Category Archives: Recordings

1933 Aluminum disc recordings from a DXer in England

Many thanks to SWLing Post contributor, Mark (AE2EA) with the AWA, who writes:

Your loyal followers might be interested in this video of airchecks
recorded on aluminum discs in England of US broadcast stations in late
1933, from the Antique Wireless Museum.

From the AWA description:

These audio clips were recorded on aluminum discs using more of an embossing than cutting action. Reading an AWA Facebook post that the AWA doesn’t have the equipment or experience to digitize the very fragile audio information on these discs, radiodave78@aol.com volunteered to do so. He did a great job is highly recommended for your consideration as a service for archival digitization and restoration.

The discs were in Peter R. Testan’s collection because they included recordings of station WBBC in Brooklyn, NY that his dad, Peter J, started. As well as being a broadcast owner and engineer, Peter J. Testan was also a ham operator. Pictures of his ham shack were featured in a recent issue of the AWA Journal.

While the calls are identifiable, the other programming in these recordings is difficult to listen to. The Creative Director of a New York City radio station remarked after listening: “”It’s so funny because I have DXers sending me EXACTLY the same quality audio as on these discs. Nothing has changed in nearly 100 years!!!”

The audio quality in this video has been enhanced from the original aluminum disc recordings through the use of bandpass filtering, noise reduction and compression, with the goal of removing some of the artifacts of the recording process.

The Wikipedia entry for aluminum discs is pretty succinct: https://en.wikipedia.org/wiki/Aluminum_disc

If you enjoyed this video, consider becoming a member of the Antique Wireless Association at https://antiquewireless.org/homepage/membership/

Absolutely mazing! Thank you so much for sharing this, Mark!

Spread the radio love

A review of the Icom IC-705 QRP Portable SDR Transceiver

The following review was first published in the February 2021 issue of The Spectrum Monitor magazine:


It sometimes seems that one of the biggest enemies of a radio enthusiast these days is RFI (radio frequency interference), which is to say, human-originated noise that infiltrates––and plagues––vast chunks of our radio spectrum.

Yet I believe RFI has, in a sense, also managed to energize––and even mobilize––many radio enthusiasts. How? By drawing them out of their houses and shacks into the field––to a local park, lake, river, mountain, woodland, or beach––away from switching power supplies, light dimmers, street lights, and other RFI-spewing devices.

Shortwave and mediumwave broadcast listeners have it easy, comparatively speaking. They can simply grab a favorite portable receiver, perhaps an external antenna, then hit the field to enjoy the benefits of a low-noise environment. In that a portable receiver is something of a self-contained listening post, it’s incredibly easy to transport it anywhere you like.

Ham radio operators, on the other hand, need to pack more for field operations. At a minimum, they need a transceiver, an antenna, a power source, not to mention, a mic, key, and/or computing device for digital modes. Thankfully, technology has begun miniaturizing ham radio transceivers, making them more efficient in the use of battery power, and integrating a number of accessories within one unit.

Photo from the 2019 Tokyo Ham Fair

Case in point: in 2019 at Tokyo’s Ham Fair, Icom announced their first QRP (low-power) radio in the better part of two decades: the Icom IC-705.

Introducing the Icom IC-705

 

It was love at first sight among fans of Icom when the 2019 announcement was made. Why? The instant thrill came courtesy of the IC-705’s resemblance––in miniature––to the IC-7300, one of Icom’s most popular transceivers of all time. Not only that, but the IC-705 sported even more features and a broader frequency range than the IC-7300. What wasn’t to love?

But of course, unlike the IC-7300, which can output 100 watts, the IC-705’s maximum output is just 10 watts with an external 12V power source, or 5 watts with the supplied Icom BP-272 Li-ion battery pack. Nevertheless, enthusiasts who love field radio––this article’s writer being among them––were very pleased to see Icom design a flagship QRP radio that could take some portable operators to the next level. Power was traded for portability, and for field operators, this was a reasonable trade.

And since, again, the IC-705 has even more features, modes, and frequency range than the venerable IC-7300, I felt it important to note them up front. Here are a few of its most notable features, many of which are not available on its bulkier predecessor:

  • VHF and UHF multimode operation
  • D-Star mode
  • Built-in GPS
  • Built-in Wifi connectivity
  • Built-in Bluetooth connectivity
  • Portable size
  • Battery power

The receiver design is similar to the IC-7300 below 25 MHz in that it provides a direct conversion. Above 25 MHz, however, it operates as a superheterodyne receiver. While the user would never know this in operation, it’s a clever way for Icom to keep costs down on such a wideband radio.

At time of publishing, there are no other portable transceivers that sport all of the features of the Icom IC-705. It has, in a sense, carved out its very own market niche…At least for now.

I’ve owned the IC-705 since late September 2020, and I still haven’t fully explored this radio’s remarkable capabilities. It’s really a marvel of ham radio technology, and I’m having fun exploring what it can do.

