Tag Archives: QRP

A little QRP radio magic this weekend

SWLing Post readers: I originally posted the following article on QRPer.com where I publish most of my ham radio field reports. It was the first full Parks On The Air activation with my recently re-acquired Elecraft KX1 transceiver and it was very memorable. I hope you enjoy:

Yesterday [Saturday, November 14, 2020] my family decided to make an impromptu trip to one of our favorite spots on the Blue Ridge Parkway at Richland Balsam–the highest point on the BRP.

Of course, it was a good opportunity to fit in a Parks On The Air (POTA) activation, but I had also hoped to activate Richland Balsam for Summits On The Air (SOTA) simultaneously.

It being well beyond leaf-looking season, we had hoped the BRP would be relatively quiet, but we were wrong.

Trail heads were absolutely jam-packed and overflowing with visitors and hikers. We’ve noticed a sharp hiker uptick this year in western North Carolina due in no small part to the Covid-19 pandemic. People see hiking as a safe “social-distance” activity outdoors, but ironically, hiker density on our single-track trails is just through the roof.   One spends the bulk of a hike negotiating others on the trail.

The trail head to Richland Balsam was no exception. Typically, this time of year, we’d be the only people parked at the trail head but yesterday it was nearly parked full.

Being natives of western North Carolina, we know numerous side-trails and old logging/service roads along the parkway, so we picked one of our favorites very close to Richland Balsam.

We hiked to the summit of a nearby ridge line and I set up my POTA station with the “assistance” of Hazel who always seems to know how to get entangled in my antenna wires.

“I’m a helper dog!”

Taking a break from using the Icom IC-705, I brought my recently reacquired  KX1 field radio kit.

Gear:

I carried a minimal amount of gear on this outing knowing that there would be hiking involved. Everything easily fit in my GoRuck Bullet Ruck backpack (including the large arborist throw line) with room to spare.

I took a bit of a risk on this activation: I put faith in the wire antenna lengths supplied with my new-to-me Elecraft KX1 travel kit. I did not cut these wires myself, rather, they are the lengths a previous owner cut, wound, and labeled for the kit.

With my previous KX1, I knew the ATU was pretty darn good at finding matches for 40, 30, and 20 meters on short lengths of wire, so I threw caution to the wind and didn’t pack an additional antenna option (although I could have hiked back to the car where I had the CHA MPAS Lite–but that would have cut too much time from the activation).

I didn’t use internal batteries in the KX1, rather, I opted for my Bioenno 6 aH LiFePo battery which could have easily powered the KX1 the entire day.

I deployed the antenna wire in a nearby (rather short) tree, laid the counterpoise on the ground, then tried tuning up on the 40 meter band.

No dice.

The ATU was able to achieve a 2.7:1 match, but I don’t like pushing QRP radios above a 2:1 match if I don’t have to. I felt the radiator wire was pretty short (although I’ve yet to measure it), so clipping it would only make it less resonant on 40 meters.

Instead, I moved up to the 20 meter band where I easily obtained a 1:1 match.

I started calling CQ POTA and within a couple of minutes snagged two stations–then things went quiet.

Since I was a bit pressed for time, I moved to the 30 meter band where, once again, I got a 1:1 match.

I quickly logged one more station (trusty N3XLS!) then nothing for 10 minutes.

Those minutes felt like an eternity since I really wanted to make this a quick activation. I knew, too, that propagation was fickle; my buddy Mike told me the Bz numbers had gone below negative two only an hour before the activation. I felt like being stuck on the higher bands would not be to my advantage.

Still, I moved back up to 20 meters and try calling again.

Then some radio magic happened…

Somehow, a propagation path to the north west opened up and the first op to answer my call was VE6CCA in Alberta. That was surprising! Then I worked K3KYR in New York immediately after.

It was the next operator’s call that almost made me fall off my rock: NL7V in North Pole, Alaska.

In all of my years doing QRP field activations, I’ve never had the fortune of putting a station from Alaska in the logs. Alaska is a tough catch on the best of days here in North Carolina–it’s much easier for me to work stations further away in Europe than in AK.

Of all days, I would have never anticipated it happening during this particular activation as I was using the most simple, cheap antenna possible: two thin random lengths of (likely discarded) wire.

People ask why I love radio? “Exhibit A”, friends!

After working NL7V I had a nice bunch of POTA hunters call me. I logged them as quickly as I could.

I eventually moved back to 30 meters to see if I could collect a couple more stations and easily added five more. I made one final CQ POTA call and when there was no answer, I quickly sent QRT de K4SWL and turned off the radio.

Here’s a map of my contacts from QSOmap.org:

I still can’t believe my three watts and a wire yielded a contact approximately 3,300 miles (5311 km) away as the crow flies.

This is what I love about field radio (and radio in general): although you do what you can to maximize the performance of your radio and your antenna, sometimes propagation gives you a boost when you least expect it. It’s this sense of wireless adventure and wonder that keeps me hooked!

Spread the radio love

A review of the lab599 Discovery TX-500 QRP transceiver

The following review of the TX-500 was first published in the October 2020 issue of The Spectrum Monitor magazine.

Last year, a company out of Russia started dropping hints about a QRP transceiver they were developing called the Discovery TX-500.

The prototype photos looked like nothing else on the market: it was unusually thin––only 30mm thick––and sported a CNC-machined aluminum alloy body. The radio also featured top-mounted controls ideal for field use, and a high-contrast LCD backlit screen with a spectrum display.

Some of the initial photos of the prototype showed water droplets on the front faceplate indicating that the TX-500 would be water/weather resistant––certainly a first for the amateur radio market.

After the initial hints dropped by lab599, the TX-500 developed somewhat of a cult following among field-portable radio operators (like yours truly) as well as those into radio preparedness. However, after this tantalizing flurry of initial images, there was a lull, and very little information was available about the rig. Then in late July/early August 2020, we finally learned that the TX-500 would be sold in the US by Ham Radio Outlet. HRO’s product page posted a price of $789.95 with a projected availability date of mid-to-late September 2020.

Thus I felt quite lucky when I learned that a loaner TX-500 was being sent to me for one week to evaluate and review. Those of you who know me and read my reviews know that I typically prefer to spend several weeks with a radio before I feel comfortable enough writing a review. In this case, that simply wasn’t an option. I decided to push aside all of my other obligations and simply dive into this radio.

The following review is based on using the TX-500 in the shack and in the field over the course of seven days.  During this week, I managed to activate eight parks for the Parks on the Air (POTA) program, exclusively with the TX-500. I’ve taken the TX-500 to state parks, lakes, game lands, a National Forest, and a National Park. The TX-500 experienced full-on sunshine during a long operating session, and was even rained on once.

I’ve also made a number of QSOs with this radio from home, both via CW and phone. In total, I’ve logged an average of 31 CW and SSB contacts with the TX-500 each day I’ve had it.

