Tag Archives: Ham Radio

VisAir HF DDC/DUC Transceiver: Randy purchased one exclusively for shortwave radio listening

Many thanks to SWLing Post contributor, Dan Robinson, who recently shared a message he received from his friend Randy regarding the VisAir HF DDC/DUC Transceiver:

I recently acquired a VisAir transceiver from Russia. It is an amazing SDR unit developed by two amateur radio operators. It is about the same size as the RDR55, but at about 1/3 the cost. While it does not have FM or amateur 2/6 meter, GPS, and a couple of features, this VisAir has other features not found on the RDR55 such as dual receivers, waterfall, receiving audio equalizer, CW decoder, etc. It is a true SDR receiver. The user manual was in Russian and I had to break it into thirds so that I could get it translated into English. Interestingly, the user interface is completely in English despite its Russian origins. While designed primarily for amateur radio operators, it works especially well on the shortwave bands.

[…]I have really been enjoying this “transceiver” and as you imagine, I use only the receiver portion of the unit. It has two antenna connectors and you can configure these however you prefer. I set one as a receive antenna and the other as a transmit antenna to avoid accidentally hitting the antenna match or some function and sending power into my equipment. I also disabled the transmitter portion to further protect against any accidental transmissions.

Unfortunately, virtually all the YouTube videos and information are in Russian and also its use is shown only on the amateur radio bands, but I can tell you that this is a very nice SW DX receiver with lots of interesting user defined menus whereby the unit can be modified to match the user’s preferences. Here is a website with some information on the unit.

As you know, I have enjoyed using a wide variety of communications receivers from simple beginner’s units to the more complex and highly esteemed units built to exacting standards for government use. This VisAir is built by two guys in Russia and amazingly it was designed by them in 2017 and not a whole team of design engineers such as found at Yaesu, Kenwood, and Icom. From what I understand, the unit sells in Russia in rubles for the equivalent of about $1800 USD. Unfortunately it is not exported to the USA and it only comes with a 220 VAC power supply and so I operate it exclusively off of DC current without any issue. It is my understanding that this low production transceiver has sold between about 200 – 300 units and virtually all of these were in Russia. To my knowledge, I am the only person in the USA with this unit. Further, it is my understanding is that there is a wait list of about 2 years to obtain the unit. The VisAir is upgraded via firmware and my unit has the latest firmware installed.

When I got information about the transceiver to consider for purchase, there was only a Russian user manual available. I have access to an online PDF translator, but it can only accept up to 10 MB files and so I had to break the Russian manual into 3 sections, translate each section into English, and then stitch the 3 sections back together to make a complete English manual (which is too large to email as a whole). Attached are sections 2 and 3 of this English user manual for the VisAir:

You can look at the manual and see what features are available with this transceiver. While the translator worked nicely overall in getting the manual from Russian into English, there are issues whereby the illustrations have Russian language information and these did not translate, but this did not thwart me from understanding and using the VisAir as most of the Russian information relates to connecting the transmitter to microphone and other devices.

As with most all low production units from small producers, the user manual is good at pointing out controls, but lacks in explaining what is the purpose of settings or offering suggestions on the settings other than telling you what is a “default” setting from the factory. I found this same dilemma with the manuals for the Fairhaven RD500, the Reuter RDR55, the Kneisner & Doering KWZ30, etc. But an experienced DXer can generally figure out operations and establish the appropriate settings with a little time. For the first 3 days of operation, it was a discovery for me as I kept learning about new features that I didn’t know about previously and weren’t highlighted in the user manual. It was like reading the user manual for my Toyota Highlander in that there are options and controls that are found in menus and not particularly obvious at first glance or with casual use.

Randy

Thank you, Randy, for sharing your comments about the VisAir transceiver here on the SWLing Post. Looks like a fascinating tabletop SDR.

Click here to check out VisAir’s website.

Spread the radio love

We may be looking at severe shortages of some new ham radio gear due to AKM factory fire

AKM Factory Fire (Image (Strata-Gee.com)

Recently, I’ve received a number of emails from readers who are frustrated because new ham radio transceivers are out of stock and used prices have increased.

At first, I thought this might be due to supply chain and logistics issues due to the continuing Covid-19 pandemic. If it is, it’s only a partial explanation.

As of this morning, I’ve heard from three trusted sources in the radio industry (from retailing and manufacturing) who tell me that the lack of inventory is a supply chain issue, but directly linked to the October 21, 2020 fire at Asahi Kasei Microsystems (AKM) Nobuoka semiconductor Plant “Fab2”.

According to Converge:

“This factory mainly produces large-scale integrated circuits (LSI) used in audio equipment, home appliances, TCXO oscillator, and other products. Due to the recent fire, AKM has been forced to stop production and delays are to be expected.”

Fortunately, according to the article, AKM has been moving some IC production to external companies, but it could take some time to re-tool. A number of markets have been affected by this disruption including the pro audio industry.

There’s no need to panic

If you’ve been looking for a specific radio model, you may find that retailers have been back-ordered and can only offer a vague shipping timeline; 2-6 weeks out, for example.

Some models (including the popular IC-7300, IC-705, Yaesu FT-DX10, and Yaesu FT-991A) are still in-stock at some retailers.

Several readers have been trying to purchase the popular Yaesu FT-891 and found that no one has inventory at present.  We may be looking at extended delays for this model and others once inventory is depleted.

