Category Archives: How To

Post-storm power outage leads Emilio to find the RFI-spewing source of his problems

Storm with lighteningMany thanks to SWling Post contributor, Emilio Ruiz, who shares the following guest post:

Apprehending an RFI-generating monster!

At the beginning of the year, I was sad because, at home, an awful RFI noise appeared. The next few months the noise increase until S9!!. Day and night my receivers and my feelings were so dampened with this terrific RFI–only the lower Broadcast Band (900 to 540 Khz) was relatively immune to it.

Yesterday, we had a storm and the mains electricity service went off, so I connect a 12 volt battery to my RT-749b military surplus transceiver and the received signals were very clean like the “good old days”.

(Above: Listen W1AW loong distant from my QTH in Chiapas Mexico).

When the power electricity come back on, so did the RFI too!!

(Above: W1AW gone)

Remembering the recently publish post in SWLing Post about RFI, I did some testing by
cutting the electricity to my home (the main switch) and the RFI was gone!! So I discovered the RFI lives in my house–not in the outside wires!!

I put batteries in my old shortwave portable radio and searched (like Ghostbusters) all outlets contacts, one by one, connect and disconnected each device.

And I found the guilty party!

Exhibit A: The Mitzu laptop power supply

On December 2019, the power supply of my son’s laptop broke, so I bought a cheap substitute.

The RFI produced by this little monster could be heard at a distance of about 200 meters from my QTH!!! (Much like an old transmitter spark gap–!)

Even this cheap power supply apparently featured ferrite toroids on the wire but turns out it is fake!! It was only a plastic ball!

Exhibit B: Fake toroids!

The wires were also not shielded. No doubt one of the worst switched-mode power supplies I could have purchased.

Exhibit C: The Mitzu RFI generator wire without shield, only pair wires!

I found a old Acer power supply with same specs and I replaced out the RFI monster one.

And now? The shortwave bands are clean again.

(Video: Testing my Kenwood R-600 rx with Radio Exterior de España… plugging and unplug the Mitzu monster RFI generator).

So I wanted to share what happened to me, so perhaps it can be useful for other SWLing Post blog friends.

Watch these little switched mode power supplies from all devices in your home. Replace them if you detect RFI levels that harms SWLing. Consider disconnect all devices (vampire consumption–or phantom loads) if not in use; the radio waves and electric bill will be grateful to you!

WOW! What a difference! Emilio, that was great investigative work on your part. It’s as if that switching power supply was specifically designed to create RFI! No shield and fake toroids? That’s just criminal in my world! 

Thank you so much for sharing your story. Hopefully, this might encourage others to investigate and apprehend their own local RFI monsters!

(And by the way, Emilio, I love that RT-749b military transceiver!)

Spread the radio love

A 3D-printed cover for the Mountain Topper MTR-3B QRP transceiver

Many thanks to SWLing Post contributor, Eric McFadden (WD8RIF), who asks:

Thomas, what’s the orange thing on the MTR-3B in the last photo in your post about the Red Oxx Booty Boss? [see photo above]

Glad you asked, Eric! It’s a 3D-printed protective cover.

My daughters have been asking for a 3D printer since they’ve used them at Maker Faires, the Pisgah Astronomical Research Institute, and most recently the Huntsville Hamfest. Both of my girls love designing and creating things, so this year we got them one for their birthday.

After loads of research, I purchased a Creality Ender 3 Pro 3D from (affiliate link) for about $240 US. My daughters were thrilled when they unwrapped the box on their birthday to find a 3D printer inside! We spent the following morning assembling it, calibrating the print bed, and printing a sample file.

Like most, our first prints were fun, simple things we found on Thingiverse.  The girls printed a Saturn V rocket, a cat, and an X-Wing fighter. Those prints gave us an opportunity to learn about slicing 3D files, building support structure, and proper bed calibration.

Covering the MTR-3B

When the printer arrived, I already had the Red Oxx Booty Boss on order and was assembling my field radio kit.