Initial impressions

The TX-500 looked so impressively machined and designed based on the initial photos and few videos published, I honestly feared it couldn’t possibly measure up to the expectations built up about it. Would it be the rugged radio we’d heard about? Could it travel? Could it hold up in the field, under variable conditions and in fickle weather?

With the radio finally in hand, I noted the build quality and thought to myself, This rig might just do it. 

The body of this radio is absolutely solid.  It’s weighty without being heavy, and there are no loose parts––no wobbly encoders, no wonky buttons, and relatively few seams or openings that might be subject to dust or water penetration. It’s rugged, sturdy––and, I must add––beautifully engineered.

The layout is simple: there’s a backlit LCD screen on the left of the radio with four function buttons above and below it. These buttons control most of the functions and features you use while operating: CW adjustments, Receive and Transmit audio EQ, Noise Reduction, Noise Blanker, CW Memory keying, A/B VFO control, and more.

To the right of the display you find a set of buttons stacked vertically that include the power button, mode, band switching, and a menu button for making less common adjustments. The encoder is raised and feels silky-smooth to operate. There appears to be no brake control, but this is not a problem because this rig doesn’t need it: it’s well-balanced and feels of excellent quality. Indeed, tuning is adaptive and fluid; I’ve been very pleased with the lab599 tuning.

There are two knobs above the encoder which adjust the AF gain and RIT. Other buttons next to the encoder control things such as the tuning steps and speed, controls lock, and memory writing.

The low-profile side panels do protect the TX-500 front faceplate on flat surfaces.

You can tell the TX-500 was designed by an amateur radio operator because the radio is laid-out beautifully. All frequently used functions are easy to find and intuitive. There’s no need to do a deep-dive into embedded menus to, say, change the RF gain control.

There are a number of general coverage QRP transceivers on the market, so even just looking through the features and specs it’s clear how it might stack up.

This being said, the TX-500 does lack a few things you might find in other field portable QRP general coverage transceivers. We’ll start with those.

No (Built-In) Speaker

The TX-500 does not have a built-in speaker. With weather-resistance in mind, lab599 may have opted to leave the speaker out of the chassis, and instead include a speaker microphone combo with their basic package. The supplied speaker/mic is of good quality and the audio can be made incredibly loud. And, although I’m not a fan of speaker mics, I must admit this one has grown on me: in the field doing SSB, it’s much easier to bring the speaker closer to your ears when trying to work a particularly weak station.

But what about when operating CW––? In that case, the speaker mic becomes inconvenient as you are forced to port out the audio via the speaker/mic connector. It’s worth noting here that the TX-500 package being sold by Ham Radio Outlet includes an audio breakout cable so you can attach your favorite headphones or boom/mic set. My pre-production unit did not include this, so I had to use the speaker/mic and its mono audio port.

I, however, tend to operate with headphones in the field unless someone is helping me log stations. Headphones help me isolate myself from noises and distractions around me (like my dog straining on her leash, whining over her inability to chase squirrels). Headphones also improve my ability to detect and work weak signals.

When I operate CW in the field, I tend to place the TX-500 on my backpack and attach the speaker mic to the top flap. It’s worked out quite well.

Audio from the speaker microphone is tinny, but actually well-tailored for voice and Morse Code. For shortwave radio listening, however, that’s another story:  you’ll certainly want to connect a proper speaker.

No ATU

The TX-500 does not include an internal automatic antenna tuner. For those used to operating an Elecraft field radio, the Xiegu G90, or the CommRadio CTX-10, for example, this might seem like a major omission.

While it would be nice to have an internal ATU, I’m quite happy to do without one, as all of my field antennas are resonant on the bands I operate. But as a point of comparison, it’s nice when, say, my end-fed antenna isn’t ideally deployed and can’t get that 1:1 match on the 40 meter band; with my KX2, I can simply push the ATU button and the rig solves the match.

I carry a simple Emtech ZM-2 balanced-line manual antenna tuner, just for when an ATU is needed. But out of the eight field activations I’ve done thus far with the TX-500, only once did I add the ZM-2 to the mix, and just to bring the match from a 2.3:1 to 1:1. If I wanted an external automatic antenna tuner, I’d grab an Elecraft T1. It’s a gem of an ATU.

No internal rechargeable battery (yet!)

The TX-500 transceiver doesn’t have an internal rechargeable battery option like the CommRadio CTX-10 or Elecraft KX2. But like the new Icom IC-705 sports, lab599 is designing an attachable rechargeable battery pack that will fit the TX-500 beautifully. You can see the recessed battery connections on the back/bottom of the TX-500.

 

As of this time, no availability date for this future option has been announced, but I can confirm it is indeed in the works.

What makes the TX-500 unique

For some, the idea of a radio which lacks an internal speaker and ATU might lead the rapid decision to dismiss it outright. I would urge those folks to continue reading, however; the TX-500, due to some very unique features, has certainly carved out a market niche, and thus is worth the consideration.

Rugged, weather-resistant body

As I mentioned above, the TX-500 has a solid aluminium-alloy body which gives it a distinctly solid feel. There are no gaps between chassis plates, and all of the buttons, knobs, as well as the encoder are sealed to prevent water penetration.

The TX-500 design smacks of military-grade construction, but in truth is a blend of military specs and amateur radio functionality. For example, the chassis is, if anything, over-engineered for most amateur radio applications. If I owned the TX-500, I wouldn’t hesitate to take it on extended hiking trips, even in dubious weather. Of course, that’s not to say I’d intentionally leave the rig out in heavy rain. But I wouldn’t worry about a sudden rain shower ruining my radio. If this were a military radio, it would have fewer controls and likely be somewhat channelized. Instead, the TX-500 has the full set of controls, features, and filters you’d expect in an amateur radio transceiver with a military-build quality.

In short, it might appear to belong to rugged military kit, but it’s very much designed for the demands of amateur radio operators.

Although the TX-500 is incredibly solid, it’s also lightweight. I weighed the radio with its speaker/mic and power cable. The total weight was 1 pound, 7 ounces. One of my blog readers noted that such a lightweight radio would simply break in half if they hit it over their knee. My reply? No way. In fact, I’m willing to bet such an action could break your knee cap!  Please don’t try this, you’ll surely regret it.

Connectors

One of the most frequent questions readers ask about the TX-500 is why its makers chose to include non-standard (to radio) GX12mm multi-pin aviation connectors for the rig’s power port, CAT control, data, CW, and speaker/mic…?

The answer? In brief, it’s water resistance.

GX12mm connectors allow for a watertight connection and protect the radio very well from water intrusion. And while GX12 connectors aren’t standard in the world of amateur radio, they are certainly standard in aviation, commercial, and military applications.  These connectors are widely available online and there are even mom-and-pop ham radio retailers like W2ENY selling premade TX-500 cables and adapters on his eBay store and website.