But again, I don’t think this is a panic situation. This supply chain disruption has been in play for a number of months already and you can bet the industry is already working on solutions.

My advice would be that if you’re getting close to pulling the trigger on a new transceiver, if it’s in stock, I’d jump on it now. Otherwise, you’ll simply need to be patient as new inventory eventually makes its way back to retailer shelves. Used prices on some of these models may be inflated until new inventory returns.

Spread the radio love

Listen to a live ARISS contact on Friday, February 2021

The number of ARISS (Amateur Radio on the International Space Station) has been lower during the Covid-19 pandemic due to so many schools being closed and relying on remote instruction. Many thanks to SWLing Post contributor, Bruce Atchison, who notes that there will be an ARISS contact tomorrow (February 5, 2021) in Canada.

Listening to an ARISS contact is actually quite easy as long as you’re within the footprint of the ISS during the pass. Almost any radio–a scanner, handheld radio, etc.–that can receive 145.8 MHz can tune in. Click here to read a previous post describing how to listen.

Check out the RAC news item below with full details:

ARISS contact with Ottawa Carleton Virtual Online School: Friday, February 5

Ottawa, Ontario

ARISS Event: February 5, 2021 – As part of the Amateur Radio on the International Space Station (ARISS) program, NASA Astronaut Mike Hopkins, KF5LJG, will connect with students from the Ottawa Carleton Virtual Online School in Ottawa, Ontario  and answer their questions (see below), live from the International Space Station (ISS).

The ISS call sign is scheduled to be NA1SS event and the will take place on Friday, February 5, 2021 at 17:41:04 UTC 40 deg via AB1OC. It is recommended that you start listening approximately 10 minutes before this time.

The duration of the contact is approximately 9 minutes and 30 seconds. The contact will be a telebridge between NA1SS and AB10C which is located in New Hampshire:

Ground Station Coordinates:
AB1OC New Hampshire Latitude 42.712N; Longitude 71.590W; Elevation 110m

The contact should be audible over the USA and Canada (Eastern regions) and adjacent areas. Interested parties are invited to listen in on the 145.80 MHz downlink. The contact is expected to be conducted in English.

Steve McFarlane, VE3TBD, ARISS Central and Northern Canada representative, is the Mentor for the event and Brian Jackson, VE6JBJ, ARISS Western Canada Mentor, is the Moderator.

ARISS is an international program aimed at inspiring students worldwide to pursue interests and careers in science, technology, engineering and mathematics (STEM) through Amateur Radio communications opportunities with the ISS crew.

For more information on ARISS please visit:

RAC ARISS webpage: https://www.rac.ca/ariss/

Main ARISS website: http://www.ariss.org

Multipoint Telebridge Contact via Amateur Radio

As mentioned above, members will ask their questions to Astronaut Mike Hopkins, KF5LJG, via an adapted telebridge link which will use a multi-point system in which they are connected to the conference call centre from their own homes.

The concept requires three things:

  • the ARISS telebridge radio ground station – a satellite Amateur Radio station with special equipment that an ARISS team member uses for teleconferencing
  • the astronaut on the International Space Station using the ARISS Amateur Radio station
  • students at their homes here on Earth

The telebridge radio operator links to the astronaut at the ARISS radio mic, and each youth then connects from home via their telephones. Their families can listen along with school faculty and the public from home.

ARISS invites the public to view the livestream of the upcoming ARISS contact at: https://youtu.be/Ery1JYmk72o

Click here to read the full article at the RAC website.

Spread the radio love

How to build a PC keyer and AM modulator for the EMTX emergency transmitter

Many thanks to SWLing Post contributor, Kostas (SV3ORA), for sharing the following guest post which originally appeared on his radio website. Note that this project builds on the EMTX emergency transmitter project:


PC keyer and AM modulator: A 15-components versatile keyer and powerful PSU modulator for the EMTX (Emergency Transmitter)

by Kostas (SV3ORA)

Schematic of the keyer and modulator (on the left) for the EMTX. The EMTX schematic is shown as well on the right, to determine the connections to the keyer/modulator.

Introduction

My very successful emergency transmitter (EMTX) was only capable of CW or other slow speed ON/OFF keying modes. Then I thought, why not “give voice” to the design? CW is good, but it is half of the fun. If you could use your simple CW transmitter to send out your voice as well, this would be great. You could now chat comfortably on the nets or use any digital radio amateur mode and have much more fun. The simplest modulation you can apply to an existing CW transmitter, is the AM modulation. And whereas this is an old modulation, mostly abandoned by HAMs due to beeing inefficient, there are still AM nets on HF. But do not forget, AM can also be heard by SSB receivers by zero-beating the receiver to the AM carrier. So you could still use your simple AM transmitter to QSO with the SSB guys!

Along with the modulator, there is also a versatile keyer embedded to the circuit, so that the EMTX can be manually keyed with different ways or automatically keyed by audio tones from the PC. For more information on the keyer, keep reading.

The AM modulator

In the old days, the most common way to apply AM modulation was to modulate the high voltage to the plate of the tubes, using a transformer and a powerful audio amplifier. In low voltage solid state circuits, you can still do it using transformers, but you can also use series transistors instead of the transformer. All these things require many components and/or powerful AF amplifiers if one is to modulate higher power transmitters. This does not match the keep-it-simple design I am trying to achieve here.