One concern I had about the MTR-3B (in any pack) was that the small band switches could catch on a zipper or pocket mesh and be damaged. I had read a few accounts of this happening to others.

The LnR Precision MTR-3B transceiver

I thought about keeping the MTR-3B in a thick poly bag, but I knew that wouldn’t offer a lot of protection for the switches. Out of curiosity, I searched Thingiverse hoping perhaps someone had designed a small case that could possibly house the MTR-3B.

To my surprise, I discovered an engineer actually designed a snap-on cover for the MTR series of radios. It was then a simple matter of downloading the file, slicing it, and setting it to print while I slept that night.

The next morning, I had a cover sitting on the printer bed.

I purchased a pack of multi-color PLA filament knowing it would give my girls an opportunity to play with color a bit. The printer was already loaded with bright orange filament which I thought would be brilliant for the MTR-3B.

Those of you familiar with 3D printing are probably aware that ABS would be a better, stronger material for the cover since the side clips are certainly the weak points of the structure. We haven’t ordered ABS filament yet, but I think the PLA will actually function well for a while–it’s sturdier than I anticipated. When we have ABS in the house, I’ll plan to re-print it.

I couldn’t be more pleased because the cover fits the MTR-3B like a glove and doesn’t add a lot of bulk to this pocket-size transceiver. It was also a great print for beginners.

And best of all, I know the front switches and buttons are well-protected in my field bag.

I’d like to thank Thingiverse designer CockpitBob for designing this little cover and sharing it!

We’re also super pleased with the Creality Ender 3 Pro 3D printer. Thanks to my friends who helped guide that purchase decision.

Care to share?

3D printers are incredibly useful tools for radio enthusiasts of all stripes. I’m still very new to this world, so I would love to hear about your 3D-printed radio projects. Besides this post, we’ve featured at least one in the past, but I’d love to share more.

Please comment or contact me if you’d like us to feature your 3D project!

Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Assembling a new compact field radio kit in the Red Oxx Booty Boss

The Red Oxx Booty boss sporting my add-on reflective yellow monkey fist zipper pulls

If you’ve been reading the SWLing Post for long, you’ll have already sorted out that I’m both a radio geek and a pack geek.

The LnR Precision MTR-3B transceiver

I recently purchased an LnR Precision MTR-3B QRP transceiver. I added it to my collection because the rig is so incredibly compact, it gives me the opportunity to keep a full HF radio kit in my EDC bag or packed away for one bag travels.

Now I’m building a full field kit for the MTR-3B in a Red Oxx Booty Boss pack I recently purchased specifically for this radio.

If you’re wondering why I’d build yet another field kit for the MTR-3B instead of simply using field supplies I already have, allow me to explain…

Field radio kit Golden Rule: Never borrow from one kit to feed another

I never violate this rule.  (Well, not anymore, at least.)

I don’t care if I’m building a kit around a portable shortwave receiver, an SDR, or a ham radio transceiver–my radio kits are completely self-contained and organized.

I’m actually plotting a whole series of posts about building portable radio kits and packs because I enjoy the process so much, but for now, I’ll keep my explanation short:

Because I have an active family life and can’t often prepare in advance for field radio time, my kits must be at-the-ready all the time. If we decide (as we are this morning) that we’re heading to a national park for a little hiking and a picnic, I know that when I grab my KX2 field kit, for example, I’ll have everything I need to do a Parks On The Air or Summits On The Air activation. I know my kit contains an antenna, all antenna accessories and hanging supplies, feed line, a fully-charged battery, microphone and/or CW (Morse Code) key/paddles, earphones/speaker, and a transceiver. It’ll also have the little bits we often forget like a pen, notepad, extra connectors/adapters, and even a few first aid supplies.

If you borrow from one radio kit to feed another, you’ll regret it later. I promise.

