabilities of broadcast performance between the two receivers (thus using sync mode if available, to maximize broadcast listening performance).

Please vote!

At the end of this post, I have an embedded a survey in which you can vote for the sample recordings you like best. Each recording is clearly labeled to denote that it’s either from “Radio A” or “Radio B” (I had my wife draw names from a hat to determine which radio would be labeled as A or B).

Since there are quite a few recordings, I’d suggest jotting down your notes separately before completing the survey.

Or, alternately, you can open the survey in a separate window by clicking here.

And now…here’s the recordings.

Ham Radio Band recordings

The following recordings were made on the 40 meter ham radio band yesterday evening. Both radios have the same filter width: 250 Hz in CW, 3 kHz in SSB.

Weak Signal CW (40 meter band)

Radio A

Radio B

Weak/Strong SSB QSO (40 meter band)

Radio A

Radio B


Shortwave Broadcast recordings

The following recordings were made on the 31 meter broadcast band yesterday evening. Both radios have the same filter width: 9 kHz and 8.2 kHz.

Weak Shortwave AM (Radio Bandeirantes 31 meter band)

Radio A

Radio B

Strong Shortwave AM (Radio Romania International, French 31 Meter Band)

Radio A 

Radio B


Mediumwave Broadcast recordings

Note that the following mediumwave recordings were made during the morning hours (grayline). The strong station is the closest AM broadcaster to my home; it’s not a blow-torch “Class A” type station, merely the closest local broadcaster.

In the “weak” sample, I tuned to 630 kHz, where multiple broadcasters could be heard on frequency––but one was dominant.

Both radios are set to a filter width of 9.0 kHz.

Strong Mediumwave AM (1010 kHz)

Radio A

Radio B

Weak Mediumwave AM (630 kHz)

Radio A

Radio B


We want to hear from you!

Use the form below to vote for the recordings you prefer in each section.

I’ll close voting at 12:00 UTC on Thursday April 21, 2016. Thank you in advance for your participation in this survey!

23 January 2015: A Friday morning 31 meter band scan

31-Meter-Waterfall-SpectrumThis morning, I tuned around the 31 meter band and was surprised with favorable propagation out of Asia (see spectrum waterfall above–click to enlarge).

I started logging a few stations, but the effort quickly turned into a full band scan/survey.  I logged everything I could easily hear between the 9,390-10,000 kHz portion of the 31 meter band.

I logged 52 stations and omitted eight that I considered too weak for good copy.

I used my WinRadio Excalibur SDR connected to a large horizontal delta loop wire antenna.

The number of broadcasts originating in or targeting China is pretty phenomenal: the 31 band is your oyster, if you speak Chinese.

31 Meter Band 1200 – 1300 UTC, all frequencies in kHz

  • 9390 Radio Thailand Malaysian (1200Z) then English (1230Z)
  • 9410 China National Radio 5 Chinese
  • 9430 FEBC Radio Chinese
  • 9440 China Radio International Cambodian
  • 9460 China Radio International English
  • 9475 Radio Australia English
  • 9490 Voice Of America Korean
  • 9500 China National Radio 1 Chinese
  • 9515 China National Radio 2 Chinese
  • 9530 Voice Of America Chinese
  • 9540 China Radio International Chinese
  • 9550 China Radio International Vietnamese (covered by CRI Cantonese distortion)

    Note the CRI signal on 9,570 kHz which is blanketing the surrounding spectrum with noise.

    Note the blowtorch CRI signal on 9,570 kHz which was blanketing the surrounding spectrum with noise.

  • 9570 China Radio International Cantonese (transmitter spewing distortion 50 kHz wide)
  • 9580 Radio Australia English (covered by CRI Cantonese distortion)
  • 9590 China Radio International Russian (covered by CRI Cantonese distortion)
  • 9600 China Radio International English
  • 9620 China National Radio 6 Chinese
  • 9635 Voice of Vietnam 1 Vietnamese (slightly below freq)
  • 9640 Radio Havana Cuba Spanish
  • 9645 China Radio International English
  • 9655 China Radio International Chinese
  • 9660 Radio Taiwan International Chinese
  • 9680 Radio Taiwan International Chinese
  • 9700 Lower Sideband communication (UNID)
  • 9710 China National Radio 1 Chinese
  • 9720 China Radio International Filipino
  • 9730 China Radio International English
  • 9735 Radio Taiwan International Indonesian
  • 9740 BBC English
  • 9745 Guanghua zhi Sheng Chinese
  • 9750 Radio Kuwait Arabic
  • 9730 China Radio International English
  • 9770 KBS World Radio Chinese
  • 9775 China National Radio 2 Chinese (vy weak)
  • 9785 China Radio International Laotian
  • 9790 Voice Of Islamic Republic of Iran Pashto
  • 9810 China National Radio 2 Chinese and All India Radio Telugu
  • 9820 Radio Havana Cuba Spanish
  • 9825 Voice Of America Chinese
  • 9830 China National Radio 1 Chinese
  • 9840 Voice of Vietnam English
  • 9850 Radio Habana Cuba Spanish
  • 9855 China Radio International Chinese
  • 9860 China National Radio 1 Chinese (vy weak)
  • 9880 KSDA-AWR Guam Korean (vy weak)
  • 9900 Radio France International Chinese
  • 9920 FEBC Radio Bahnar (w/Jamming)
  • 9940 Reach Beyond Australia (HCJB) Indonesian
  • 9955 Radio Slovakia International English (via WRMI/WRN)
  • 9975 KTWR Guam Chinese
  • 9990 Radio Farda Persian
  • 10000 WWV Fort Collins English

I recorded two broadcasts during the scan–both at 12:30 UTC: Radio Thailand (9,390 kHz) and Radio Slovakia (9,955 kHz). I will post them soon.

Chrome Remote Desktop: another application choice

chromeDesktop

In response to my post about SWLing in a hospital waiting room via TeamViewer, Stephen Cooper comments:

“Google Chrome Remote Desktop also works well for this.

[Click here to download]

Allows me to listen to my Elad when I am in work. Although it doesn’t transfer sound on Android (not sure about iPad) which isnt that good if you haven’t got a PC/Mac to use to login to home.”

Thanks for the suggestion, Stephen!

Shortwave listening in a hospital lobby

ExcaliburviaTeamviewer

This morning, at 6:00 am, I had to take a friend to the hospital for a scheduled (minor) operation.

The hospital waiting room is spartan for a projected three hour wait, but the complimentary wi-fi Internet is quite speedy. I had planned to catch up on a movie or two via Netflix, but the hospital blocks video streaming.

Fortunately, I just noticed that the hospital does not block TeamViewer–my remote PC application of choice.

Remote listening

I just logged into my home PC and launched both the Elad FDM-S2 and WinRadio Excabur SDR applications–fortunately, I discovered that the Excalibur was hooked up to an external antenna.

Not only does TeamViewer allow me to control a software defined radio, but it actually streams the receiver audio from my PC. With my inexpensive in-ear Sony headphones, the sound isolation and audio fidelity are quite good for a compressed audio stream. Indeed, other than a one second delay in response, the user experience is nearly as good as being home.

I should note that I could also use the TeamViewer app on my iPhone, but 4G reception in the hospital is very poor and controlling an SDR from a small touch screen is less than desirable (though works in a pinch–no pun intended).

I’m currently tuned and listening to Radio Australia, Radio Mali and the Voice of Korea.

The 31 meter band seems to be wide open at this morning. At this point, I don’t think I care if my friend’s out-patient procedure takes a while longer!