Meanwhile, the TX-500 uses a standard BNC antenna connection for antennas, which I’m very pleased to note.

LCD screen with spectrum display

 

Most of us now expect modern SDR-based transceivers to sport a full-color backlit––and sometimes touch screen––display. In the field, however, color TFT displays can be incredibly difficult to read in full sunlight.

Like the Elecraft K and KX series radios, lab599 opted for a more simple, higher contrast monochrome backlit LCD display. This pleases me to no end, because I much prefer this type of display in a POTA or SOTA field radio just because it’s so much easier to read in bright outdoor light. Also, I feel touch screens aren’t as well suited for hiking, camping, and heavy field use–they’re more vulnerable to being damaged.

The TX-500 LCD is chock-full of information and very responsive. The spectrum display (no waterfall) is fluid and useful, as effective as any full-color display.

Benchmark current drain

When operating on battery in the field, current drain in receive mode is a major factor. The more slowly you can sip from the battery while the radio is receiving, the longer play time you’ll have. I like my general coverage field radios to consume less than 400 milliamps.

My benchmark general coverage radio, the Elecraft KX2, consumes a mere 135-140 milliamps at moderate volume levels. I can operate for hours with a compact battery. The TX-500 consumes between 110-120 milliamps at a moderate volume level; yes, even a smidge better than the KX2. The company lab599 actually specs out this radio at 100 milliamps, and I’m confident one could achieve it simply by using headphones.

While there are transceivers like my MTR-3B which have even lower current drain, they’re CW-only and lack general coverage reception, large displays, and the like. Thus, the TX-500 sets a benchmark for general-coverage full-featured portable transceivers in terms of drain.

On the air

In terms of operating the TX-500 in the field, I have very few complaints. The menu system is very easy to use and is intuitive. I never needed to reference the manual––but if you do, the manual is one of the best I’ve seen from a new transceiver manufacturer (click here to download he manual and other TX-500 files).

The buttons are easy to press. They have a tactile feel and proper response so you know you’ve properly engaged a setting. The features and buttons are well spaced, too, and the thin-but-wide chassis actually provides generous surface area for the controls. One could easily operate the TX-500 with gloves on, should it be necessary in cold climates or winter conditions.

As mentioned earlier, the TX-500 does not have an internal ATU option like the Elecraft KX2 or the Xiegu G90. For some, this will be a huge negative against the TX-500. Good internal ATUs allow operators to use a much wider array of antennas in the field–including random wire antennas–and I’ll admit that I’ve gotten quite used to having one in my KX2 and KX3. But again, to get the most signal per watt, I use resonant antennas in the field these days, so very rarely need or employ an ATU.

So how does the TX-500 play? In the following sections I’ll address putting the TX-500 on the air as both a CW and SSB operator. Note that I did not have the opportunity to test the TX-500 on digital modes––like PSK-31 and FT8––as my pre-production model lacked the necessary cables, nor was building my own possible during the week of testing.

CW

Of the (very few) videos that were produced prior to the TX-500’s release, a couple of these were made by a CW operator in Russia. Unfortunately, I was able to glean little information from those videos. I was very eager to try the TX-500 in CW mode as this has become my preferred method of activating parks for POTA.

When I received the TX-500, it did not come with the same cables that Ham Radio Outlet will include. It did, however, include the 5 pin connector for the CW port, so I simply soldered a cable and connected it to the terminals on the back of my Vibroplex single lever paddle.

This way, I was able to avoid purchasing and attaching a three conductor ?” female plug. (This intervention did mean that, in the field, my key would weigh more than the transceiver–!)

But the question every CW operator has asked me is “Does the TX-500 support full break-in QSK?” Full break-in QSK allows instantaneous transmit/receive recovery time, so that even higher speed operators can hear between sent characters while operating. This means if another op wants to grab your attention while you’re operating––or, in the parlance, “break in”––you’ll hear them in the middle of sending a word.

Unfortunately, the TX-500 does not support full break-in QSK. Instead of being based on pin diodes (like the Elecraft KX series) the TX-500 uses a relay. This means that you’ll hear a relay click each time the radio switches between transmit and receive.

In the past, I’ve reviewed transceivers in which the relay click was honestly quite loud, even annoyingly so. Fortunately, the TX-500 has such a solid and well-sealed body that I find the relay sound to be the least distracting of any relay-based transceiver I’ve tested. You can still hear it, but it’s reasonably soft. So that you can hear what I mean, in this video, you’ll hear the relay clicking when I point the camera toward the rig.

The T/R recovery time on the TX-500 is quite rapid. While I can’t hear audio between characters sent within a word, I can hear between words when the relay is set to the quickest recovery and I’m operating around 17-20 WPM. If, however, you operate at higher speeds and prefer full break-in QSK, you may wish to give the TX-500 a pass.

The TX-500 comes with a full complement of CW operation adjustments, like Iambic type, straight key, weight ratios, sidetone volume, and the like. One oddity is that it doesn’t measure CW speed in words per minute. It uses a completely different scale that measures with a much wider number range. I set my speed to “97,” which I guessed might be an equivalent of about 17 or 18 WPM. While I first thought this feature odd, I soon came to appreciate this specificity because without the restriction to 1 WPM increments, as with most transceivers, it gives the op more flexibility to adjust speed.

I discovered that the TX-500 can handle dense RF environments while doing a park activation during a CWT contest. Even with a 400 Hz filter engaged (and it could have been much narrower), the TX-500 effectively blocked adjacent signals. To demonstrate, I made the following short video in the field:

Rob Sherwood recently tested the TX-500 and published the results on his excellent receiver test data table.  Although very respectable, I expected the TX-500 to sport more competitive numbers based on my “real-world” tests. Still: this is a field radio. Not a rig I’d reach for to win the CQ WW contest. In field operations, TX-500 is a brilliant performer and has better overall specs than a number of popular radios including the immensely popular Yaesu FT-891, for example.

CW ops should keep in mind that the TX-500 has no internal speaker, so to operate you’ll either need to connect an external speaker, the supplied speaker/mic, or headphones. Since I primarily operate with headphones, this will be no inconvenience to me. As there was no headphone connector with this pre-production model TX-500, I simply used the speaker mic for all operations.

When the TX-500 was first released and HRO made a product page on their website, the rig had no CW memories, which I truly rely on for field operations. CW memories allow me to manage my logging workflow, pre-format responses, and CQ calls without having to manually key everything. Lab599 must have noted this omission, and by the time I received my evaluation unit, a firmware release had been issued which added CW memories. I immediately performed a firmware update (a simple process, by the way). I even passed along some suggestions and critiques of the CW memory keyer; lab599 immediately made adjustments and fixes as needed for optimal performance.