Case in point

The lab599 Discovery TX500

Here at SWLing Post HQ, I review lots of radios and have a special affinity for field radios. Many times, I either obtain a radio as a loaner from the manufacturer (like the lab599 TX-500), or I purchase a radio with the intention of selling it after the review (as I will with the Xiegu G90). In either case, I don’t want to build a specific field kit for that radio because it’s really only visiting SWLing Post HQ.

The Xiegu G90

When I first took the Xiegu G90 to the field, I felt confident I could simply throw together a quick field kit in one of my smaller backpacks. As I prepared for an impromptu POTA park activation, I discovered that I needed a coax feed line for the kit and the quick solution was to grab the one from my Elecraft KX2 field kit. Even though I knew that would be violating my Golden Rule–a rule I had adhered to for five years and counting–I did it because I was very pressed for time.  That activation went off without a hitch–a total success.

Fast-forward two days later and I had another opportunity to do a park activation, but this time I wanted to use my Elecraft KX2 because I knew I would need to hike into the site and I’d also have to both log and hold the transceiver on my clipboard while sitting on my folding stool. The KX2 is ideal for this as it’s compact and has top-mounted controls.

I hiked into DuPont forest, found an ideal site to play radio, starting deploying the antenna and quickly realized I forgot to put the feed line back in the KX2 kit. Doh! Without even a short piece of coax, I had no way to connect my KX2 to the antenna.

Fortunately, I happened to have a spare coax line back in the car and I also keep two extra BNC adapters in the KX2 kit. Still, I kicked myself as I hiked all the way back to the car. Had I only followed the Golden Rule that had served me so well!

In the end, it could have been worse. I still got to do my activation and hadn’t wasted a 2.5 hour round trip to the park.

You’d better believe the first thing I did when I got back home was to put the coax back in my KX2 field kit and my radio world order had been restored again.

Back to the pack!

I picked the Red Oxx Booty Boss for the MTR-3B because 1.) it’s an ideal size for a super-compact field kit, 2.) it can be carried a number of ways (on back, sling, and over shoulder), 3.) with straps detached, it’s compact & easily fits in my EDC pack and 4.) I love Red Oxx gear and love supporting the company. When you buy a Red Oxx bag, you know it’ll outlast you…not the other way around.

I also ordered reflective monkey fist zipper pulls to replace the stock zipper pulls so that the pack would be easy to spot, for example, on a forest floor at twilight.

Here’s what I’m putting in the Booty Boss:

Here’s the amazing thing: without realizing it, everything in this kit save my earphones was designed and manufactured in the USA. The Booty Boss was made in Montana, the MTR-3B in North Carolina, the Vibroplex antenna in Tennessee, the ABR cable in Texas, the Bioenno battery pack in California. My 20 year old Sennheiser earphones were made in Germany.

I think that’s pretty darn cool and certainly bucks the trend!

Within a week, my battery and cable should arrive and the MTR-3B field kit will be ready for adventure.

I can’t wait!

Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Giuseppe’s cross-loop experiments

Many thanks to SWLing Post contributor, Giuseppe Morlè (IZ0GZW), who shares the following:

I’m Giuseppe Morlè from Formia, central Italy, on the Tyrrhenian Sea.

I wanted to share with you and friends of the SWLing Post community this antenna project of mine dedicated to those who do not have enough space on the roof or in the garden to install antennas.

These are two separate loops, with two different diameters, one 60 cm, the other 90 cm, each with two variables for tuning … the system is able to receive from 3 to 30 MHz.

I joined these two loops in an opposing way, better to say crossed that can communicate with each other due to the induction effect that is created between the two small coupling loops that are placed one under the other at the top.

In the videos you will be able to see how the antenna system receives. I can use one loop at a time, to detect the direction of the signal or I can use them together for a more robust signal and in an omnidirectional way.

I really like experimenting with the induction effect and you can see that even when closed at home the two loops do a great job.

From my YouTube channel:

I’m not a technician but I really want to experiment to try to listen as well as possible.

Thanks to you and CIAO to all the listeners of the SWLing Post community.