So I thought of a simple trick with the use of the extremely common LM317 regulator, used as a modulated power supply. This modulator uses just a few common cheap components and it is able to achieve remarkably good modulation levels for it’s parts-count, just from line audio input. It juices every bit of the internal circuicity of the LM317, just look at where the base current of the 2N2222 comes from.

The AM modulator is a kind of novelty. Whereas there is nothing special in a modulated power supply, this circuit has some interesting properties. It is amazingly sensitive and it is able to provide lots of modulated current to any low power transmitter that it can feed. It can be easily driven by the line output of any laptop (around 20% volume) and provide a very good depth modulation to the transmitter. Charles Wenzel was kind enough to do a simulation on the circuit I developed, which is shown below.

His simulated circuit is a slight variation (for measurement purposes). The resistor to ground on the base stabilizes the bias and the ratio of R1 and R2 set the output voltage (0.6 volts across R2 gives about 8 volts across R1). He put in an emitter resistor just for good measure. Same for the series resistor from the source. Charles words, “I don’t know how believable these results are but it looks pretty darned good!”.

The circuit is being used as a current booster, the current being the supply to the transmitter and dependent on the voltage it produces. The LM317 always tries to keep 1.25V between it’s output pin and “adj” pin but where we benefit here is the current at the “adj” pin is very low, so it is easier to apply audio to it. Effectively, the error amplifier inside the voltage regulator is used as an additional amplifier stage. The output pin voltage varies according to the voltage on the “adj” pin so if we use it to bias the transistor we get negative feedback which improves the quality of the modulation. More output voltage = more bias current = lower output voltage. The result, is a very cheap, low components-count, very sensitive AM modulator that can supply lots of power to easily drive the transmitter and produce a clean and deep AM modulation!

The AM modulator bias is set with the 1M potentiometer. Depended on the bias level, the idle carrier on the EMTX can be set from about 0.5W all the way up to 8W. Needless to say that this modulator can modulate any similar power transmitter, not just the EMTX.

The keyer

If it is to modulate the EMTX from the PC, so as to use the different digital modes, there must be a way to key it also from the PC. This is why I decided to embed into the same circuit, a PC keyer which is triggered by the line audio of the PC, but also triggered manually (internal or external key). Keying by audio tones was decided, because modern PCs do not have LPT ports to trigger directly by DC. This keyer uses a reed relay to reliably, fastly and scilently key the EMTX, which is activated by a transistor. The base current for the transistor is derived from the audio signal after rectification. The incoming audio from the PC line passes through the mini audio transformer to increase its voltage, it is rectified and then charges the shunt capacitor to drive the base of the transistor. The keyer “speed” (decay) is determined by the shunt capacitor size. The circuit starts to trigger from about 50-60% of my sound card output signal level.

The relay used to key the EMTX, must be able to tolerate at least 1A of switching and carrying current. Note that the relay contacts switching current is not the same as the contacts carrying current. Reed relays are the best especially if you want long relay life, noiseless operation and very fast switching speeds, like the ones used in Hellshreiber. If you can’t find such a relay, you can use a reed switch capable of 1A of switching and carrying current and then place a suitable electromagnet close to it, so you can build the relay yourself. If you do so, find the best point where the reed switch responds to the electromagnet.

The keyer relay must be as close as possible to the emitter of the transistor used in the EMTX. The connectors at the back of the EMTX and the keyer/modulator have been physically placed so that when the two units are side by side, a very short link cable is required for this purpose. With the two devices placed close together, you can now use any length of cable for your manual external key, which is now connected to the “EXT” connector of the keyer/modulator.

The keyer does also have an internal mini straight key. I find this idea very nice, to avoid extra cables. It is not the most convenient key in the world, but it is there along with the transmitter every time you need it. By using a special panel switch from apem, I was able to triple this switch usage for the different modes of the keyer. The vinyl lever cap you see in the next picture, is the original part of the switch, to make it easier to key with your finger. But you may build such a part on your own, to fit on other switches types.

The switch is an ON-OFF-(ON momentary) switch type. In the default (middle) position, only the PC keying action is activated. In the top position (ON), the keyer is always active, which is useful for broadcasting audio (into a dummy load). The bottom (ON momentary) position, is the manual PTT action. This is used as a straight key on OOK operation, or as a PTT on AM voice operation. Simple and effective!

Initially, I used one channel of the PC sound card for triggering the keyer and also as an AF signal for the AM modulator, but this caused several problems of unreliable keying or distortion. So I decided to use a second separate AF input (KAF) to key the keyer. This second input, uses the other channel of the stereo sound card. With the addition of this input, there is no interaction between the keyer and the modulator. The AF levels that the keyer and the modulator require, can be set independently. Instead of adding more hardware for the purpose, I have chosen to set these levels by adjusting the volume and the balance of the sound card, which works great. Also, programs like Fldigi, have options for using one of the two channels of the stereo sound card as a keying interface (PTT channel), which makes the keying efen more reliable. When the program is in transmit mode, a continuous tone is heard on the PTT channel. This steady tone, is used by the keyer as a reliable keying signal, independent of the audio signal of the digital mode that modulates the modulator. This solution works very reliably for any mode. But if the program you are using does not have an option for a PTT channel, that is ok, as the keyer works reliably even without this feature. For voice communication or broadcasting music (into a dummy load) you just use the internal key switch as a PTT to handle these modes.