One conspicuous omission

Let’s go ahead and address this promptly. The IC-705 does have one glaring shortcoming.  It lacks one feature that is standard on the larger 100-watt IC-7300: an internal antenna tuner (ATU).

To be frank, I was a little surprised that the IC-705 didn’t include an internal ATU, since it otherwise sports so many, many features. Not having an internal ATU, like a number of other general coverage QRP transceivers in its class, definitely feels like a missed opportunity. With an ATU, the ‘705 would truly be in a class of its own.

I’m sure Icom either left the internal ATU out of the plan due to space limitations––perhaps wanting to keep the unit as compact as possible?––or possibly to keep the price down? I’m not sure.  At release, the price was $1300 US, which is undoubtedly on the higher side of this market segment; at that price point, it might as well have included an ATU.

With that said, not having an internal ATU is still not a disqualifier for me. Why? Because I have a number of resonant antennas I can add on when in the field, a remote ATU at home, and a couple of portable external ATUs, as well. Yes, it would be helpful to have it built in––as on my Elecraft KX1, KX2, and KX3, or on the ($425) Xiegu G90––but for me it’s not a deal-breaker.

One other minor omission? A simple tilt stand or foot. I do wish Icom had included some sort of foot on the bottom of the IC-705 so that it could be propped up for a better angle of operation. Without a tilt stand or foot, the IC-705 rests flat on a surface, making its screen a bit awkward to view. Of course, a number of third-party tilt stands are available on the market. And if you have a 3D printer or access to one, you can find a wide variety of options to simply print at home. I printed this super simple tilt foot, which works brilliantly.

But why not include one, Icom?

My 3D printed tilt foot

But while the IC-705 lacks a tilt foot, it actually sports a number of connection points on the bottom, including a standard tripod mount. Thank you, Icom, for at least including that (other radio manufactures please take note)!

Initial impressions

Funny: the IC-705 is the first new transceiver I’ve purchased with a color box.

If you’ve ever owned or operated the Icom IC-7300, you already know how to operate many of the functions on the IC-705. The user interfaces on the touch screens are identical. Features that are unique to the IC-705 are easy to find and follow the same standard Icom user-interface workflow.

Having less front faceplate real estate, the IC-705 has less buttons than the IC-7300––about 11 less than its big brother, to be exact. However, the twin passband, gain, multi-function knob and encoder are in the same positions and layout as on the IC-7300.

And if you’ve never used an IC-7300 before, no worries: this is one of the more user-friendly interfaces you’ll find on a ham radio transceiver.

The build of the IC-705 is excellent. It’s not exactly hardened for the elements––there is no waterproof rating or dust rating, for example––but it gives the impression of a solid little radio, likely to withstand a bit of less-than-delicate handling. Yet even though it’s designed to be a portable field radio, I’ll admit that the front panel and especially the color touchscreen feel a little vulnerable. I do worry about damaging that touchscreen while the radio travels in my backpack.

The Icom LC-192

On the topic of backpacks, Icom released a custom backpack (the LC-192) specifically for the IC-705, Icom AH-705 ATU, antennas, and accessories. I did not consider purchasing this backpack, although I’m sure some operators would appreciate it, as it has dedicated compartments for supplies and the radio can be attached to the floor of the backpack’s top compartment. Again, I passed because I’m a bit of a pack fanatic and tend to grab gear that’s more tactical and weatherproof.

IC-705 and Elecraft T1 ATU at Toxaway Game Land

While its in my Red Oxx or GoRuck backpack, I house the IC-705 in a $14 Ape Case Camera insert. Eventually I want to find a better solution, but this does help pad the IC-705 while in my backpack and certainly fits it like a glove––hopefully protecting that touchscreen.

A number of third-party manufacturers have designed protective “cages” and side panels for the IC-705, but I’ve been a bit reluctant to purchase one because I feel they may add too much weight and bulk to the radio.

To the field!

Sandy Mush State Game Land

The day after I received my Icom IC-705, I took it to the field to activate Sandy Mush State Game Land for the Parks On The Air (POTA) program. Typically, when I review a new radio, I spend a few hours with it in the shack before taking it to the field. In this case, however, I felt comfortable enough with the IC-705 user interface, so I decided to skip that step entirely––I was eager to see if this little radio would live up to expectations.

The previous evening, I’d connected the IC-705 to my 13.8V power supply, so the BP-272 battery pack was fully-charged and attached to the IC-705. There was no need for an external battery to be connected.

[Tip: Click here to view my YouTube playlist of field activities with the IC-705.]

Getting on the air that day was very straightforward; indeed, the set-up couldn’t have been more simple: radio plus antenna. I connected the IC-705 to a Vibroplex EFT-MTR end-fed 40, 30, and 20-meter resonant antenna, thus an external antenna tuner was not required.