Giuseppe Morlè iz0gzw.

Very cool, Giuseppe! I must say I’ve never tried dual loop experiments like this where one can experiment with the induction interplay. I imagine this could give you some interesting nulling capabilities if you have an unwanted station interfering with a target low-band signal. Thank you again for sharing!

Spread the radio love

Jorge’s Portable YouLoop Antenna Frame

Many thanks to SWLing Post contributor, Jorge Garzón (EB7EFA · EA1036 SWL), who shares the following guest post which was originally published on his @IberiaDX blog:

BricoDX: A YouLoop portable frame

by Jorge Garzón (EB7EFA · EA1036 SWL)

Youloop ‘in the forest’

One of the aerials I wanted to test was the Youssef Loop (YouLoop). I own a good passive loop antenna made by Tecsun (AN-200) but this is a mini one to use with portable receivers. A video showing the test of this ‘mini-loop’ can be seen in my YouTube channel.

My main loop for serious DXing is the Wellbrook 1530LN, but this is an active loop that easily beats any other passive ones. It’s close to be the perfect loop for me as I live in a rural valley with low noise level in the bands so I enjoy every minute of my listening sessions. However I wanted to test this newcomer passive loop, but wasn’t satisfied just hanging it from a pine tree branch, so I decided to bring about my DIY YouLoop portable frame project.

So I had to find something to get a rigid (but light) support for the loop itself allowing an easy rotation to achieve deep nulls. So… what could I built?

Fiberglass tubes, hooks and crossed arms.

I am professionally involved in the heritage and communication sector, so was easy for me to refit some dismissed display rolls where I found a 1,5 m thin supporting tube made in fiberglass that suited my needs. I cut a piece of 120 cm and then split it into 2x60cm, tightening both in the middle with a fine bolt. I placed two plastic hooks up and down of the vertical tube to hold both Youloop modules. The horizontal arm was lengthened with two bamboo meat skewers firmly inserted into the tube, allowing to slide onto it. Two small holes in the bamboo pieces were good enough to secure the cable with a short wire. All this was well fixed with clamps and vulcanized tape to an extra piece of vertical tube.

Bamboo meat skewer and tied cable.

Finally all this was inserted into a thicker aluminium tube and then into a wider one in order to fit everything into the tripod hole and then get a smooth and efficient rotation of the antenna. As a base I re-fitted an old heavy metallic tripod manufactured by Manfrotto (Italy) that I used it often for birdwatching day trips. I gave back an unexpected new life for this piece of metal, always in the field close to Nature!

The whole assembly can be easily transported in the car. Aluminium tubes slide one into the other, being rapidly detachable from the loop itself. This is a cheap and DIY project to get the maximum of this surprising and low noise passive loop.

This aerial gives its best performance when used in the field. There, QRM levels are low or non existent at all. It is a must to rotate it easily and then get sharp nulls. SMA connector nuts must be well tightened as they tend to loosen easily, but beware to force them as an extra twisting could damage inner connections.

This is the first post of a series called «BricoDX» where I will show how to refit or build accessories to get inexpensive and practical DIY projects for our listening sessions.

Many thanks for sharing your article with us, Jorge! That’s a brilliant loop support.

Readers: check out more of Jorge’s articles on his blog, @IberiaDX. Also check out his YouTube channel where he posts videos.

Spread the radio love

Building the EA3GCY DB4020 Dual-band 40 and 20M QRP SSB Transceiver Kit (Part 1)

Many thanks to SWLing Post contributor, Frank (ON6UU), who shares the following guest post:

Building EA3GCY’s DB4020 QRP Transceiver kit

by Frank Lagaet (ON6UU)

In May, I discovered via a newsletter that a new kit was available from Javier EA3GCY in Spain.  I was immediately sold as this was a kit from my favourite kit producer and it has 2 bands–it will also be able to do CW and there also will be a CW filter.