Results

Prior to building the keyer and the modulator in the same device, I had tested the circuits independently quite a few times, to ensure the results can be reproduced. The modulation quality and depth out of the AM modulator have to be listenned to be believed. I have not made any linearity measurements, I just trust my ears on this one. It works great on music as well as on voice. Apart from that, this is the most sensitive AM modulator I have ever built, requiring only a small fraction of the line level output of the PC sound card.

When modulated by this modulator, the EMTX shows no audible signs of FM modulation. I switched my receiver to SSB and I could perfectly zero beat the AM modulated music signal which stayed on frequency and it’s tone did not change during loud audio signal music. Switching back and forth from SSB to AM modulation on the receiver, I did not notice any difference in the audio quality, apart of course from the narrower bandwidth on SSB modulation, due to the narrower IF filter inside the receiver on SSB.

The AM/OOK switch is used to select the modulation applied to the EMTX. When the keyer is set to be triggered by audio from the PC, at the OOK position, the EMTX is just switched on and off by the audio tones applied to the keyer, or by the manual key, internal or external (connected to the “EXT” connector). At AM position, the EMTX is switched on by the audio signal applied to the KAF connector and at the same time AM modulated by whatever audio signal is applied to the AF connector. On voice communications, the momentary position of the internal key is used as a PTT. On music broadcasting (into a dummy load) the non-momentary position of the internal key is used to keep the keyer always active.

Photos

Back connections to the EMTX.

Pictures of the finished keyer/modulator. You don’t have to build it that nice-looking if you don’t care.

Modulator prototype and EMTX built on a breadboard. Yes it worked just fine onto a piece of wood.


Thank you so much for sharing this brilliant and simple project with us, Kostas. Your handiwork is absolutely brilliant too!

Click here to check out Kostas’ website.

Spread the radio love

Icom IC-705 firmware v1.20, programming software v1.10, and a new 3rd party remote app for Android

Many thanks to SWLing Post contributor, Markku Koskinen, who notes the following new and updated programs for the Icom IC-705 general coverage transceiver:

First, Icom has published firmware version 1.20 which includes a number of new features. We’ll post the full announcement below. Click here to view the release notes and download.

Secondly, Icom has published a new version (1.10) of their IC-705 programming software. The new release also includes a number of additions. Click here to view the release notes and download.

Finally, Markku notes that there is now an IC-705 Remote application on the Google Play app store.

The app appears to control basic functionality like tuning, band, mode, filter, and CI-V address switching.  The app is free and should work on most Android devices.

Thanks for the tips, Markku!

Spread the radio love

Radio Waves: Michael Pack Resigns, FCC Enforcement Advisory, Upcoming ISS SSTV, and Prowling TV Detector Vans

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Eric McFadden, Ronald Kenyon,  for the following tips:


Defined By Scandal At Voice of America, CEO Resigns At Biden’s Request (NPR)

Michael Pack resigned Wednesday as the CEO of the federal agency over the Voice of America and other federally funded international broadcasters after a turbulent seven-month tenure. He leaves the U.S. Agency for Global Media with a Trumpian legacy of ideological strife, lawsuits and scandal, his departure effective just two hours after the swearing-in of President Biden, who requested him to leave.

Biden has named senior VOA news executive Kelu Chao as acting CEO.

Pack came to lead the U.S. Agency for Global Media with the support of former President Donald Trump; his appointment was delayed more than two years in the U.S. Senate by lawmakers who feared he was too ideological and also who questioned his finances. The soft-spoken conservative documentary maker proved to be an ideological warrior in the mold of his patron, taking to one conservative news outlet after another to denounce his own staff, all in the name of fairness.

In his resignation letter, Pack said he was “solely focused upon reorienting the agency toward its missions.” And he attacked the request for his resignation as “a partisan act,” saying the leadership of the agency and its networks “is meant to be non-partisan, untethered to alternations in the political regime.”

He added, “I had no political agenda coming into USAGM, and I still do not have one.”

NPR conducted scores of interviews over the controversies Pack’s actions engendered. And few at the agency or its broadcasters agreed with Pack’s characterization of his mission or performance, instead characterizing him as seeking political control over their coverage. Just last week, a VOA reporter’s insistent questions to then-Secretary of State Mike Pompeo and VOA Director Robert R. Reilly over the siege on Congress after a public event led to her demotion and an investigation.

Pack routinely accused journalists of anti-Trump bias, sought to fire top executives as part of a “deep state,” ominously accused the networks of being receptive to foreign spies and denied requests for visa extensions from his own staffers who are foreign nationals.[]

FCC Issues Enforcement Advisory: Radio Users Reminded Not to Use Radios in Crimes (ARRL News)

The FCC has released an Enforcement Advisory for licensees and operators across radio services.

[Complete text of FCC Enforcement Advisory follows.]

FCC ENFORCEMENT ADVISORY

DA 21-73

Released: January 17, 2021

WARNING: AMATEUR AND PERSONAL RADIO SERVICES LICENSEES AND OPERATORS MAY NOT USE RADIO EQUIPMENT TO COMMIT OR FACILITATE CRIMINAL ACTS

The Enforcement Bureau (Bureau) of the Federal Communications Commission issues this Enforcement Advisory to remind licensees in the Amateur Radio Service, as well as licensees and operators in the Personal Radio Services, that the Commission prohibits the use of radios in those services to commit or facilitate criminal acts.