The Vibroplex/End-Fedz EFT-MTR antenna

Next, I plugged in the included speaker/mic, spotted myself to the POTA network, and started working stations. I asked for audio reports and all were very positive using only the default audio settings. Obviously, the small hand mic works quite well. I did quickly decide to unplug one of the two connectors of the speaker mic (the speaker audio side) so that the received audio wouldn’t be pumped through the hand mic, using the much better IC-705 front-facing speaker.

In the field that day, I had a few objectives in mind:

  • See how well the supplied hand mic works for SSB contacts, thus intended to ask for audio reports
  • Check out full break-in QSK operation in CW mode
  • Measure exactly how long a fully-charged Icom BP-272 Li-ion battery pack would power the IC-705 under intense operation

SSB

SSB at Lake Norman State Park

I was very quickly able to sort out how to record and use the voice memory keying features of the IC-705. There are a total of eight memory positions that can be recorded to the internal microSD card. It’s very simple to use one of the memories in “beacon” mode––simply press and hold one of the memory buttons and the recording is transmitted repeatedly until the user presses the PTT to disengage it. This is incredibly helpful when calling CQ; I typically set mine to play “CQ POTA, CQ POTA, this is K4SWL calling CQ for Parks On The Air.” I’ve also set a five-second gap between playback, allowing for return calls. As I’ve mentioned before, voice-memory keying is incredibly useful and saves one’s voice when calling CQ in the field.

The voice and CW-memory keying features of the IC-705 are robust enough that they could be used in a contest setting to automate workflow. One important note: voice-memory keying saves recordings to the internal MicroSD card. If that card is removed, formatted/erased, or if the file structure is altered, the voice-memory keyer will not recall recordings.

CW

CW at South Mountains State Park

Next, I plugged in my paddles and started calling “CQ POTA” in CW.

As with the voice-memory keyer, CW-memory keying was incredibly easy to set up. Once again, the user once has eight memory positions. As the keyer plays a pre-recording sequence, the IC-705 will display the text being sent.

One of the questions I’m asked most by CW operators about the IC-705 is whether the radio has audible relay clicks during transmit/receive switching. Radios with loud relay clicks can be distracting. My preference these days is to operate in full break-in QSK mode, meaning, there is a transmit/receive change each time I form a character––it allows me space to hear someone break in, but results in much more clicking.

The IC-705 does have relay clicks, but these are very light––equal in volume to those of other Icom transceivers, neither louder nor softer. These clicks, fortunately, are not too distracting to me, and to be fair, I find I don’t even notice them as I operate. With that said, transceivers like my Elecraft KX2 and Mission RGO One use PIN diode switching, which is completely quiet.

Battery Life

Tapping the battery icon will open a larger battery capacity monitor.

My third objective at the first field outing was to test how long the Icom BP-272 Li-ion battery pack would power the IC-705 while calling CQ and working stations in both SSB and CW for an entire activation.

After nearly two hours of constant operation, the BP-272 still had nearly 40% of its capacity.

I didn’t expect this. I assumed it might power the IC-705 for perhaps 90 minutes, max. Fortunately, it seems at 5 watts, one BP-272 could carry you through more than one POTA or SOTA (Summits On The Air) activation. I was pleasantly surprised.

Four months later…

POTA activation at Tuttle Educational State Forest

Since that initial field test, I’ve taken the IC-705 on easily thirty or more individual POTA activations. I’ve also used it at home to chase POTA stations and rag chew with friends.

In short, I’ve found that the IC-705 is a brilliant, robust portable transceiver for SSB and/or CW and a pleasure to operate.

Herein lies the advantage of purchasing a radio from a legacy amateur radio manufacturer: it’s well-vetted right out the door, has no firmware quirks, and is built on iterations of popular radios before it.

I’ve found that IC-705 performance is solid: the receiver has a low noise floor, the audio is well-balanced, the AGC is stable at any setting, and it’s an incredibly sensitive and selective radio.

Digital modes

POTA activation at Lake Jame State Park

One huge advantage of the IC-705 is that it, like the IC-7300, has a built-in sound card for digital modes. This eliminates the need for an external sound card interface. After you’ve read the installation guide, and installed Icom’s USB drivers, simply plug the IC-705 into your computing device via USB cable and you can directly control the ‘705 with popular applications like WSJT-X.

I have not used the IC-705 for digital modes while in the field, but I have done so in the home shack. It was one of the easiest radios I’ve ever set up for FT8 and FT4.

I’m not the biggest digital mode operator, but if you are into it, I expect you’ll be very pleased with the IC-705. It must be one of the most portable, uncomplicated transceivers for digital mode operation currently on the market. I know a number of POTA activators have been using the IC-705 for FT8 and FT4.

D-Star

Being perfectly honest here, I have a chequered history with the D-Star digital voice mode. I purchased an Icom ID-51a and D-Star hotspot several years ago because a local ham pretty much convinced me it was the coolest thing since sliced bread.

And in truth? It is rather amazing.

But at the end of the day I had to admit to myself that I’m an HF guy, and found the user interface and operating procedures just a bit too other-worldly. I kept the ID-51a for perhaps a year, then sold it, along with the hotspot.