If you’ve ever saved CW memories in a radio, you may have found it frustrating to achieve the right spacing for the radio to provide a proper playback. It often takes me multiple tries, for example, to save a park number into my KX2. The TX-500, fortunately, is very forgiving and I found it very simple to set CW memories in the field.

While not on the radio I used at time of evaluation, I understand lab599 is planning to add a “beacon mode” for calling CQ, as well.

All in all, I find the TX-500 a pleasure to operate in CW mode. Indeed, 75% of all of my logged stations were made in CW mode.

Speaking of which, funny story…I activated Pisgah National Forest and the Blue Ridge Parkway in the mountains of western North Carolina. I hammered out 13 logged stations from Maine, Vermont, Ontario, Illinois, Kansas, Louisiana, Florida, and several states in the middle of that footprint.

On this map, all of the green pins below were CW contacts and made with one watt of power. The red pins are SSB contacts with 10 watts. The yellow star is roughly my location:

I switched to SSB mode to make a few phone contacts, and called CQ. No one heard me. I was puzzled…but suddenly I realized I had left my power setting at 1 watt! The previous day, I was running tests into a dummy load. Yes, all of those CW contacts were made with truly low power, indeed!

SSB

The TX-500 has a lot to offer the SSB operator. I’ve gotten great reports from my SSB contacts, and have even listened to my own signals via the KiwiSDR network.

The TX-500 includes all of the features a phone operator would expect, such as compression and gain control.  Of course, you can enable VOX operation if you’re using your favorite boom headset. The TX-500 allows you to not only to change the receiver EQ settings, but also transmit EQ settings. This means you can tailor your TX-500 to get the most audio punch per watt while operating phone. Very nice!

The TX-500 ships with a rugged, simple speaker microphone. I’ve been using this exclusively during the evaluation period, and have been very pleased with it. The mic even has a protected mono audio out port on the side, should you wish to attach a different external speaker.

Perhaps the only negative from my point of view as a phone operator is that the TX-500 lacks a voice memory keyer. While it has this feature for CW, it lacks it for SSB.

To put this in context: all recent Elecraft rigs have voice memory keying; the new IC-705 includes this as well. Even the Yaesu FT-891, which is one of the most affordable compact transceivers in the Yaesu line, has voice memory keying. For POTA and SOTA activators, voice memory keying is huge, as it frees you to do other things like log, eat a sandwich, or talk to others while calling CQ. It also saves your voice. For example, on the KX2, I record a CQ message like “CQ POTA, CQ POTA, this is K4SWL calling CQ for Parks On The Air;” I save the message to memory location #1, then play it back in “beacon mode.”  The KX2 will continuously transmit my voice CQ message with a few seconds between each call. When someone answers my call, I can easily pause the beacon by hitting the PTT switch or one of the transceiver keys.

I do wish the TX-500 had this handy feature, but because of a lack of internal storage, I don’t expect it will be added. This isn’t a deal-killer for me, as I could add an external voice memory keyer, but it certainly would make for ideal SSB field-radio operating.

Shortwave broadcast listening

Of course, since I’m a hardcore shortwave radio listener and the TX-500 has a general coverage receiver, I did quite a bit of casual shortwave radio listening during the week I had the radio in the shack.

What’s great about the TX-500 is that it has a very capable receiver with a low noise floor and superb sensitivity and selectivity. The preset filter bandwidths can be adjusted in all modes including AM. I have the widest setting at 10 kHz, which gives one proper fidelity with strong shortwave broadcasters.

Here’s a link to a quick video I made showing how the TX-500 sounds while tuning around the 31 meter band.  Note that the amplified speaker I use for this demo is limited in fidelity and I recorded this using an iPad. Still, I think you’ll get a decent idea how well the TX-500 plays as a shortwave receiver:

The TX-500 will tune to the bottom of the AM broadcast band as well, and I’ve spent time listening there. I did not have the time to do a deep dive, but I find that the TX-500 performs rather well in those low bands…a rarity for a ham radio transceiver.

Summary

Every radio has its pros and cons. When I begin a review of a radio, I take notes from the very beginning so that I don’t forget those initial impressions. Here’s the list I created over the time I’ve spent evaluating the TX-500.

Pros:

  • Solid, rugged chassis with weather/water resistance and built-in low-profile side protection panels
  • High-contrast LCD display that’s responsive and easy to read in the field
  • Excellent receiver sensitivity, selectivity, and low noise floor
  • Full complement of features and adjustments expected in a modern transceiver
  • Multiple adjustable filter settings
  • Very low current drain for a full-featured general coverage transceiver (100-120 milliamps)
  • GX12mm connections provide further water protection (see con)
  • CW memory keying
  • Easy firmware upgrades with supplied USB cable and lab599 firmware application
  • For US customers: a Nevada-based service center for repairs (no word yet on similar centers elsewhere)
  • Per lab599 announcement, hopefully available next year: an attachable TX-500 battery pack

Cons:

  • No built-in speaker
  • No internal ATU option
  • No full break-in QSK CW operation (although relay is quiet and audio recovery fast)
  • GX12mm connections are non-standard on amateur radio transceivers for water resistance, thus one might need to purchase or build cables for non-standard accessories (see pro)
  • No voice keyer for phone operation
  • No notch or auto-notch filters at time of publication (these may be implemented in future firmware upgrades) It does indeed have a notch filter now!
  • Fold-out feet could scratch soft surfaces, such as wood

Conclusion

Would I buy the TX-500 myself? Well, since I’m a heavy field operator, yes, without hesitation. Moreover I believe the $800 price tag is reasonable for a radio with its feature set and rugged military-spec type design.

I confess, I have been looking forward to getting the TX-500 in hand for a year now. So when HRO put up a product page and started accepting orders, without much thought, I placed mine. Yet within an hour, I was rethinking my decision, and soon I called to cancel it. Why? A bit of buyer’s remorse. For although instinct told me I’d like the rig, common sense said I was getting ahead of myself. The truth was, at that time the TX-500 didn’t have CW memory keying, and without that, I knew this field radio would not get a lot of use during my park and future summit activations. Moreover, I’ve no less than six eight QRP transceivers––not to mention an Icom IC-705 on order for review––so it wasn’t as though the need was great. Instinct or no, I felt I’d made the decision in haste, and my head said my heart should take a few beats before committing.

Yet, after receiving the TX-500 loaner, and taking it to the field––and, of course, lab599’s addition of that all-essential memory keying––all of a sudden the TX-500 became much more appealing. And I’ll admit, this radio really grew on me over that evaluation week (ah, the dangers of reviewing radios…you do often become attached). There’s also been comfort in knowing the TX-500 wouldn’t be harmed should I be caught in a pop-up shower and anxious for the safety of my equipment. But there’s something more: it turns out my initial instincts were correct. I just happen to really like this radio.  The way it feels and functions suits me as an operator and its performance exceeds expectations. And that’s a thing I couldn’t have known until I gave it a spin.