The Bureau has become aware of discussions on social media platforms suggesting that certain radio services regulated by the Commission may be an alternative to social media platforms for groups to communicate and coordinate future activities. The Bureau recognizes that these services can be used for a wide range of permitted purposes, including speech that is protected under the First Amendment of the U.S. Constitution. Amateur and Personal Radio Services, however, may not be used to commit or facilitate crimes.

Specifically, the Bureau reminds amateur licensees that they are prohibited from transmitting “communications intended to facilitate a criminal act” or “messages encoded for the purpose of obscuring their meaning.” 47 CFR § 97.113(a)(4).

Likewise, individuals operating radios in the Personal Radio Services, a category that includes Citizens Band radios, Family Radio Service walkie-talkies, and General Mobile Radio Service, are prohibited from using those radios “in connection with any activity which is against Federal, State or local law.” 47 CFR § 95.333(a).

Individuals using radios in the Amateur or Personal Radio Services in this manner may be subject to severe penalties, including significant fines, seizure of the offending equipment, and, in some cases, criminal prosecution. 47 U.S.C. §§ 401, 501, 503, 510.

Media inquiries should be directed to 202-418-0500 or MediaRelations@fcc.gov.

To file a complaint with the FCC, visit https://consumercomplaints.fcc.gov or call 1-888-CALL-FCC. To report a crime, contact your local law enforcement office or the FBI.

To request materials in accessible formats for people with disabilities (Braille, large print, electronic files, audio format), send an e-mail to fcc504@fcc.gov or call the Consumer & Governmental Affairs Bureau at (202) 418-0530 (voice), (202) 418-0432 (TTY).

Issued by: Chief, Enforcement Bureau[]

ISS SSTV 145.800 FM Jan 28-29 (Southgate ARC)

Russian cosmonauts on the International Space Station (ISS) are planning to transmit Slow Scan TV images on 145.800 MHz FM using the SSTV mode PD-120

The transmissions are part of the Moscow Aviation Institute SSTV experiment (MAI-75).

Jan 28 – Starts after 12:10 GMT and ends at 17:15 GMT*

Jan 29 – Start about 13:10 GMT and ends at 18:05 GMT*

*Dates and times subject to change.

ARISS SSTV Blog
https://ariss-sstv.blogspot.com/

Useful SSTV info and links
https://amsat-uk.org/beginners/iss-sstv/

TV Detector Vans Once Prowled The Streets Of England (Hackaday)

The United Kingdom is somewhat unique in the world for requiring those households which view broadcast television to purchase a licence for the privilege.

Initially coming into being with the Wireless Telegraphy Act in 1923, the licence was required for anyone receiving broadcast radio, before being expanded to cover television in 1946. The funds generated from this endeavour are used as the primary funding for the British Broadcasting Corporation.

A typical TV licence invoice. Separate licences for black and white and color sets still exist, with 6000 B&W licences issued in 2019.

Of course, it’s all well and good to require a licence, but without some manner of enforcement, the measure doesn’t have any teeth. Among other measures, the BBC have gone as far as employing special vans to hunt down illegally operating televisions and protect its precious income.

THE VAN IS COMING FOR YOU

To ensure a regular income, the BBC runs enforcement operations under the TV Licencing trade name, the entity which is responsible for administering the system. Records are kept of licences and their expiry dates, and investigations are made into households suspected of owning a television who have not paid the requisite fees. To encourage compliance, TV Licencing regularly sends sternly worded letters to those who have let their licence lapse or have not purchased one. In the event this fails, they may arrange a visit from enforcement officers. These officers aren’t empowered to forcibly enter homes, so in the event a homeowner declines to cooperate with an investigation, TV Licencing will apply for a search warrant. This may be on the basis of evidence such as a satellite dish or antenna spotted on the roof of a dwelling, or a remote spied on a couch cushion through a window.[]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

The EMTX: How to build an 8 component 40/30 meter QRP emergency transmitter

Many thanks to SWLing Post contributor, Kostas (SV3ORA), for sharing the following guest post which originally appeared on his radio website:


Emergency transmitter: An 8-component, high-power 40m/30m transmitter to get you quickly on the air

by Kostas (SV3ORA)

Introduction

QRP is all about doing more with less. This is more than true, with the construction of this cheap, simplistic transmitter presented here. It is designed primarily as an emergency transmitter (EMTX) that can be built or serviced in the field or at any home. However, it can be used as a HAM radio transmitter as well. Do not judge by its low components count though. This transmitter is powerful, more powerful than anything the QRPers would dream of. It is just remarkable how 8 components can lead in so much output power, that lets you communicate with a big part of the world, when propagation conditions are right. It is very difficult for a circuit to match that kind of simplicity in balance with such performance.