Although I knew the IC-705 had D-Star built in, I really hadn’t given it a second thought. But since I’m a reviewer, I simply had to check it out. I still had my D-Star credentials from some years ago, so I set up the IC-705 and connected the transceiver to the Diamond dual band antenna on top of my house.

Fortunately, I was able to hit our only local D-Star repeater and connect on the first go. Note that, like the ID-51a, the IC-705 can use your GPS coordinates, then automatically find the closest D-Star repeater and load the frequency and settings from the default database on the IC-705 MicroSD card.

After reviewing a YouTube video demonstration, I was on the air with D-Star and found the user interface much easier to use than that of the ID-51a. It really helps having a large touch screen.

I’ll admit it: I’m warming back up to D-Star, and I have the IC-705 to thank for that.

Some day, I plan to use D-Star on HF, as well. I acknowledge that it might take some pre-arranging, but perhaps I could even make a D-Star POTA––or better yet, SOTA––contact, if the stars align. It’s certainly worth the experiment.

Let’s talk about broadcast listening

Radio Exterior de España’s interval signal on the IC-705’s waterfall display

Although I’m a pretty active ham radio operator, I’m an SWL and broadcast listener at heart. One of the appealing things about the IC-705 is its excellent receiver range (0.030-470.000 MHz) and multiple operating modes, as well as its adjustable bandwidth.  Broadcast listeners will be happy to know that the AM bandwidth on the IC-705 can be widened to an impressive 10 kHz, which is certainly a stand-out among general coverage transceivers.

After turning on the IC-705 for the very first time, I tuned to the 31-meter band and cruised the dial. I felt like I was using a tabletop receiver: for such a small transceiver, the encoder is on the large side, and the controls are ergonomically designed. The spectrum display and waterfall are amazingly useful.

The front-facing speaker on the IC-705 is well-designed for audio clarity on the ham radio bands. It’s not a high-fidelity speaker, but it’s adequate and has enough “punch” to perform well in the field. Speakers on portable QRP radios are typically an afterthought and are terribly compromised due to space constraints within the chassis. The IC-705’s speaker design feels more deliberate, akin to what you might find on a mobile VHF/UHF rig. Broadcast listeners, in other words, will certainly want to hook the IC-705 up to an external speaker––or, better yet, use headphones––for weak-signal work.

While the received audio isn’t on par with a receiver like the Drake R8B, it’s pretty darn good for a portable general coverage transceiver. The audio is what I would call “flat,” but you are able to adjust the received audio in EQ settings to adjust them to your taste. Audio is well-tailored for the human voice, so I’ve found weak signal IDs are actually easy to grab on the air.

Audio samples

One of the brilliant things about the IC-705 is the fact that it has a built-in digital recorder. Both transmitted and received audio can be recorded in real time and saved to a removable MicroSD card. I made audio recordings of two broadcast stations on the 31-meter band as samples: the Voice of Greece (9420 kHz) and Radio Exterior de España (9690 kHz). The Voice of Greece was moderately strong when I made the recording and Radio Exterior was quite strong. Click on the links to download the .mp3 files for each recording:

Voice of Greece

Radio Exterior de España

I’ve also used the built-in digital recorder to record long sessions of my favorite shortwave, AM, and FM stations. Even with the recorder on, I can typically achieve hours of listening on one battery charge and need no other power supply.

Want more audio samples?
Check out our survey results from an Icom IC-705 blind audio test.

In short? The IC-705 makes for an excellent portable shortwave, mediumwave, and FM broadcast band-recording receiver.

Charging ahead…

The supplied BP-272 battery pack snaps snugly on the back of the IC-705

Power supply is always a concern when taking a transceiver on travels. Most transceivers need a 12-13.8 volt external supply, or an external battery, one that will eventually need to be charged.

This is not the case with the IC-705, because while it can be charged or powered via a 12-13.8V source, it can also be charged via a common 5V USB power supply. Simply insert any USB phone-charging cable into the MicroUSB port on the side of the IC-705, and it will charge the fully-depleted attached BP-272 battery pack in just over four hours.

Indeed, I traveled to visit family one week, and had plotted two park activations both en route and on the way back home. After my first activation, I quickly realized I forgot the supplied IC-705 power cord that I’d normally use to hook the IC-705 up to one of my LiFePo batteries. I was quite disappointed, expecting that I’d missed this opportunity.  Then I remembered USB charging: I simply plugged the IC-705 up to my father’s phone charger, and in four hours, the battery was completely recharged.

To my knowledge, there are no other transceivers that have this capability without modification. A major plus for those of us who love to travel lightly!

Summary

POTA activation at the Zebulon Vance Historic Birthplace

Every radio has its pros and cons. When I begin a review of a radio, I take notes from the very beginning so that I don’t forget my initial impressions. Here’s the list I formed over the time I’ve spent evaluating the Icom IC-705.

