Tag Archives: Guest Posts

Jock says, “It’s about time…and beacons!”

A WWV Time Code Generator

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


It’s about time . . . and beacons

By Jock Elliott, KB2GOM

Shortwave time stations can be incredibly useful for shortwave listeners, not just for checking the time, but also for finding out what’s going on with radio signal propagation. What makes these stations particularly valuable is that they are available all the time. I use them often when I am testing radio equipment or tweaks to my listening post.

Chief Engineer Matt Deutch at WWV/WWVB. (Photo: Thomas)

The National Institute of Standards and Technology (part of the U.S. Department of Commerce) maintains a couple of stations devoted to broadcasting time announcements, standard time intervals, standard frequencies, UT1 time corrections, a BCD time code, and geophysical alerts 24 hours a day, 7 days a week.

WWV in Fort Collins, Colorado, according to NIST:

“radiates 10 000 W on 5 MHz, 10 MHz, and 15 MHz; and 2500 W on 2.5 MHz and 20 MHz. Each frequency is broadcast from a separate transmitter. Although each frequency carries the same information, multiple frequencies are used because the quality of HF reception depends on many factors such as location, time of year, time of day, the frequency being used, and atmospheric and ionospheric propagation conditions. The variety of frequencies makes it likely that at least one frequency will be usable at all times.”

In addition, WWV broadcasts the same signal heard on the other WWV frequencies on 25 MHz on an experimental basis. The power is 2500 W and, as an experimental broadcast, is may be interrupted or suspended without notice.

WWVH crew from left to right: Dean Takamatsu, Dean Okayama, Director Copan, Adela Mae Ochinang and Chris Fujita. Credit: D. Okayama/NIST

WWVH, based in Kekaha, Hawaii, transmits 10000 W on 10 MHz and 15 MHz, and 5000 W on 2.5 MHz. A NIST notes that the 5 MHz broadcast, which normally radiates 10 000 W, is currently operating at 5000 W due to equipment failure.

Photo Thomas (K4SWL) took in 2014 of the sign above WWV’s primary 10 MHz transmitter.

Both stations have voice announcements. WWV uses a male voice; WWVH, a female voice. They are staggered in time so that they don’t talk over each other. While doing research for this blog, one afternoon on 5 MHz and 10 MHz, I could hear the female voice, followed by the male voice, so I was hearing both Hawaii and Colorado. On 15 MHz, I could hear only Hawaii. Both stations transmit in AM mode, although I sometimes use upper sideband to pick the signals out of the noise.

CHU’s QSL card used in the 1980s depicting Sir Sanford Fleming, father of uniform times zones.

In addition, there is a Canadian time station. CHU transmits 3000 W signals on 3.33 and 14.67 MHz, and a 5000 W signal on 7.85 MHz.

The frequencies were chosen to avoid interference from WWV and WWVH. The signal is AM mode, with the lower sideband suppressed.

The same information is carried on all three frequencies simultaneously including announcements every minute, alternating between English and French. The CHU transmitters are located near Barrhaven, Ontario.

According to a posting on Radio Reference, there is also a time beacon in Moscow, Russia that transmits on 9996 and 14996 kHz in CW mode. I have never heard that station.

If anyone knows of additional shortwave time stations, please post the information in the comments section below.

Beacons

Another “standard reference” that can be used to figure out what’s happening with shortwave propagation is the International Beacons Project, a worldwide network of radio propagation beacons. It consists of 18 Morse code (CW) beacons operating on five designated frequencies in the high frequency band. The project is coordinated by the Northern California DX Foundation (NCDXF) and the International Amateur Radio Union (IARU).

This page shows the locations of the beacons and gives samples of the signals that can be heard. Each beacon transmits once on each band once every three minutes, 24 hours a day. A transmission consists of the callsign of the beacon sent at 22 words per minute followed by four one-second dashes. The callsign and the first dash are sent at 100 watts. The remaining dashes are sent at 10 watts, 1 watt and 100 milliwatts. At the end of each 10 second transmission, the beacon steps to the next higher band and the next beacon in the sequence begins transmitting.