Following my detailed instructions, the EMTX can be reproduced easily, within hours. The result is always success, this is one of the circuits that are not critical at all and a successfully working transmitter can be reproduced every time. I have built this transmitter several times, using similar components (even toroids) and it always worked. The transmitter meets the next expectations:

1. Output power (including harmonics): A few mW up to 15W (depended on transistor, crystals and voltage/current used) at 50 ohm.
2. It can drive any antenna directly, 50 ohm or higher impedance, without external tuners.
3. Bands of operation: Currently 40m, 30m
4. Mode: CW, Feld-Hell (with external switching circuit), TAP code and any other ON/OFF keying mode. AM modulation has been easily applied too.
5. Options like reverse polarity protection diode (useful in the field when testing different unknown polarities PSUs) and current meter (for easier tuning) are available.

The challenge

The purpose of this transmitter is to be used primarily as an emergency transmitter. This poses several challenges that influence the design of the transmitter:

1. It must be able to be built or serviced easily in the field or at any home, with components that could be salvaged from near by electronics sources or a small electronics junk box. This means that components count should be kept very low and they must not be rare to find but commonly available parts. As a side effect cost would also be kept small, if one is to buy any component. Also, the active components must be interchangable with many other devices without the need for the design or the rest of the circuit components to be changed.

2. It must be able to operate from a very wide range of DC voltage sources and at relatively low current, so that common house power supplies could be used to supply power to it. Such devices include linear or switched mode power supplies from laptop computers, routers, printers, cell phone chargers, Christmas lights or any other device one might have available.

3. It must be capable of transmitting a powerful signal, so that communication is ensured. An emergency transmitter that is capable of a few mW of output power, might be heard locally (still useful, but there are handheld devices for that already) but isn’t going to be of much usage if it can’t be heard really far away.

4. It must be capable of loading any antenna without external equipment required. In an emergency situation, you just don’t have the luxury of building nice antennas or carrying coaxial cables and tuners. There may be even extreme cases where you can’t even carry a wire antenna and you depend on salvaging wire from sources in the field to put out a quick and dirty random wire antenna.

5. Adjustments of the transmitter should be kept minimum without the help of any external equipment and there must be indication of the correct operation of the transmitter or the antenna in the field.

Components selection

The transistor:
This transmitter has been designed so that it can operate with any NPN BJT in place. This includes small signal RF and audio transistors and high power RF transistors like the ones used on HF amplifiers and CB radios. Despite 2sc2078 is shown in the schematic, just try any NPN BJT in place and adjust the variable capacitor accordingly. When you are in the field, you do not have the luxury of finding special types of transistors. The transmitter must operate with any transistor in hand, or salvaged from near-by equipment. Of course the power capability of the transistor (as well as the crystal current handling) will determine the maximum VCC and current that can be applied to it and hence the maximum output power of the transmitter. Some of the most powerful transistors I have used, come out of old CB radios, such as the 2sc2078, 2sc2166, 2sc1971, 2sc3133, 2sc1969 and 2sc2312. There are many others. As an example, the 2sc2078 with a 20v laptop PSU, gave 10-12W of maximum output power into a 50 ohms load.

Schematic of the 8 components EMTX for the 40m/30m bands. Components with gray color are optional.

The crystal:
This is the most uncommon part of the transmitter. You have to find the crystal for the frequency that you want to operate on. Crystals within the 40m or 30m CW segments are not that common. Further more if you operate the transmitter at high powers and currents, you will notice crystal heating and chirp on the frequency of the transmitter. The current handling capability of your crystal die inside the crystal case, will determine the chirp and the amount of crystal heating. You can still work stations with a chirpy transmitter provided that the chirp is not that high, so that it can pass through the CW filters of the receivers. However, if a small chirp annoys you or if this chirp is too much, then you have to use these vintage bigger size crystals (e.g. FT-243), that can handle more current through them. But these are even more uncommon today.

The approach I have used in my prototype, was to connect more than one HC-49U crystals of the same frequency in parallel, so that the current is shared among them. This reduced the chirp at almost unnoticeable levels, even at high output power, just if I was using a single FT-243 crystal, or even better in some cases. Again, this is optional, but if you want to minimize chirp (and crystal heating) without searching for rare vintage crystals, this is the way to go.

A bit of warning. If you notice a very high chirp when plugging in a crystal to the EMTX, you should consider this crystal as inappropriate for this transmitter, as it cannot handle the current required. If you continue to use this inappropriate crystal, you could easily crack it inside and set it useless. Don’t use these tiny HC-49S crystals, they won’t work.

The current meter:
A 1Amp (or even larger) current meter can be used to monitor the current drawn by the transmitter during key down. The recommended current operating point is anywhere between 450mA to 1A, depended on the output power (and harmonics) level you want to achieve. The current point is set by the variable capacitor. I would avoid setting the current to more than 1Amp, although it can be done. The use of the current meter is optional, but along with the incandescent bulb, will give you a nice indication of the correct tuning of the transmitter, so that you do not need to have an external RF power meter connected to the transmitter output. If you do have, then you can remove the current meter. If you don’t have a 1Amp analogue meter available, but a smaller one, you can parallel a low value power resistor across the meter. In my case, I only had a 100uA meter and I paralleled a 0.15 ohms 5W resistor across it to scale down 1Amp to 100uA, The resistor value depends on the internal meter resistance so you have to calculate this for your specific meter. When the 2sc2078 is used at 20V, 500mA in the current meter indicates around 5W of output power, 600mA indicates around 6W, 700mA 7W, 800mA 8W, 900mA 9W and 1A around 10W. So the current meter can be used as sort of power meter without the need to do any scaling on it.