Pros:

  • Frequency range
    • TX: 160 – 6 meters, 2M, 70cm
    • RX: 0.030-470.000 MHz
  • Modes include SSB, CW, AM, FM, DV, RTTY
  • 4.3 inch color touchscreen that’s (surprisingly) readable in full sunlight
  • Multiple means to power/charge:
    • Icom BP-272 battery pack (supplied) for 5 watts output
      • Can be charged via 12V power supply or
      • 5V USB phone charger with standard MicroUSB plug (admittedly, I wish they would have adopted now standard USB-C rather than MicroUSB)
    • External battery for 10 watts of output
  • Top-shelf receiver performance (see Rob Sherwood’s assessment)
  • Wireless LAN connectivity that even allows for native remote control (not tested)
  • Built-in Bluetooth
  • Built-in GPS
  • Built-in Digital Recording
  • Full D-Star functionality
  • RTTY can be sent (using macros) and received/decoded natively
  • Multiple standard connection points on base for mounting (see con)
  • Supplied speaker mic is compact and has programmable buttons
  • Frequency stability is less than ± 0.5 ppm (–10°C to +60°C; 14°F to 140°F)
  • The IC-705 ships with an abridged owner’s manual; I recommend downloading the full version via Icom

Cons:

  • No internal ATU option
  • No built-in tilt stand (see pro)
  • Some minor ergonomic issues:
    • Angled speaker/mic connectors can be challenging to insert as they are too close to the recessed area behind front face, especially for those with larger fingers and/or if in chilly conditions in the field
    • MicroSD card also difficult to access––I use needle-nose pliers to remove and insert

Conclusion

POTA activation of Second Creek Game Land

I purchased the Icom IC-705 with the idea that I would review it and then sell it shortly thereafter. Much to the dismay of my (rather limited) radio funds, I find that I now want to keep the IC-705…indefinitely.

I didn’t think the IC-705 would fit into my QRP field radio “arsenal” very well because I tend to gravitate toward more compact radios that I can easily operate on a clipboard on my lap when necessary. My Elecraft KX2 (TSM November 2016), Elecraft KX1, LnR Precision LD-11 (TSM October 2016), and Mountain Topper MTR-3B probably best represent my field radio interests.

But I’m loving the versatility and overall performance of the IC-705. It’s providing an opportunity to do much more than most of my QRP radios allow.

Here are just a few of the things I’ve done with the IC-705 thus far:

  • Activated numerous parks in SSB and CW
  • Connected to a local D-Star repeater and talked with a fellow ‘705 owner in the UK
  • Listened to ATC traffic (and recorded it)
  • Listened to NOAA weather radio
  • Listened to and recorded local FM stations
  • Enjoyed proper FM DXing
  • Recorded GPS coordinates during a POTA/WWFF activation
  • Made numerous digital mode contacts by connecting the IC-705 directly to my Windows tablet
  • Made a 2-meter SSB contact

POTA activation of the Blue Ridge Parkway

Indeed, there are more features on this transceiver than I can fully cover in one review; truly, I consider that a very good thing.

So if you’re looking for a portable transceiver that can truly take you on a deep dive into the world of QRP HF, VHF, UHF, and even satisfy the SWL in you, look no further than the Icom IC-705.

Well played, Icom.

More Icom IC-705 articles, information, and resources:


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Recordings of WTAB

Many thanks to SWLing Post contributor, Fastradioburst23, who shares the following recording:

This is the studio version of the WTAB transmission that went out on 9395 kHz at 00:00 UTC Monday 15th February 2021 (repeated on the same frequency and time on Monday 22nd February).

Below is a great clip of the transmission caught on a Yaesu FTdx3000 with a 80 meter horizontal loop at 60 feet at Parksville, Vancouver Island, BC

Many thanks for sharing these recordings!

Spread the radio love

Build an affordable (but stealthy) Magnet Wire Vertical Loop antenna to mitigate condo QRM

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:


Magnet Wire Vertical Loop Antenna

by TomL

For those of you in a noisy condo like me, the environment does not give me many options.  I was experimenting with a YouLoop on the wooden porch with somewhat acceptable results.  For its size, it is an excellent performer, especially on the lower bands.  Here is a very interesting review of the YouLoop, including close-up pictures of the innards of the phase inverter and 1:1 balun, by John S. Huggins.  However, it is not waterproof and I was concerned about the ice and snow ruining it.  I could tape up the connectors with waterproof tape but I also wanted  something with a bigger capture area.  A magnet wire stealth antenna might be just the thing!

I just happened to have a waterproof 1:1 ATU balun from Balun Designs that I was going to use for future Amateur Radio use whenever I get around to passing the next level test; it is total overkill for what I intended to use it for.  It would make a good connection point and (this one) also acts as an RF choke as well.  One can make a 1:1 balun by buying the right Type of ferrite core and winding it yourself.  Here is just one idea from Palomar Engineers.