While no radio is perfect, I nonetheless suspect the TX-500 will gather a loyal customer base soon; indeed, it had a following well before anyone laid hands on it. Including me.

So now I am seriously considering purchasing the TX-500 for keeps.

Click here to check out the lab599 Discovery TX-500 at lab599.

Click here to purchase a TX-500 from HRO.

Check out W2ENY’s TX-500 cables and adapters on his eBay store and website


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

CHA MPAS Lite: A proper quick-deployment field antenna

Chameleon Antenna recently sent me a prototype of their latest antenna: the CHA MPAS Lite.

The MPAS Lite is a compact version of their MPAS 2.0 modular antenna system and designed to be even more portable.

Chameleon Antenna is a specialist antenna manufacturer that makes military-grade, field portable antennas that are low-profile and stealthy. Chameleon products are 100% made in the USA and their customers range from amateur radio operators to the armed forces.

Their antennas are not cheap, but they are a prime example when we talk about “you pay for what you get.” In all of my years of evaluating radio products, I’ve never seen better quality field antennas–they’re absolutely top-shelf.

Zeta

I’m currently in my hometown doing a little caregiving for my parents. I’d only planned to be here for a couple of days, but when I saw that the remnants of Hurricane Zeta would pass directly over us with tropical storm force winds and rain, I stuck around to help the folks out.

Zeta struck quite a blow, in fact. No injuries reported, but over 23,000 of us have been without power for over 34+ hours in Catawba county. With saturated grounds, the winds toppled a lot of trees and damaged power lines.

Yesterday, I wanted to take advantage of the power outage and get on the air. I couldn’t really do a POTA activation because I needed to manage things here at my parents’ house. Plus, why not profit from the grid being down and bathe in a noise-free RF space–?

I decided to set it up in their front yard.

CHA MPAS Lite

I had never deployed the MPAS Lite before, so I did a quick scan through the owner’s manual. Although the MPAS Lite (like the MPAS 2.0) can be configured a number of ways, I deployed it as a simple vertical antenna.

Assembly was simple:

  1. Insert the stainless steel spike in the ground,
  2. Attach the counterpoise wire (I unraveled about 25′) to the spike
  3. Screw on the CHA Micro-Hybrid
  4. Screw the 17′ telescoping whip onto the Hybrid-Micro
  5. Extend the whip antenna fully
  6. Connect the supplied coax (with in-line choke) to the Hybrid-Micro
  7. Connect the antenna to the rig

Although I had the Icom IC-705 packed, I wanted to keep things simple by using the Elecraft KX2 I’d also packed since it has a built-in ATU.

Important: the CHA MPAS Lite requires an ATU to get a good match across the bands.

I wasn’t in the mood to ragchew yesterday, but I thought it might be fun to see how easily I could tune the MPAS Lite from 80 meters up.

I checked the Parks On The Air spots page and saw NK8O activating a park in Minnesota in CW:

He was working a bit of a pile-up, but after three calls, he worked me and reported a 559 signal report. Not bad at 5 watts!

I then moved to 40, 18, and 20 meter and called CQ a couple times to see if the Reverse Beacon Network (RBN) could spot me. I like using the RBN to give me a “quick and dirty” signal report. I was very pleased with the bands I tested:

Those dB numbers are quite good for an op running 5 watts into a vertical compromised antenna.

The KX2 very effortlessly got near 1:1 matches on every band I tested.

Of course, after working a few stations in CW and SSB, I tuned to the broadcast bands and enjoyed a little RFI-free SWLing. Noting 13dka’s recent article, I’m thinking on the coast, the MPAS Lite will make for a superb amateur radio and SWLing antenna.

Durability

Although the remnants of Zeta had effectively passed through the area three hours prior, it was still very blustery outside. I was concerned gusts might even be a little too strong for the 17′ whip, but I was wrong. The whip handled the wind gusts with ease and the spike held it in place with no problem.

One of the things I have to watch with my Wolf River Coils TIA vertical is the fact it’s prone to fall in windy conditions and many ops have noted that this can permanently damage the telescoping whip (the weak point in that system).

I’m pretty certain this wouldn’t happen with the Chameleon 17′ whip–it feels very substantial and solid.

Ready to hit the field with the CHA MPAS Lite!

I’m a huge fan of wire antennas because I believe they give me the most “bang-for-buck” in the field, but they’re not always practical to deploy. I like having a good self-supporting antenna option in my tool belt when there are no trees around or when parks don’t allow me to hang antennas in their trees.

I’ve got a park in mind that will make for a good test of the CHA MPAS Lite: it’s a remote game land with no real parking option. I’ll have to activate it on the roadside–an ideal application for the MPAS Lite.

Click here to check out the CHA MPAS Lite.

Spread the radio love

Elecraft KX1: Back with my portable radio companion

The Elecraft KX1

Note: This article was first published on QRPer.com.

A few weeks ago, I published a post about radios I’ve regretted selling or giving away.

Number one on that list was the Elecraft KX1.

Within a couple hours of posting that article, I had already purchased a KX1 I found on the QTH.com classifieds. It was, by any definition, an impulse purchase.

The seller, who lives about 2 hours from my QTH, described his KX1 as the full package: a complete 3 band (40/30/20M) KX1 with all of the items needed to get on the air (save batteries) in a Pelican 1060 Micro Case.

The KX1 I owned in the past was a four bander (80/40/30/20M) and I already double checked to make sure Elecraft still had a few of their 80/30 module kits available (they do!).  I do operate 80M in the field on occasion, but I really wanted the 80/30 module to get full use of the expanded HF receiver range which allows me to zero-beat broadcast stations and do a little SWLing while in the field.

The seller shipped the radio that same afternoon and I purchased it for $300 (plus shipping) based purely on his good word.

The KX1 package

I’ll admit, I was a bit nervous: I hadn’t asked all of the typical questions about dents/dings, if it smelled of cigarette smoke, and hadn’t even asked for photos. I just had a feeling it would all be good (but please, never follow my example here–I was drunk with excitement).

Here’s the photo I took after removing the Pelican case from the shipping box and opening it for the first time:

My jaw dropped.

The seller was right: everything I needed (and more!) was in the Pelican case with the KX1. Not only that, everything was labeled. An indication that the previous owner took pride in this little radio.

I don’t think the seller actually put this kit together. He bought it this way two years ago and I don’t think he ever even put it on the air based on his note to me. He sold the KX1 because he wasn’t using it.

I don’t know who the original owner was, but they did a fabulous job not only putting this field kit together, but also soldering/building the KX1. I hope the original owner reads this article sometime and steps forward.