Clicking around the International Beacons Project website will reveal a wealth of information, including a Reverse Beacon Network — https://www.ncdxf.org/beacon/RBN.html — no kidding.

Finally, if you would like to disappear down the rabbit hole of chasing shortwave beacons, here is a list of 411 beacons around the world: http://www.dl8wx.de/BAKE_KW.HTM

The listing includes the frequency, the location, and the power of the transmitter (among other things). If any reader has experience with these beacons, please post in the comments section.

Spread the radio love

Giuseppe’s Ponza Island DXpedition with the Icom IC-705

Many thanks to SWLing Post contributor, Giuseppe Morlè (IZ0GZW), who shares the following guest post:


Report from Ponza Island: May 6-9, 2022

by Giuseppe Morlè (IZ0GZW)

Ciao Thomas and Friends at the SWLing Post!

This is the summary of 3 days of testing of my Icom IC-705 just purchased and immediately taken to Ponza Island, my hometown, for a full immersion DXpedition only listening to amateur radio bands especially on 20 m.

Day 1

I left Formia on the ship that went to Ponza and it was not a good start given the adverse sea weather conditions. After 3 hours of crossing in the rain and the strong sirocco wind, I arrived on the island at my father’s house.

In the early afternoon in the rain, I hoisted a 20 meter row on the “sloper” type roof not so high from the ground and connected directly to the Icom 705 without any counterweight given the place without electrical noise.

The position of my father’s house is open from West to North but totally covered to the South by a hill of 200 meters …

In this video you can see all of this:

During the first night, 20 meters was full of signals especially from the USA; it was, in fact, what I had hoped for given the position open to the West.

Really good overseas signals despite bad weather … below is a series of mixes of North American stations: Continue reading

Spread the radio love

Jock gets a good grounding!

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


Getting grounded – at last!

By Jock Elliott, KB2GOM

Readers’ comments are among the best things about writing for the SWLing.com blog. When a reader responds to a post and leaves a comment, it does three things. First, it lets the author know that someone actually read the post. Second, it provides valuable feedback – “I liked it.” “Did you know about this . . .?” “I had a similar experience.” – and so forth. Finally, it provides the author an opportunity to learn something, and that perhaps is the most fun.

A case in point: when I posted this, Andrew (grayhat) said:

“If you want to make an experiment, connect the end-fed to the Satellit high-Z wire input (clamp), then pick a (relatively short) run of insulated wire connect one end of the wire to the high-Z “ground” (clamp) and the other end of that wire to the “gnd” hole in the wall plug

The above being said, I prefer keeping antennas outside and taking care of the feedline, this helps reducing or eliminating noise from indoor appliances like switching PSUs and other things, anyway, if you want, try the above idea and let me know how it works for you”

To which, I responded:

“Thanks for the comments.

Thanks to a tree falling on the powerlines, I now know that the inherent electrical noise in my radio room is basically down to the level of atmospheric noise.

Neverthless, experimenting with a ground is definitely worth trying. A thin wire, sneaked out the window to a ground rod, might do the trick. I’ll report back after I try.”

Andrew (grayhat) came back to me and said:

“I was serious, try the “wall plug ground” I described, it won’t start any “magic smoke” or the like, otherwise, if you can lay out a wire with a length of 5m max, cut to be NON resonant, and connected to a good ground stake, go for it

Then, if you want to discuss this further, just ask Thomas for my e-mail, I agree to share it with you.”

Now, I really appreciated Andrew’s comments, but what I had not told him was that there is just one wall plug in my radio shack; it is really inaccessible, and I am not sure I can get a ground off it. Further, the rest of the power “system” in my shack is a rat’s nest of power bars and extensions, and I have zero confidence that any of them will provide a useful ground.