So I dusted it off, went to a local store to get a 100 foot spool of 26 gauge magnet wire and tested it strung up around my living room. It came out to be a rectangle about 42 feet in circumference.  Results were usable. I expected lots of noise and there is a great deal across the bands, so only the strongest shortwave stations were received. However, I was surprised by how strong the mediumwave band was and good to listen to without an amplifier.

I am ambivalent towards trying to perfectly match the impedance since this is a broadband receive-only antenna and the impedance will vary greatly over MW and SW bands.  And I don’t want to mess with a remotely controlled tuned loop since this antenna was destined for the outdoor porch.  I tried a Cross Country Wireless preselector at my desk but had some mixed results.  I later found out, by disconnecting things in series, that the preselector inline raised the noise level about 5 dBm, so I took it out for now. Perhaps it needs more internal shielding or the connecting cable is bad.

Polarization is an issue, too.  I have read that most man-made noise (QRM) is vertically polarized, so why would I use a vertically oriented loop?  Then I saw David Casler’s video on loop antennas where he explains that connecting a vertical loop antenna at the bottom or the top makes it horizontally polarized (connecting the coax on the side makes it vertically polarized).  I never knew that!  Horizontal polarization will mitigate some of the offending QRM as well as match the polarization of mediumwave band transmitters.  Furthermore, I read that a horizontal loop will have poor signal pickup at low frequencies because it is not high enough off the ground, similar to a horizontal dipole. For now, a vertical loop connected to facilitate horizontal polarization is what I want.

A note about wire size. People make a big deal about it but those are mostly amateur radio people.  Transmission depends on efficiency so things like wire size, skin effect, standing waves, and other things matter (see here, for example).  With a receive-only antenna it is OK to use very thin wire.  Resonance can matter if you want the last ounce of signal strength with an antenna tuner, like in high-Q type loops where the bandwidth is very narrow and you are using a multi-turn loop with variable capacitor and a pick-up coil of wire to the receiver.  Comparatively, my simple loop is depending more on a single turn of wire, the aperture size, length of wire for its performance, and carefully isolating the feedline coax using RF chokes at both ends.

Here is one example of a strong station from Cuba I was able to record because WLW was off the air for some unexpected reason.

Radio Reloj, Cuba 870 kHz (At the end, you can hear WLW come back online with CBS news):

Side note about Radio Reloj on Wikipedia, the strange format seems to fit well with a totalitarian regime, including a “corrector” who “corrects the content/writing errors to meet the requirements”.  Read the wiki link for yourself.  Not a society I want to live in, thank you very much!

Example of 80 meter band performance – Greetings to a new person from members of the “Awful, Awful, Ugly Net”, 3855 kHz:

Encouraged by the results, I “installed” the magnet wire around the support beams of the wooden porch, wrapping it carefully to create a square loop. Holding it in place is a brick at each bottom corner since I am not allowed to nail anything into the Association-owned porch.  The length came out to about 32 feet (8 feet per side), so I trimmed it and connected to the balun.  I also added an RF choke at the Airspy HF+ input from Palomar Engineers which helped bring noise down a couple of S-units.   That might not sound like a lot but by also shutting off the living room air filter and an AC switch with “wall-wart” AC power adapters on it, I was able to reduce the noise a little bit more.  There is still a lot of noise from the neighbors, so it is not a perfect situation.

Here are two examples of reception with the outside installation.

Gateway 160 Meter Radio Newsletter, broadcast (in AM) by WA0RCR every Saturday on 1860 kHz:

Side note about the Radio Newsletter.  I stumbled on it when using the YouLoop and found that some of the content is very interesting and informative.  Of course it is geared mostly towards amateur radio but some of the news items are of general radio interest as well. It airs 1pm Saturday through 2am Sunday, USA Central Time.  Obviously, many segments repeat during that lengthy timeframe and reception depends on propagation from Missouri.

KDDR 1220 kHz, West Fargo, ND station ID (presumably “nighttime” power of 327 watts):

The shortwave bands are still a noisy disaster but signal levels are higher compared to the YouLoop.  Only the strongest stations come in like WRMI, WHRI, Radio Espana, Radio Habana, and CRI. And I can hear the loudest amateur radio operators.

Just for grins, here is Radio Rebelde on 5025 kHz when band conditions were above average:

Another phenomenon I am looking into is the reception pattern of a vertical loop.  Less than 1/10th wavelength, the null is through the center of the loop.  At one wavelength, the null manifests in the plane of the wire loop.  They are too close to phase them but switching between two directional loop antennas might improve reception depending on frequency.  We shall see in the future.

At least for now, I have a decent mediumwave band which performs better than the useful CCrane Twin-Ferrite amplified loop antenna that was used in the (noisy) indoors, I can hear the 160 & 80 meter amateur bands better, and the reception of the strongest shortwave broadcasters are more predictable.  Not bad for four dollars of wire!


Brilliant, Tom! Again, I love how you’ve not only made an inexpensive antenna, but you’ve even done it within your HOA regulations. You’re right, too: if you’re not transmitting into an antenna, it blows the experimentation door wide open! Thank you once again for sharing your project with us.