The incandescent bulb:
A current meter alone, without the use of the incandescent bulb, will not give you the right indication of the operation of the transmitter. In some cases, the transmitter might be drawing current without actually generating much, or even any RF. When you are in the field you do not want to carry extra monitoring equipment with you. The incandescent bulb will light on when the transmitter oscillates. It monitors the actual RF signal, so it’s brightness changes according to the amount of RF power the transmitter produces. Along with the current meter reading, this is just what you need to know in order to set the variable capacitor properly. Note that the bulb will not lit at very low signal levels. The one used in the prototype starts to glow up from a bit less than 1W. Miniature incandescent bulbs may not be that easy to find nowadays. However, there is a good source of these, that almost anyone has in their houses. This source is the old Christmas lights. You do save old Christmas lights, don’t you? The incandescent bulb indicator as well as it’s single turn winding on the transformer, are optional components. If you have an RF power meter connected to the transmitter, you can remove these.

The diode:
The protection diode is an optional component to the circuit. If you are in the field, correct polarity of a power supply may not be obvious. Without a multimeter it might me difficult to determine the correct polarity of the PSU. A power diode (I used a 6A one) will protect the transistor from blowing up in the event that reverse polarity is connected to the circuit.

The Cx and Cy:
The Cx and especially the Cy capacitors need to be of good quality. The Cy will get hot on high output power if it isn’t. In the tests, I have used homemade gimmick capacitor and even double-sided PCB as a capacitor for Cy and they all got hot at high power. Silver mica capacitors run much cooler and they do make a small difference in the output power, so I suggest to this type. Cy must be able to handle quite a lot of voltage, so silver mica type is ideal.

The variable capacitor:
The variable capacitor can be air variable or ceramic, although I prefer air variables in tis application. In any case it must be able to handle a high voltage just as the Cy.

The key:
The key directly shorts the transistor emitter to the ground, therefore it is a part of the active circuit. For this reason, I suggest the key leads to be kept as short as possible. The key must be able to handle the voltage (20v) and current (up to 1A) on its contacts, which is usually not a big deal.

Transformer construction

The construction of the transformer is shown below step by step. Note that if you decide that you don’t need to drive higher impedance loads but just 50 ohm ones (eg. antenna tuners or 50 ohm matched antennas), you just need to wind 2t in the secondary and not 14t. You also don’t need any taps of course.

Step 1:

Take a piece of 32mm external diameter PVC pipe from a plumber’s shop. Alternatively, a suitable diameter pills box can be used, or any other suitable diameter plastic tube.

Step 2:

Cut a 4cm piece out of this tube. 4cm is the minimum length required.

Below a 4cm PVC tube has been cut in size.

Step 3:

Wind 16 turns of 1mm diameter enameled wire onto the PVC pipe and secure the winding in place as shown in the picture below. Notice the winding direction of the wire. This is the primary of the transformer, the one that is connected to the two capacitors. Notice that this winding is wound a bit offset to the right of the pipe.

Step 4:

Wrap the winding with 3 turns of PTFE tape. It can be bought at any plumber’s shop, just like the PVC pipe. The PTFE tape will help in keeping the second layer turns in place and it will provide extra insulation.

Step 5:

Wind 2 turns of 1mm diameter enameled wire on top of the primary winding and secure the winding in place as shown in the picture below. Notice the winding direction of the wire, as well as it’s position relative to the primary winding. This is the feedback of the transformer, the one that is connected to the collector of the transistor.

Step 6:

Wind 14 turns of 1mm diameter enameled wire on top of the primary winding, starting from just next to the 2 turns one and secure this winding in place as shown in the picture below. Notice the winding direction of the wire, as well as its position relative to the primary and the 2 turns windings. This is the secondary (output) of the transformer, the one that is connected to the antenna. At this point do not worry about the taps yet.

Notice in the picture below, the way the windings are secured in place onto the pipe. The wire ends are passed through the pipe using small holes and then bent towards the ends of the pipe and once more to the surface of the pipe, where the connections will be made.

Step 7:

Wind 1 turn of 1mm diameter enameled wire onto the pipe and secure the winding in place as shown in the picture below. Notice the winding position relative to the other windings. This 1 turn winding is placed about 1cm away from the other windings. This is the RF pick up winding, the one that is connected to the incandescent bulb.

Step 8:

Use a sharp cutter (knife) and carefully scrap the enamel of all the windings ends. Do not worry if you cannot scrap the enamel at the bottom side of the wire ends (that touches to the pipe). We just want enough copper exposed to make the connection.

Step 9:

Tin the scrapped wire ends, taking care not to overheat them much.

Step 10:

Now it’s time to make the taps on the secondary winding. Use a sharp cutter (knife) and very carefully scrap the enamel of the wire at the tap points (number of turns). Take much care not to scrap the enamel of the previous and the next turn from each tap point. Do not worry if you just scrap the enamel at the top of the wire (external area). We just want enough copper exposed to make the connection.

Make each tap, a bit offset from the near by taps, like shown in the pictures. This will avoid any short circuits (especially at the 4, 5 and 6 taps) and it will allow for easier connections, especially if alligator clips are used to connect to the taps.

Step 11:

Tin all the tap points, taking care not to overheat them.