But – and this is a big but – I did take Andrew’s point: that connecting an actual ground to the ground clip on the back of the Satellit 800 might improve things. Continue reading

Spread the radio love

Guest Post: Review of the Electronic Specialty Products – Model DD-103 Universal Digital Dial

Many thanks to SWLing Post contributor, Bob Butterfield, who shares the following guest post:


Review of the Electronic Specialty Products – Model DD-103 Universal Digital Dial

by Bob Butterfield

I recently brought out of storage my Yaesu FRG-7 Communications Receiver to use “in the shack” once again.  I have always regarded the FRG-7 as a capable receiver but just did not have space as my radios co-exist with part of my daughter’s over-flowing stuffed animal collection–among other things.  After a couple of dozen members of the plush collection were relocated, I now had room for another receiver!  I checked the FRG-7 out carefully and found everything was functioning well, except for a modification I made decades ago which was the installation of a 100 kHz crystal calibrator kit inside the receiver.

I am the original owner of this FRG-7 which is an early production unit (the one without the small fine tuning knob).  I had always desired an external digital frequency display for this radio and thought now is the time.  I did some research, visited various radio forums, and decided on purchasing an Electronic Specialty Products (ESP), Model DD-103 Universal Digital Dial.  This unit is not cheap, US$140, plus $15 shipping, but seemed to fit my needs.  If technically inclined, one could possibly build an external display for themselves at lower cost.  What may be of interest to many concerning the DD-103 unit is that it comes pre-programmed for dozens of transceivers and receivers (to include the FRG-7).  Plus, if your radio is not pre-programmed it can be set up manually.

The DD-103 is an attractive compact external unit measuring 2”H x 6”W x 4”D with a very easy to read backlighted LCD (white on blue).  The unit comes with connecting cables, U.S.-type power supply, and instruction manual.  In my opinion, despite its size, this is one solid and well-built unit.  As per the ESP web site, new units are not stocked but are assembled upon order.  After ordering I immediately emailed ESP with my receiver make and model (I would recommend this for all buyers).  My unit arrived in a little over two weeks and I received a separate sheet accompanying the unit with specific instructions for my receiver.  Hook up was a breeze.  All that was needed was to set a few DIP switches, connect one lead to the indicated test point on the identified board, and the other lead to chassis ground (alligator clip leads are provided).  The connection to the display is made with the included RCA cable.  I made one simple installation modification, installing a RCA female/RCA female bulkhead connector on the rear panel of the FRG-7 to allow for quick disconnect.

The DD-103 display is programmed into 1 MHz increments.  To operate, you select the MHz range you want (for example 9 MHz) on the DD-103.  On the FRG-7, I then tune its pre-selector and the same desired MHz range, and finally tune in the frequency and watch the DD-103 display change accordingly.  The operational design of the DD-103 fits nicely with the Barlow-Wadley circuit design of the FRG-7.

A key feature of the DD-103 display is that it reads the entire frequency (e.g., 9.940.1 MHz) so you always know where you are with just one look.  In addition to AM mode the DD-103 can be further programmed for CW, LSB, and USB modes, as well as 10 Hz or 100 Hz resolution.  As stated in the unit’s manual, it can also be calibrated on each frequency range so as to correct IF amplifiers that are a little off or errors associated with aging receiver crystals, if applicable.

It is nice to have my FRG-7 up and running again and utilizing the new external numeric frequency readout.  Truthfully, I have been reminded just how good the FRG-7 is.  Though it does not have as many features, it holds its own when put up against my other classic receivers (JRC NRD-545, JRC NRD-535D, and ICOM R-75).

I must say I am quite happy with the Electronic Specialty Products DD-103.  The unit has good accuracy and stability as it utilizes a TCXO reference oscillator.  If I had to nit-pick about anything, I would likely point out that the on/off switch is on the back of the unit.  If your radio is in a confined space this possibly could cause operational issues for you.  Also realize that for the most part this unit is kind of a “one size fits all” package and it would not surprise me if certain receivers or transceivers might require lengthening of the connecting cable.  All in all this professional looking unit is a simple to use, simple to install, easy to read, designed well, and I think worth the cost.  For anyone else who is thinking about adding a digital frequency readout to a vintage radio, you may want to give this model due consideration.

Bob Butterfield

Photo of my FRG-7 with the DD-103 on top:

Web site for Electronic Specialty Products: http://www.electronicspecialtyproducts.com/dd103.html

Disclaimer: I have not been compensated in any manner in regards to this unsolicited review and purchased the DD-103 unit with my own funds.