Click here to check out all of Tom’s guest posts and portable adventures!

Spread the radio love

The Icom IC-705 is about to achieve ‘Holy Grail’ status

In 2019, shortly after Icom announced the Icom IC-705, I speculated that this rig might be a contender for “Holy Grail” status.

I must admit…the more I use this radio, the more I love it. It is a proper Swiss Army Knife of a radio. Even though I’ve owned and operated it for a few months, I still haven’t explored all that it can do, and I keep finding features I love.

Case in point

Yesterday, I upgraded my IC-705’s firmware. Unlike other devices I’ve been evaluating recently, IC-705 firmware updates aren’t fixing numerous bugs and issues, rather they’re adding more functionality.

After completing the upgrade, I hooked the ‘705 up to my main antenna and worked a few Parks On The Air (POTA) stations off of the supplied battery pack (instead of a power supply). While I worked on other projects in the shack, I checked the POTA spots and work a few stations with a whopping 5 watts of output power.

After a couple hours on the air (mostly listening), the internal battery pack still had a good 60-70% capacity.

At one point, I tried a little daytime mediumwave DXing and cruised past 630 kHz which some of you might already know is the home of one of my favorite hometown radio stations, WAIZ.

From my home, WAIZ is a tough catch, so it was weak, but I could hear it.

This reminded me that I had made a recording of WAIZ with the IC-705 when in my hometown earlier this month.

Normally, I pull the MicroSD card out of the IC-705–which almost requires needle nose pliers and is one of my few complaints about this rig–and view the files on my PC or MacBook, but I was curious if perhaps the IC-705 software had a built-in file display.

Of course it does!

Simply press the MENU button, then the RECORD button on the touch screen, and you’ll see the following selections:

Press “Play Files” and you then see a list of folders organized by date:

Click on a folder and you’ll see a list of recordings made that day:

Here’s the genius bit for those of us who like to archive broadcast recordings…the IC-705 embeds the following meta data:

  • Date of recording
  • Start time of recording
  • Recording length
  • Frequency
  • Mode

These are some of the most important pieces of information I use to index my audio recordings and the IC-705 does this automatically.  In fact, if you allow the IC-705 to gather its time information from the internal GPS, the time stamp will be incredibly accurate.

The only thing I add to the file name after export is the broadcaster name/station callsign.

If that wasn’t enough, if you touch one of the recording files, the IC-705 will open it in an audio player:

The built-in player displays the meta data, and even includes a number of controls like fast-forward, rewind, skip to next or previous file. and pause.

I’m sure this is the same audio player found in the IC-7300, IC-R8600 and other late-model Icom SDR rigs. But in a portable battery powered transceiver? This is a genius feature.

As I type this post I’m listening to the audio from the WAIZ file shown above. I can imagine when I’m able to travel again (post-pandemic), how useful this will for one-bag air travel.

(If you’d like to listen to WAIZ, check out these ‘705 recordings.)

Not only is the IC-705 a QRP transceiver and wideband multi-mode general coverage receiver, but it’s a recorder and audio player with a built-in front-facing speaker. I can set this transceiver at my hotel bedside and listen to recordings I made in the field earlier that day or week.

Keep in mind that the IC-705 is an expensive radio–certainly one of the most pricey QRP radios ever produced at $1,300 US (at time of posting although I’m sure we’ll start seeing lower pricing this year). But if you’re an SWL and ham, you’ll find the IC-705 is the most versatile portable transceiver on the market. If you’re an SWL only, you can disable the transmit on the IC-705 and essentially have a portable battery-powered SDR receiver with built-in audio recording and playback with color touch screen spectrum and waterfall display.

Despite the price, this is Holy Grail territory in my book.

Icom IC-705 Review

If you subscribe to The Spectrum Monitor magazine, you’ll be able to read my (4,000 word!) review of the IC-705 in the upcoming February 2021 issue.

Spread the radio love

Studio recording of the KMTS “Boot Up!” broadcast

Many thanks to the folks at KMTS who share the following:

A studio version of the KMTS Boot Up Special of 17.1.2021 on 7780 kHz at 0100 UTC. This transmission consisted of Country and Western sounds, engineer test signals, rare re-media mixes of cult radio favourites, strange tones, and vox.

Rebroadcasts: 7 pm eastern time Sunday January 17th 2021 and Sunday January 24th 2021 (0:00 UTC Monday 1/18 and 1/25 on 9395 kHz.

Click here to listen via SoundCloud.

Spread the radio love

Loop-On-Ground Antenna Part 2: Tom upgrades his low profile, low noise, portable DXing antenna

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:


Loop on Ground Part 2

by TomL

My previous Loop on Ground (LoG) experiment was useful which entailed connecting my Wellbrook loop amplifier to a 100 foot loop of speaker wire in the field at my favorite local Forest Preserve. It really brought in stations I had never heard before or strong stations in a more powerful way that made the audio really pleasant to listen to.  This report will describe more experiments with smaller wire loops to see what the limitations are.  100 feet of wire is quite a lot of wire to mess around with especially in the cold weather or public places that do not have as much private space.