You might note in the photo that there’s even a quick reference sheet, Morse Code reference sheet and QRP calling frequencies list attached to the Pelican’s lid inside. How clever!

I plan to replace the Morse Code sheet with a list of POTA and SOTA park/summit references and re-print the QRP calling frequencies sheet. But other than that, I’m leaving it all as-is. This might be the only time I’ve ever purchased a “package” transceiver and not modified it in some significant way.

Speaking of modifying: that 80/30 meter module? Glad I didn’t purchase one.

After putting the KX1 on a dummy load, I checked each band for output power. Band changes are made on the KX1 by pressing the “Band” button which cycles through the bands one-way. It started on 40 meters, then on to 30 meters, and 20 meters. All tested fine. Then I pressed the band button to return to 40 meters and the KX1 dived down to the 80 meter band!

Turns out, this is a four band KX1! Woo hoo! That saved me from having to purchase the $90 30/80M kit (although admittedly, I was looking forward to building it).

Photos

The only issue with the KX1 was that its paddles would only send “dit dah” from either side. I was able to fix this, though, by disassembling the paddles and fixing a short.

Although I’m currently in the process of testing the Icom IC-705, I’ve taken the KX1 along on a number of my park adventures and switched it out during band changes.

Indeed, my first two contacts were made using some nearly-depleted AA rechargeables on 30 meters: I worked a station in Iowa and one in Kansas with perhaps 1.5 watts of output power–not bad from North Carolina!

I’m super pleased to have the KX1 back in my field radio arsenal.

I name radios I plan to keep for the long-haul, so I dubbed this little KX1 “Ruby” after one of my favorite actresses, Barbara Stanwyck.

Look for Ruby and me on the air at a park or summit near you!

Spread the radio love

Steve builds a DC30B QRP Transceiver

DC30B QRP Transceiver ProjectMany thanks to SWLing Post contributor, Steve (KZ4TN), who shared the following guest post originally on QRPer.com, but I’ve posted it here as well because I’m sure it’ll resonate with those of us who love building kits!:


DC30B QRP Transceiver Project

by Steve Allen, KZ4TN

I wanted to build a lightweight backpackable transceiver I could take hiking and camping. I chose the 30 meter band as it is specific to CW and the digital modes. I am also in the process of building Dave Benson’s (K1SWL) Phaser Digital Mode QRP Transceiver kit for the 30 meter band. Also, a 30 meter antenna is a bit smaller than one for 40 meters and the band is open most anytime of the day.

I sourced the DC30B transceiver kit, designed by Steve Weber KD1JV, from Pacific Antennas, http://www.qrpkits.com. It appears that they are now (10-11-20) only offering the kit for the 40 meter band. The following information can be used for the assembly of most any kit that lacks an enclosure.

Lately I have been finding extruded aluminum enclosures on Amazon.com and eBay.com. They come in many sizes and configurations. I like to use the versions with the split case which allows you to access the internal enclosure with the front and rear panels attached to the lower half of the enclosure. Most of these enclosures have a slot cut into the sides that allow a PCB to slide into the slots keeping it above the bottom of the enclosure without having to use standoffs. The one requirement for assembly is that the PCB needs to be attached to either the front or rear panel to hold it in place.

DC30B QRP Transceiver Project

As the enclosure is anodized, I didn’t want to rely on the enclosure for common ground. I used a piece of copper clad board that I cut to fit the slot width of the enclosure and attached it to the back panel. I was then able to mount the transceiver PCB to the copper clad board with standoffs. This basic platform of the enclosure with the copper clad PCB provides a good foundation for any number of projects. All you have to do is mount the wired PCB on the board, install the components on the front and rear panel, then wire it up.

DC30B QRP Transceiver Project

I wanted to have the choice of a few frequencies to operate on so I searched eBay for 30 meter crystals and found a source for 4 different popular frequencies. I installed a rotary switch on the front panel and added a small auxiliary PCB with two, 4 pin machined IC sockets. This allowed me to plug the crystals into the sockets. I wired the bottom of the socket PCB first using wire pairs stripped from computer ribbon cable leaving extra length. I marked the wires with dots to indicate which sockets each wire pair went to so I could solder them onto the rotary switch in the correct order. It was tight but I always work with optical magnification so I can see exactly what I’m doing. I have used this crystal switching method in the past with good success.

DC30B QRP Transceiver Project

DC30B QRP Transceiver ProjectThe rest of the assembly was straight forward. I find that most kits are well designed and documented, and if you take your time and follow the directions carefully all should go well. The two most common speed bumps seem to be soldering in the wrong component or bad soldering technique. I double check all component values and placements prior to soldering, and I always use optical magnification while working. I inspect each solder joint and look for good flow through in the plated through holes, and make sure there are no solder bridges.

DC30B QRP Transceiver Project

DC30B QRP Transceiver ProjectThe finished product. I bought a Dymo label maker and it works very well for projects like this. I love using these enclosures and they are a leap forward from the old folded aluminum clam shells I used in the past. I could stand on this without causing any damage. Power out is 1-3 watts depending on the DC power in. The receiver is sensitive and the ability to choose from four frequencies is a real plus.

73 de KZ4TN

Steve Allen
Elizabethton, TN


Gorgeous work there, Steve! Thank you for sharing!

Spread the radio love

The HobbyPCB IQ32 transceiver fills a special niche in the ham radio world

The following review was first published in the September 2020 issue of The Spectrum Monitor magazine:


The HobbyPCB IQ32 transceiver fills a special niche in the ham radio world

This summer, I’ve been exploring the world of general coverage QRP transceivers. I’ve been taking my LnR Precision LD-11, Elecraft KX3 and KX2 into the field; and I’ve just finished a comprehensive review of the Xiegu G90. I also have a TX-500 and IC-705 arriving in the near future [update].

Yes, I’ll admit, I’m a devotee of the “all-in-one” nature of the latest model portable QRP transceivers.

Most of the QRP transceivers now on the market are products of large, popular ham radio manufacturers. Usually, a company will come up with a product concept, follow through with their market research, then design, develop, and produce the radio. In fairness, that’s an over-simplification of the process, but let’s just call it a “top down” design approach––meaning, the product idea is generated within the company, and is often based upon customer feedback.

Not all ham radio products come about this way, though. Some have more “grassroots” or collaborative origin.

The HobbyPCB IQ32

(Image Source: HobbyPCB)

I first noticed the HobbyPCB IQ32 transceiver at the Dayton Hamvention a few years ago. I checked it out carefully at their booth, and recall a crowd gathering around their table. Noting this, I decided, at a later time, I would also find an opportunity to check out the radio in more detail.

A couple of months ago, I was working on my list of General Coverage QRP Transceivers and asked for help filling in details of any radios I’d forgotten. A reader commented and reminded me that the IQ32 was, indeed, general coverage.