Spread the radio love

The Satellit 800, the Tecsun PL-880, and two indoor antennas – an afternoon of experimentation

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


The Satellit 800, the Tecsun PL-880, and two indoor antennas – an afternoon of experimentation

By Jock Elliott, KB2GOM

A search for “shortwave listening antennas” on the internet landed me on the page for the Par EndFedz® EF-SWL receive antenna, which is a 45-foot end-fed wire antenna connected to a wideband 9:1 transformer wound on a “binocular core” inside a UV-resistant box. A link on the page invited me to check out the eHam reviews of this antenna, which are here. What struck me is that there are just page after page of 5 star reviews of this antenna. Hams and SWLs apparently just love it. (If you want to buy of these antennas, they are now sold by Vibroplex and can be found here.)

As I reached for my credit card, I remember that I had an LDG 9:1 unun transformer lying around and some wire left over from the Horizontal Room Loop project. Maybe I could create my own end-fed SWL antenna by wrapping the wire around the perimeter of the room, attaching it to the 9:1 unun and then by coax to the back of my Grundig Satellit 800.

So I did exactly that. The wire for new end-fed antenna travels the same route around the perimeter of the room as the horizontal room loop. The main differences between the two antennas are that the end-fed is not a loop, and it terminates in the 9:1 transformer, which, in turn, feeds the Satellit though a coax cable. But in essence, we’re talking about two indoor wire antennas that are the same length and laid out along the same path about 7 feet in the air around the interior of the 8-foot by 12-foot room that serves as a library and radio shack: the horizontal room loop and the indoor end-fed.

 

The Satellit 800 has three possible antenna inputs: the very tall built-in whip antenna, two clips on the back of the 800 where the horizontal room loop attaches, and a pl-239 coax connector where the new end-fed antenna attaches. In addition, there is a three-position switch that allows me to quickly switch from one antenna to another.

Tuning up on the WWV time stations on 5, 10, 15, and 20 MHz and sliding the switch on the back of the Satellit 800 among the three different positions, I quickly found that the whip antenna was the noisiest of the three choices and offered the poorest signal-to-noise ratio. The comparison between the horizontal room loop and the indoor end-fed antenna was very, very close. While the horizontal room loop was quieter, it seemed to me that the signal offered by the indoor end-fed antenna was the tiniest bit easier to hear, so I decided to leave the Satellit 800 hooked up to the indoor end-fed antenna.

The 100-foot indoor end-fed antenna

Then I did something I had wanted to do for quite a while: I disconnected the horizontal room loop from the back of the Satellit 800 and attached one end of the wire to the indoor end-fed. So now, I had a roughly 100-foot end-fed antenna wrapped twice around the room.

Before we proceed any further, you need to understand this: my comprehension of antenna theory is essentially nil. As the old-timers would have it: you could take the entirety of what I understand about antenna theory, put it in a thimble, and it would rattle like a BB in a boxcar.

Ever since the successful creation of the horizontal room loop, I had wondered: if 50 feet of wire wrapped around a room improves the signal, would 100-feet of wire improve the signal even more? Inquiries to several knowledgeable people produced the same result: they didn’t think so.

Guess what? They were right . . . entirely and completely right. Tuning to the time stations and attaching and detaching the extra 50 feet of wire from the indoor end-fed, I saw (on the signal strength meter) and heard no difference in signal strength or signal-to-noise ratio.

The PL-880 and Satellit 800 comparison

So now, the Satellit 800 is attached to the indoor end-fed antenna, and there is an extra 50 feet wire wrapped around the room on the same path as the end-fed. Wouldn’t it be nice if I could find a way to hook that extra wire up to my Tecsun PL-880?

An old auxiliary wind-up wire antenna from a FreePlay radio came to the rescue. It was an annoying piece of gear; the wire was difficult to deploy and even more difficult to wind up again, and it had languished in a drawer for more than a decade. But it had a really nifty clip on the end that was designed to easily snap on and off a whip antenna.

Pulling an arm-spread of wire out of the reel, I cut it off, stripped the wire, attached it to the end of what had been the horizontal room loop, and clipped it to the whip on the PL-880. Tah-dah . . . instant improvement to the signal coming into the PL-880.