I don’t understand all the electrical interrelationships but a long posting at RadioReference.com had  a great discussion about creating a 160-20 meters LoG receive-only antenna. It is 11 pages long but is worth reading how “nanZor” experimented with various parameters for general use. Kudos to him for documenting the findings as the design changed over time. You can find it here:

https://forums.radioreference.com/threads/160-20m-log-loop-on-ground.370110/

nanZor basically boils it down to a few guidelines.

  1. Keep it on the ground. Lifting the wire more than an inch or two decreased the lower angle signal reception greatly.
  2. Calculate the optimal length for one full wavelength of wire at the highest target frequency, say for example, the top of the 20 meter band (14350 kHz). 936/14.350 MHz * 0.9 velocity factor of simple insulated wire = 58.7 feet.  You can round up to 60 feet, no big deal since this is broadband.  The antenna should have a predictable reception pattern from 1/10th wavelength up to 1 full wavelength. Outside that range, the pattern gets “squirrely”.
  3. Using a 9:1 balun seemed to be a little better than a 4:1 balun at the antenna feedpoint. This gets into things I cannot measure and has to do with rising impedance as a loop gets closer to ground level. I am not sure but I think my Wellbrook amp has a built in 4:1 balun and it seems to work just fine.
  4. Make sure to use an RF Choke at BOTH sides of the feedline coax cable. He was adamant that the loop can get easily unbalanced and allow noise into the antenna and/or feedline and so it must be isolated and the ground allowed to “float” in his words.

Personally, I also wanted to use less wire and happened to have a length of 42 feet of landscape wire which should work well below 5 MHz with the Wellbrook amp engaged.  Results were not bad even though on hard frozen ground. Signal levels were down a little compared to the 100 foot of wire.  Here are a couple of examples, first one in a fast food parking lot with a grass field next to it and second at the usual Forest Preserve parking lot on a grass field.  I made sure that my car blocked the view of the wire so people would not get nervous!

La Voz Missionaria, Brazil:

Voice of Welt from Issoudun France in Kurdish:

These are not necessarily “DX” but definitely good for SWLing. I like the signal strength with the amplifier inline at the antenna feedpoint and I did not have to use an RF Choke at the receiver side as was suggested.

I had a 75 foot long insulated wire and used that at the Forest Preserve parking lot on a couple of different days.  Lower frequency signal strength and signal/noise ratio improved a little bit to be noticeable.

US Air Force HFGCS “numbers” station. Remote controlled from Andrews or Grand Forks bases (https://en.wikipedia.org/wiki/High_Frequency_Global_Communications_System), there was no way for me to know which of the 6 transmitters it was coming from:

BBC from Tinang Philippines in Korean:

Then, as nanZor suggested in his postings, I purchased a 9:1 balun/RF choke (it has both a balun and an RF choke built-in) from Ham Radio Outlet and put that in place of the Wellbrook amplifier.

I have not worked with it, but it is reported that the Nooelec.com v2 model is cheaper and works just as well – https://swling.com/blog/2019/10/the-nooelec-balun-19-v2/

Examples below with the 42 foot loop and 9:1 balun/choke, no amplifier:

KSDA, Agat Guam in English

WB8U doing a POTA activation of Leavenworth State Fishing Lake

VOLMET weather, Shannon Ireland

HCJB Quito Ecuador, probably in Quechua

As a side note, there is a posting that mentions low-angle DX is better with regions that have better “ground conductivity”, salt water being the best. I have no way of verifying this.  See post# 126 by KK5JY Matt.

So, bottom line is that a Loop on Ground can be useful for pleasant SWLing and portable.  Best to use it on grass, not asphalt.  The loop amplifier is useful to get signal levels up if you have to use a smaller loop size but the signal/noise ratio will suffer due to its smaller aperture.  And, warning, the public will find a way to trip over the wire no matter where you set it up (I may try putting the wire around my car if I can park on a grass surface and/or use the gaudiest, brightest neon green or orange wire I can find – they can’t trip over THAT, can they?).

TomL


Thanks, Tom, for sharing your update. Obviously, the LoG is working brilliantly. It’s amazing that you got such clear reception from the parking lot of a fast food restaurant.  If you were using a vertical instead, I bet signals would have been buried in the noise. 

I can also relate to people tripping over antenna wires. I remember one POTA activation recently (the first activation in this three park run) where I intentionally laid my counterpoise on the ground, off a foot path, in the brush and where I couldn’t imagine anyone ever stepping. Ten minutes into the activation and for no reason, someone walked off the path, into the brush, and it snagged them. Maybe I’m just a Ninja level trapper and never realized it!?

Thanks again for sharing the results of your LoG, Tom. Inspiring! 

Spread the radio love