After building 2 MFT’s from Javier which work without problems, I needed to have the DB4020.  The MFT’s are for 20 and 40 mtrs and do DSB (double side band).  I did put them in a not-so-graceful box but they do what they are intended for which is QRP phone (SSB).   They came together without problems so I expected the same for the DB4020–I knew for sure when I saw the board:  all through-hole components (except for some capacitors which are factory soldered) and a lot of space on the board.   The board has been silk-screened with clear indications on where all components have to come and the manual has very clear instructions where each component has to be soldered with referral to a quadrant.  The manual provides a 252 quadrant page so it is a piece of cake to find where each piece goes.

What do you get?

Javier provides you with all components which need to be installed on the board and, of course, the kit board.  The components come in small marked plastic bags and all is well-wrapped up in bubble wrap.  The board is wrapped separately and that is put together with the component wrap which is then again wrapped up in bubble plastic.  All goes into an envelope.  Very well packed I must say.

Here’s a picture of the bags with components:

The silk-screened board:

I started with the resistors since that’s the easiest way. After that, I did the capacitors.  I like to solder in all flat components first, so next were the diodes and IC sockets followed by the elco’s.  The transistors were next together with all relays.  As you solder in the transistors one also has to mount the cooling heatsinks,  these cooling sinks are high and are ideal to protect the coils one has to make,  they also protect the polystyrene caps (which I always find vulnerable) when the board is upside down.

Many kit builders are afraid of winding the toroids in kits–don’t be!  It is easy.  Just take your time and follow the instructions given by Javier in the construction manual.  In this kit the builder has to wind 8 toroids:  6 are a single wire which goes through the toroid body,  1 is a toroid with 2 different windings, and 1 has a twisted pair which goes through the final toroid.  Be sure to measure the wire you need per toroid as instructed in the manual.  Javier gives some spare, so you can be sure.  You will also see that on next picture where the legs of the toroids have not been trimmed yet.  Once done I still had some centimetres of wire leftover.

Picture of the toroids ready to be soldered in:

Finally all other parts and pin headers went in,  jumpers were immediately put on where needed.

As I’m using a military-grade plastic box, I have to break-out some components like the display,  tuning encoder,  volume and rx control from the board.  I also have put an on/off switch on the box and already have the CW KEY connector ready installed. I also installed a loudspeaker in the box.  The SI5351 board and the Ardiuno Nano are the final components which go into the board after installing all wires.

Picture of the board:

I intend to attach a CW paddle to the box made out of a relay.  A HWEF tuner (from EA3GCY) which I was planning to incorporate in the box is I think a bit overkill. That HWEF tuner is already in a nice little box and would be a pity to dismantle,  also I’m running out of space in the box…  Maybe I can fit in a 9-1unun which would then give me good results on both bands…?

Maybe I will install a battery pack in the same box.

The box with board installed:

The box completed front side:

Mind you,  it still needs some additional switches for the CW part of the transceiver.

Frank (ON6UU)


Brilliant, Frank! I really appreciate the video as well–sounds like the kit produces smooth audio and should serve you well. No doubt, that military box enclosure will survive even the roughest field conditions!

Click here to check out the DB4020 kit at EA3GCY’s store.

Spread the radio love

The AirSpy HF+ Discovery and a new era of portable SDR DXing

The following article first appeared in the January 2020 issue of The Spectrum Monitor magazine.

The AirSpy HF+ Discovery and a new era of portable DXing

I admit it: I used to be a bit of an old-fashioned radio curmudgeon. One of those, “I like my radios with knobs and buttons” likely followed by, “…and no other way!”

However, about fifteen years ago, many of my DXing friends started turning to the world of software defined radios (or in common parlance, “SDRs”). I staunchly opposed ever following in their footsteps. One of the reasons I for this––a good one––is that, since I spend the bulk of my day in front of a computer, why would I ever want to use a computer when I’m playing radio?