At this point, I reached out to HobbyPCB and asked for a loaner unit to explore for a few weeks. The company very kindly sent one my way some weeks ago, and I’ve been testing it on the air ever since.

Form factor

When I received the IQ32 package, I was surprised by how lightweight this transceiver is:  a mere 1.5 lbs (700 grams) packs it all in one compact package.

The chassis is made of aluminum and incredibly sturdy. It even includes side panel extensions to protect the front faceplate and knobs.

The IQ32 sports a 3.2″ color LCD touch-screen display large enough to contain all of the functions, a spectrum display, and even an area for text––both transmitted and received in PSK31 and CW. The display is reminiscent of the uBITX V6 I recently reviewed. It is recommended that the operator uses a blunt plastic stylus (or retracted ballpoint pen) for navigating the color screen, since several of the  menu settings, memories, and the like require some fairly precise tapping. The graphic user interface (GUI) feels a bit like what I’d expect to find on a piece of test equipment: a bit old school, but nonetheless quite functional.

The main encoder and selector knobs are lightweight and made of some sort of plastic or nylon. They work quite well––but if I owned an IQ32, I believe one of the first things I’d do is replace those with a lightweight aluminum equivalent.

As I mentioned earlier, the weight of the IQ32 is very reasonable at 1.5 lbs. I don’t think I’d even notice it packed in a backpack.

The IQ32, like the recently released Lab599 TCX-500, lacks an internal speaker. However, my unit came with a speaker microphone, which works fine.

The right side panel of the IQ32 has a toggle power switch, power amplifier connection, power port (5mm X 2.1mm, positive tip), PS2 keyboard connector, USB Type A, and a BNC antenna port. The left side has a 3.5mm I/Q Output, 3.5mm headphone jack, 3.5mm speaker/mic port,  and a 3.5mm CW key input.

The IQ32 also has two legs that can be adjusted so that the radio will prop up at a comfortable angle for operation. The legs can be a bit finicky to adjust and keep in place, so I preferred using an angled radio support I use for my Elecraft KX3.

A collaboration

The IQ32 also feels like a project joint effort, bringing to mind the old chocolate-peanut butter cup commercial of a bygone era: “My chocolate got mixed with your peanut butter!” And or, “My peanut butter got mixed with your chocolate!”

Curious about this seeming blend of radio ideas, I reached out to Jim Veach (WA2EUJ) at HobbyPCB for more information; he gave me a little history behind the IQ32.

Jim writes:

The IQ32 is the fusion of two products: the HobbyPCB RS-HFIQ, and the STM32-SDR. 

The RS-HFIQ was designed to be a 80-10M, 5W soundcard-based SDR––similar to the popular Softrock SDRs with some expansions and revisions. 

The STM32-SDR was designed to work with a soundcard-based SDR and [thus] eliminate the need for a PC and provide stand-alone operation. 

Inside the IQ32 is a mostly stock RS-HFIQ (in fact, we offered an upgrade kit so RS-HFIQ owners could go the IQ32 route) and a custom version of the STM-32 […] specifically for the IQ32.

The original development of the STM32 [began] a few years ago when PSK31 was the digital mode du jour and [the] PS2 keyboard roamed the land. The firmware team recently released the current FW, which greatly expanded the CW modes and reworked the memory structure based on user input.

And there you have it: even though this unique little rig has been around for a few years, I’m impressed that they continue to refine it and upgrade the firmware. Indeed, if the community of IQ32 users grow, they may be able to do even more.

On the air

To be clear, my intention here isn’t to conduct a comparative review of the IQ32. I simply want to convey what I’ve learned in the process of playing with the rig and trying out some of its unique features.

Immediately after unboxing the radio, I hooked it up to my main skyloop antenna, plugged in the power supply that accompanied the radio, then plugged in the handheld speaker mic.

I discovered rather quickly that the IQ32 user interface takes a different approach than any other transceiver I’ve ever tested. Instead of one main user interface window in which you navigate modes, frequencies, and perhaps alter spectrum and bandwidth settings, the IQ32 has a different screen layout for each mode. It’s as if each mode––SSB, PSK31, CW, etc.––has its own “page.”

Despite the very minimal controls, you can adjust many of the IQ32s settings, macros, and memories in a very granular way via the settings pages using a stylus for fine control of the screen. On the flip side, during operation, it can be frustrating when adjustments need to be made quickly between the AF Gain, RF Gain, CW Speed, and AGC, as they all use the same multi-function knob and switching between them requires several screen taps––not as quick a process as one might prefer.

Indeed, the IQ32 isn’t immediately as intuitive as most commercially-marketed radios.  But once you fully understand the settings and modes pages, it becomes easy to navigate. Note: I would advise any future owner of an IQ32 to read the manual in advance. I did this, and it certainly helped. I should add here that the IQ32 manual is one of the most comprehensive I’ve read––especially considering its collaborative roots.

Now, let’s talk modes.

SSB

Since the IQ32 requires a PS2 keyboard for PSK31, and optionally for CW, I tried my hand at SSB first.

After learning how to switch modes and filter settings, I hopped on the air. Instead of calling CQ, I decided instead to seek a park activator in the POTA program via the POTA spots website. Within 10 minutes, I made contact with two parks: one in Pennsylvania and one in Florida on the 40 and 20 meter bands, respectively. While both parks gave me a “5×9” report, I seriously doubt it was accurate based on their own signal strength. (Some park activators, like contesters, only give 5×9 reports.)

Still, my success in contacting these two parks told me that the mic settings were probably suitable and that the audio had enough punch on 5 watts to be heard. To confirm, I called CQ a few times and listened to my own signal at a KiwiSDR site in Maryland. The signal was about 5×5, but the audio was clear, clean, and had excellent fidelity.

Over the past few weeks I’ve worked dozens of stations across North America with the IQ32.

PSK31

One of the very unique features of the IQ32 is its ability to natively encode and decode PSK31. This was the second mode I was eager to try.

To use PSK31 on the IQ32, a PS2 keyboard (or USB keyboard with PS2 adapter) must be connected. I searched my shack in vain for a PS2 keyboard, but fortunately, my friend Vlado (N3CZ) came to the rescue and let me borrow one of his keyboards.

Again, note: IQ32 beginners should certainly plan to read the PSK31 section of the IQ32 manual prior to attempting a PSK31 QSO.  For starters, you’ll want to enter in your personal information into the tags settings so that you can use your keyboard function keys to automatically send CQs and to answer calls. The manual will also walk you through any other necessary settings.

Once I had everything set up, I started calling CQ on the 20 meter band; unfortunately I had no luck snagging a station. This had less to do with the radio and much more to do with the mode, which has, alas, fallen out of popularity since the advent of FT8. It’s a shame, really, because although PSK31 is a digital mode, it feels much more like a proper QSO than FT8, in my opinion. While I have a lot of respect for FT8, with PSK31, you can, as we hams say, “rag-chew”––a much more personal interaction.