Step 12:

This step is optional and it depends on how you decide to do the connections to the taps. You may solder wires directly to the tap points, but in my case I wanted to use alligator clips, so I did the next: I took a piece of a component lead and soldered it’s one end to each tap point. Then I bent the component lead to U-shape and cut it accordingly. This created nice and rigid tap points for the alligator clip.

Step 13:

This step is optional and it depends on how you decide to mount the transformer to your enclosure. In my case, I wanted to create three small legs for the mounting. I cut three pieces of aluminum straps and made holes at both their ends. I made three small holes onto the transformer pipe end and mounted the aluminum straps using screws. After mounting them, I shaped the straps to L-shape. Then I used three more screws to mount the transformer to the enclosure.

The completed transformer is shown in the pictures above and below. The 6 connection points at the bottom of the pipe, are the low voltage points, whereas the 2 points at the top of the pipe, are the high voltage points.

If you have built the transformer as described, the bottom connections are as follows (from left to right):

Wire end 1, connected to the incandescent bulb
Wire end 2, connected to the incandescent bulb
Wire end 3, connected to the current meter
Wire end 4, connected to the current meter
Wire end 5, connected to the GND (ground)
Wire end 6, connected to the transistor collector

The top connections are as follows (from left to right):

Wire end 1, connected to the 25pF variable capacitor and the Cy fixed.
Wire end 2, is the 14th secondary tap and it is left unconnected, or tapped to the appropriate impedance antenna.

Videos of the EMTX in operation

I have made two small videos of the EMTX in operation.

The first 13.5MB video (right click to download), shows the operation when the transmitter is set for a bit less than 10W of output power.

The second 3.5MB video (right click to download), shows the operation when the transmitter is set for about 5W of output power.

EMTX chirp analysis

Every self-exited power oscillator (and even many multi-stage designs) exhibits some amount of chirp. Chirp is mainly considered as the sudden change in frequency when the power oscillator is keyed down. Apart from chirp, there is also the longer term frequency stability that may be considered. The chirp in the EMTX is surprisingly low, if it is built properly. Hans Summers, G0UPL has performed a chirp analysis on my EMTX (PDF) and the EMTX built by VK3YE and presented on YouTube. Hans, performed the analysis from the video/audio recordings of both transmitters. I sent him two videos, one with the EMTX set for an output power of 10W and one where it is set for 5W. The chirp at worst case (10W) was about 30Hz and at 5W in the order of 10Hz or so. Being so small, the chirp is almost undetectable by the ear and it surely poses no problems when passing the tone through narrow CW filters. This is an amazing accomplishment from a transmitter so simple and so powerful.

EMTX harmonics measurement

Every unfiltered transmitter will excibit harmonics at it’s output. This means that the output waveform has some distortion in comparison to a pure sinewave. Many of the transmitters I have seen, present a very distorted output waveform and absolutely need a LPF if they are to be connected to an antenna. I can’t say that this is true for the EMTX, because surprizingly, it has low distordion, despite the high output power it can achieve. Although a LPF is always a good idea, it is not that much needed on the EMTX. However you have to use one to comply with the regulations.

The image above, shows the measurements on the output of the EMTX, when it is set closely to 10W at 50 ohms. The main carrier is exactly at 9.9W and all the harmonics are less than 50mW! Also, the harmonics, do not extend into the VHF region.

The image below, shows the measurements on the output of the EMTX, when it is set closely to 5W at 50 ohms. The main carrier is exactly at 5.17W and all the harmonics are less than 9.6mW! Again, the harmonics, do not extend into the VHF region.

These small harmonics levels aren’t going to be heard very far at all, compared to the powerful carrier. This means only one thing. A LPF, although a good practice, is not mandatory in this transmitter. But you should better use one so that you comply with the regulations.

Many HAMs use just a watt meter to measure the output of their homebrew transmitters. This is not the proper way of doing it, because the watt meter is a non-selective meter. It will measure both the fundamental carrier and the harmonics, without being able to distinguish them. So in an unfiltered transmitter, or in a transmitter with a simple (often non measured) LPF, this way will give a totally false reading of the output power of the transmitter at the set frequency.

The proper way of accurately measuring the output power of a transmitter and the harmonics levels, is a spectrum analyzer. The FFT available in many modern oscilloscopes, having a dynamic range of approximately 50-55dB, is adequate for this purpose as well. A 50 ohms dummy load must be connected at the transmitter output and then the high impedance probe of the scope, is connected to the output of the transmitter as well. This was the way that the above measurements have been performed.

WebSDR tests

Here are some test transmissions, to determine how far one can get with such a transmitter. I have to say that there is an antenna tuner between the EMTX and my inefficient short dipole (not cut for 40m and not even matched to the coaxial). However I could still cover a distance of more than 2500Km even on the 5W setting.

A screenshot of the transmitter signal, as received on a WebSDR 2500Km away and when the EMTX is set for an output power of 10W.

Below, is a picture and an audio recording of the transmitter signal, as received on the same WebSDR and when the EMTX is set for an output power of 5W.

Photos

Pictures of the finished transmitter. You don’t have to build it that nice-looking if you don’t care.

EMTX prototype built on a breadboard. Yes it worked just fine onto a piece of wood.


This is a phenomenal project, Kostas. Thank you so much for sharing it with us. I love the simplicity of this design–truly form following function. With a little patience, anyone could build this transmitter.

Check out this project and numerous others on Kostas’ excellent website.

Spread the radio love