Some time ago, a reader had asked whether I found the Satellit 800 a little deaf in comparison to the Tecsun PL-880. Now, with two indoor antennas of approximately the same length and routed along the same path, I could do the comparison on shortwave frequencies. Starting with the time stations and later with hams in single-sideband on the 20-meter band, I alternated between the two radios. Although the PL-880 has more bandwidth choices, and the two radios have a slightly different sound to them (probably, I’m guessing, due to differences in their circuitry), the bottom line is this: anything I could hear with the Satellit 800 I could also hear with the PL-800 . . . and vice versa. (Note: I did not do any comparison between the two on medium wave or FM.)

In my not-so-humble opinion, both offer worthy performance that is improved with the addition of a 50-foot wire antenna, even if it is indoors.

And that brings us to the final point.

A word of caution

If you decide to add a bit of wire to improve the signal coming into your shortwave portable or desktop receiver, do NOT, under any circumstances, EVER deploy the wire where it could come into contact with a powerline or fall onto a power line or where a power line could fall on it.

As Frank P. Hughes, VE3DQB, neatly put it in his wonderful little book Limited Space Shortwave Antenna Solutions: “Make sure no part of any antenna, its support or guy wires can touch a power line before, after, or during construction. This is a matter of life and death!

And when thunder and lightning threaten, make sure your outdoor antenna is disconnected and grounded.

Spread the radio love

World War II Radio Letters: a real-life shortwave story – Part II

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


World War II Radio Letters: a real-life shortwave story – Part II

By Jock Elliott, KB2GOM

That so many people have been moved by Part I has been heartwarming. Since writing it, there have been further developments. Tecsun Radio Australia asked (and was granted) permission to reproduce the article for Anzac Day (April 25), when all fallen personnel in all wars are remembered in Australia.

In addition, I became aware of two books – World War II Radio Heroes Letters of Compassion and Waves of Hope (thanks, Bill Hemphill!) – that are all about World War II radio letters. We’ll get to those books in just a bit.

But first, I wanted to tell you something you might find surprising: I did not set out to write about how shortwave listeners had reassured my Mom that my Dad was alive during WWII. Not at all. In fact, in my 50 years as a writer, I found the process of how this came to be written, well, a little strange.

The night before, I had drifted off to sleep thinking about a radio and antenna comparison I had been fooling around with during the day (and which I plan to write up in the future). But in the morning – Holy Smokes! – completely out of the blue, my mind was seized by the following thought: Wasn’t it a shortwave listener in New Jersey that first informed my Mom that my Dad was a prisoner of War? (It turned out that wasn’t quite correct.) It’s in a scrapbook in the basement . . . go find it!

Now, I had not thought about those old scrapbooks in at least two decades, maybe more, but I could picture a particular scrapbook in my mind. Rooting around in the basement, I found it, but it didn’t contain anything about my Dad going missing in action or my Mom being informed he was still alive. Maybe I was wrong, I thought.

Back upstairs in my easy chair, the thought would not leave me alone, kept nudging me: Go find it. More digging in the basement produced the right scrapbook with the right information. Reading it, I found tears running down my face at the kindness of strangers.

As I completed writing World War II Radio Letters Part I and sent it off to Thomas, it struck me as curious that, in all my years writing about radio subjects, I had ever seen an article, or even a mention, of the shortwave monitors of WWII. I thought perhaps no one had ever written on the subject, but I was wrong.

I was poking around the internet and came across World War II Radio Heroes: Letters of Compassion Second Edition by Lisa Spahr. It is a 212-page 10-inch by 7-inch book that details her discovery of her grandfather’s WWII trunk, which contained dozens of letters and postcards from shortwave listeners who wrote to Spahr’s great-grandmother to let her know that her son had been captured and was a prisoner of war.

The book, which contains photos of the original correspondence from the SWLs, chronicles her attempt to contact those shortwave listeners or their families, her discovery of the Short Wave Amateur Monitors Club – which turned the monitoring for POWs names into an organized effort – and a lot else besides. If you enjoyed my first post on this subject, I am pretty sure you will enjoy this book.