And rag-chewing is exactly what I did. I contacted a friend, we set a sched for a PSK31 QSO, and it was, indeed, fun. The IQ32 has a screen with enough text space so that it’s easy to follow and to read. In fact, with this radio, I don’t feel like a computer is needed.

With the keyboard attached, PSK31 just works…and works quite well. I really like the way this feature has been implemented in the IQ32.

CW

Truly, the IQ32 actually has a lot to offer the CW operator. The IQ32 supports Iambic keyer modes A and B, with speeds up to 35 wpm. You can also adjust the weight of the dits and dahs. The IQ32 doesn’t support full break-in QSK, however: there is a slight delay after sending before the relay puts the radio back into receive mode. At present, this delay is not manually adjustable but is, rather, based on the selected keyer speed.

I’ve been very pleased using the IQ32 in CW mode with my Begali paddles and Vibroplex single lever paddle.

Of course, a really unique feature of this rig is that it provides the operator with the means to use the PS2 keyboard to send CW, just as you can with the PSK31. At present, there is no CW decoder, but for those who feel their fist isn’t quite up to par, you can surprise the operator on the other end by sending perfectly formed and spaced CW by simply typing it on the keyboard.  Herein lies a very unique feature and application for the IQ32.

Indeed, as a frequent Parks On The Air (POTA) field activator, I rely very heavily on memory keyers to call CQ, send a park number, as well as give my thanks and 73s to those who contact me. Using a pre-programmed message means that I then have time to log a station while it sends, and to ensure my code is cleaner when I send park numbers––especially since I don’t exactly excel at sending strings of numbers!

With the IQ32, I find I can program full CW messages to play when I simply press one of the function keys on the keyboard. This gives me much better flexibility and control than, say, the built-in memory keyer on my venerable Elecraft KX2.

With the IQ32, a CW op would actually have the choice of never even touching a key, and just sending all messages with the keyboard. While I could never see myself doing that (as I quite enjoy sending CW with a key), the flexibility of pre-programming an array of CW memory messages and having them conveniently at hand is nonetheless quite appealing.

As a CW operator, I’m quite pleased with the IQ32. My only wish would be for a slightly shorter relay hang time for use in contesting or on Field Day.

The IQ32 Niche

While I wouldn’t necessarily recommend the IQ32 as a first transceiver to a newly-minted ham, I can certainly envision a niche market for this unique rig.

For one, I think the IQ32 could satisfy those operators who desire a very clean and stable transmitter. The IQ32 sports a Class A 5-watt power amplifier with individual low-pass filters for each band that exceed FCC requirements for spectral purity. It also has a Temperature-Compensated Crystal Oscillator (TXCO) for frequency stability––truly, this is not common in a radio of this price class.

For another, the IQ32 could be used as a driver for a transverter when operating on VHF or UHF. Another of its unique and useful features is that the user can set an offset to display the transverter output frequency rather than the IQ32-driven frequency.

 

 

And, finally, let’s face it: I know of few other radios that you can take to the field, hook up a keyboard, and natively send and decode PSK-31 transmissions. My KX2 can do this to a degree, but I have to input the text as CW, and the number of characters in the display is quite limited. The IQ32 is robust enough to permit you to carry on PSK-31 rag-chews, if you wish. If this is your thing, you’ll definitely want to play with this rig.

Being able to send CW with a keyboard and pre-programmed messages also means CW operators could make their workflow much more efficient in either the shack or the field.

In conclusion, I’ll admit that the IQ32 isn’t as intuitive as other radios and that the ergonomics leave room for improvement. But it’s still a cool little radio. If, after having read this tour of the IQ32, you feel like you’re in this radio’s niche market, then definitely reach out to HobbyPCB: I’ve found their customer care and support to be absolutely benchmark.

All in all, I’ve had a lot of fun tinkering with this unique general coverage QRP transceiver; I expect others like me will, too. Many thanks to HobbyPCB and the IQ32 crew for letting me take a deep dive into this very special little rig!

Click here to check out the IQ32 at HobbyPCB.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Icom IC-705: Let’s see how long it’ll receive with supplied BP-272 Li-ion battery pack

The shortwave radio listener part of me might actually be more excited about the Icom IC-705 than the ham radio operator part of me.

The IC-705 has a number of features for ham radio operators who also enjoy broadcast listening. For example, it sports:

  • a general coverage receiver,
  • good performance specs,
  • notch filtering (both manual and automatic),
  • Icom twin passband filtering,
  • an AM bandwidth filter maximum width of 10 kHz
  • built-in digital recording of both received and transmitted audio,
  • audio treble/bass adjustments,
  • and battery power from Icom HT Li-ion battery packs

The Icom IC-705 ships with an BP-272 Li-ion battery pack and since the announcement last year about the IC-705, I’ve been curious how long the BP-272 could power the IC-705 in receive only.

A real-world RX test

Yesterday morning, I resisted the urge to hunt POTA and SOTA stations with the IC-705 and, instead, spent the day simply listening.

I started the experiment with a fully-charged BP-272 7.4V 1880 mAh battery pack (the pack supplied with the IC-705). At 9:00 in the morning, I unplugged the IC-705 from my 12V power supply and ran the receiver all day on just the battery pack.

I made some practical changes to maximize play time: I turned on the screen saver, turned off GPS, set the LCD backlight auto adjustment to 2%, and set the screen timer to turn off after 1 minute.

I ran the volume somewhere between low and moderate and only raised it to what I would consider very loud a few times to copy weak signals. I listened to AM, SSB, and FM signals across the spectrum, but primarily cruised the HF bands.

Of course, I never transmitted with the IC-705 during this period (saving that for the next test).

I probably could have done more to decrease current drain, but frankly I wanted this to be based on how I’d likely configure the rig for use on an SWL DXpedition.

Results

I unplugged the IC-705 from the 12V power supply at 9:00 local and the radio auto shut down at 16:39 local: a total of 7 hours, 39 minutes.

Honestly? I’m fairly impressed with this number mainly because it’s based on the smaller battery pack. The supplied BP-272 pack has 1880 mAh of capacity. The optional BP-307, on the other hand, has 3150 mAh of capacity.

If I decide to keep the IC-705, I will be very tempted to purchase a ($130 US) BP-307 pack as well.

Next test: How long can the IC-705 last on battery during a POTA activation?

As early as today, I will see just how long the BP-272 pack can operate the IC-705 during a POTA activation. This will be a true challenge on the smaller battery pack since POTA activations require a lot of transmitting (constant CQ calls and exchanges). There’ll be no lack of calling CQ on a day like today when propagation is so incredible poor.

Follow the tag IC-705 for more updates.

Spread the radio love