But then…gradually, I found myself playing around with a few SDRs. And I quickly learned that third-generation SDRs were capable of doing something very impressive (and fun), indeed:  making spectrum recordings.  Using this tool, I found I could record not only the audio of one individual signal, but the audio of entire swathes of radio spectrum.  And even more impressive, I learned that you could later load or “play back” the spectrum recording and tune through the bands as if in real time. Any time you want. Before long, I was hooked: SDRs had become my portal into radio time travel!

I quickly found that I loved many of the other advantages of using an SDR, as well, including visual ones––like the ability to view spectrum. The interactive interface allows one to actually see radio signals across the band in real time. I also found incredible value in waterfall displays, which show signals changing in amplitude and frequency over time. Cool stuff.

I purchased my first dedicated SDR in 2012, a WinRadio Excalibur. It was––and still is––a benchmark receiver, performing circles around my tabletop receivers and general coverage transceivers.

And today, although I own and love a number of legacy radios and still listen to them in the good old-fashioned manner to which I became accustomed, I find I’m now spending the bulk of my time DXing with SDRs.

And then, more recently, two amazing things happened in the world of SDRs. Strong market competition, together with serious innovations, have come into play. Thus, for less than $200 US, you can now purchase an SDR that would have easily cost $1,000 US only ten years ago. And now, in many cases, the $200 SDR of today will outperform the $1,000 SDR of yesteryear. We are, indeed, living in good times.

And now––no more a radio curmudgeon––I’m comfortable with my SDR-user status and time at the computer, and glad I was just curious enough about SDRs to let them into my radio (and computer) world.

Portable SDRs

Since I initially dived into the world of SDRs, I’ve tried to think of a way to take them into the field.

But first, let’s get an obvious question out of the way:

Why would you want to drag an SDR into the field, when a traditional battery-powered radio is so much easier to manage?

After all, you may say, portable and even mobile tabletop receivers require no computer, no hard drive, and are likely more reliable because there are less components to manage or to cause problems for you.

In answer, let’s look at a few scenarios where heading to the field with an SDR system might just make sense.  (Hint: Many of these reasons are rooted in the SDR’s ability to record spectrum).

Good Reason #1:  Your home location is not ideal for playing radio.

Photo by Henry Be

My good friend, London Shortwave, lives in the middle of London, England. He’s an avid radio enthusiast and DXer, but his apartment is almost a perfect storm of radio interference. Listening from his home is challenging, to say the least: he can only use indoor antennas and RFI/QRM simply inundated his local airwaves.

Many years ago, he discovered that the best way to DX was to go to an area that put urban noise and radio interference at a distance.  He found that by visiting large local parks, he could play radio with almost no RFI.

Being a computer guru, he started working on a portable SDR setup so that he could go to a park, set up an antenna, and record radio spectrum while he read a book.  His systems evolved with time, each iteration being more compact less conspicuous that the previous. Later, he could head back home, open the recorded spectrum files, and tune through these “time-shifted” recordings in the comfort of his flat. This allowed London Shortwave to maximize the low-RFI listening experience by reliving the time in the park.

Over the years, he tweaked and adapted his setup, often writing his own code to make small tablets and portable computers purpose-built portable-spectrum-capture devices. If you’re curious, you might like to read about the evolution of his systems on his blog.

Clearly, for London Shortwave, an SDR is the right way to capture spectrum and thus likely the best solution for his DX listening.

Good Reason #2:  Weak-signal workarounds.

Typically radio enthusiasts turn to field operation to work in a lower-noise environment and/or where there are no antenna restrictions, often to log new stations and DX.

SDRs afford the DXer top-shelf tools for digging weak signals out of the muck. SDR applications have advanced tools for tweaking AGC settings, synchronous detectors, filters, noise reduction, and even to tailor audio.

The WinRadio Excalibur application even includes a waterfall display which represents the entire HF band (selectable 30 MHz or 50 MHz in width)

On top of that, being able to see a swath of spectrum and waterfall gives one an easier way––a visual way––to pinpoint weak or intermittent signals. This is much harder to do with a legacy radio.