The other book – Waves of Hope by Ronald Edward Negra – is about how his mother, Agnes Joan Negra, was a shortwave monitor during WWII who sent out more than 300 letters and postcards to families to inform them that their loved ones were captured and still alive. This is a larger format book (8.5 inches by 11 inches) running to 124 pages that reproduces the letters that Agnes received back from grateful families after receiving the news from Agnes. At the time of this writing, Agnes is still alive, about to celebrate her 102nd birthday!

I found Waves of Hope to be a moving and compassionate book, and I think any SWL will appreciate having it on his or her bookshelf.

Finally, you will find a great deal of additional information here: https://www.ontheshortwaves.com/history-III.html#POW

At the end of it all – the strange process of writing the story, the response of the readers, the books telling the story of WWII radio letters – I come back to the place I started as a grade school boy. It was then that I discovered monitoring the radio can be an almost magical activity . . . and you never know when something you heard may touch another’s life in a profound way.

So keep listening!

Spread the radio love

WWII Radio Letters: A real-life shortwave story

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


A real-life shortwave story

By Jock Elliott, KB2GOM

On July 25, 1943, a Royal Canadian Air Force Wellington bomber took off from England to fly a mission over Nazi-held territory in Europe. It never returned to base.

A Wellington aircrew getting ready.

On board was an American Lieutenant, tailgunner on the aircraft. He had flown at least 19 missions, and now his status was unknown.

The office.

On July 30, a letter was sent to his wife. It began:

Before receiving this letter you will have had a telegram informing you that your husband, Lieutenant John Chapman Elliott, is missing as a result of air operations. I regret to have to confirm this distressing news.

John and the air crew took off on an operational sortie over enemy territory on the evening of the 25th July and we have heard nothing of them since. However, it is decidedly possible that they are prisoners of war or are among friends who are helping them to make their way back to this country . . .

Status unknown . . . “we have heard nothing of them since.” An agonizing psychological limbo. Do you mourn or do you hope? How do you live in that middle space?

The exact timing of what happens next isn’t clear, but in September two things happened.

A telegram arrived:

Mrs. J C Elliott =

Report received through the International Red Cross states your husband First Lieutenant John C Elliott is a prisoner of war of the German Government . . .

Notation in the scrapbook above the telegram (in my Mother’s hand) reads:

The finest Telegram and the loudest words in the life of Phyllis Nancy Elliott

On or around the same time, postcards and letters arrived from around the country. From Northville, Michigan; Green County, New York; Grand Rapids Michigan; Auburn, Maine; Burlington, Iowa; Chicago, Illinois; Boston, Massachusetts, shortwave radio listeners wrote to Mrs. Elliott to tell her that they had heard – on a broadcast from Berlin, Germany –  First Lieutenant John Elliott is a prisoner of war, and offering words of comfort or explanation:

Wishing you best of luck in his safe return to you,

I am a patient at the above sanatorium and as I have a quite powerful radio receiver I am taking this means of doing my bit for the boys in our armed services,

Hoping this may comfort you in knowing that he is alive and alright,

Hope this cheers you up.

Hope this will relieve your worries . . .

Words cherished and pasted into a scrapbook.

My Dad later told me what happened. Their Wellington bomber was badly shot up, and the pilot informed the crew that it was time to bail out.

My Dad cranked his tail turret around so that the door opened into the air. He flipped backward out of the aircraft. For a little while, one of his electrically-heated flying boots caught on the door frame. Hanging upside-down, he kicked the boot off, pulled the ripcord on his parachute, and landed with green stick fractures in both legs. He hobbled around Holland for three days while trying to avoid the Germans. He was captured and spent two and one-half years as prisoner of war.

Lower right: My Dad.

When the war ended, he was repatriated, and in 1946, your humble correspondent showed up. The photos are of actual postcards and letters in an 80-year-old scrapbook kept by my Mother and passed down to me.

And so, dear reader, never belittle your hobby of listening to the airwaves, because you never know when something you heard may be able to offer comfort in times of trouble. I know it certainly did for my Mother.

Spread the radio love