Case in point:  I like listening to pirate radio stations on shortwave. With a spectrum display, I can see when a new station may be tuning up on the band so can position the receiver to listen in from the beginning of the broadcast, and never miss a beat.

Or, in another example, the visual aspect of spectrum display means I can easily locate trans-Atlantic DX on the mediumwave bands by looking for carrier peaks on the spectrum display outside the standard North American 10 kHz spacing. The signals are very easy to spot.

Good Reason #3: DXpeditions both small and large.

Mark Fahey, scanning the bands with his WinRadio Excalibur/Surface Pro 2 combo at our 2015 PARI DXpedition

Whether you’re joining an organized DXpedition or you’re simply enjoying a little vacation DXpedition, SDRs allow you to make the most of your radio time.

Indeed, most of the organized DXpedition these days heavily incorporate the use of SDRs specifically so DXers can record spectrum. Much like example #1 above, doing this allows you to enjoy the noise-free optimal conditions over and over again through spectrum recordings. Most DXpeditioners will have an SDR making recordings while they use another receiver to DX in real time. Later, they take the recording home and dig even more weak signals out of the mix: ones that might have otherwise gone unnoticed.

Good Reason #4: Sharing the spectrum with like-minded listeners.

Earlier this year, Mark gave me this 8TB hard drive chock-full of spectrum recordings.

One of the joys I’ve discovered  in making field spectrum recordings is sharing them with fellow DXers. Most of the time when I go to shortwave radio gatherings (like the Winter SWL Fest), I take a couple hard drives to exchange with other SDR enthusiasts. My friend, Mark Fahey, and I have exchanged some of our favorite spectrum recordings this way. I give him a hard drive chock-full of terabytes of recordings, and he reciprocates. Back home (or on the train or airplane) I open one of his recordings and, boom! there I am in his shack in Freeman’s Reach, Australia, tuning through Pacific stations that are not easily heard here in North America, maybe even turning up some gems Mark himself may have overlooked…just as he is doing with my recordings from the southeast US.

I’ve also acquired DXpedition spectrum recordings this way. It’s great fun to “be there” through the recordings and to enjoy some of the benefits of being on the DXpedition in times when I couldn’t actually make it there in person. For a DXer with a consuming job, busy family life, or maybe health problems that limit their travel, an SDR recording is the way to go.

Good Reason #5: Family time

Photo by David Straight

I’m a husband and father, and no matter how much I like to play radio when we’re on vacation, my family comes first, and our family activities take priority.

Having a field-portable SDR setup means that I can arrange a “set it and forget it” spectrum capture device. Before we head out the door for a family visit, tour of the area, or a hike, I simply set my SDR to record spectrum, then listen to what I “caught” after I return, or after I’m home from vacation.

This practice has allowed me to enjoy radio as much as I like, without interrupting our family adventures. Can’t beat it!

Past challenges

With all of these benefits, one might wonder why many other DXers  haven’t been using portable SDRs in the field for a while now? That’s a good question.


The WinRadio G31DDC, like many SDRs of the era, has separate data and power ports

In prior years, DXers and listeners might have been reluctant to lug an SDR and its requisite apparatus out with them. After all, it’s only been in the past decade or so that SDRs haven’t required a separate custom power supply; some legacy SDRs either required an odd voltage, or as with my WinRadio Excalibur, have very tight voltage tolerances.

Originally, taking an SDR to the field––especially in places without grid mains power––usually meant you also had to take a pricey pure sine wave inverter as well as a battery with enough capacity to run the SDR for hours on end.

Having spent many months in an off-grid cabin on the east coast of Prince Edward Island, Canada, I can confidently say it’s an ideal spot for DXing: I can erect large wire antennas there, it’s on salt water, and there are literally no locally-generated man-man noises to spoil my fun.  Of course, anytime we go to the cottage, I record spectrum, too, as this is truly a honey of a listening spot.

The view from our off-grid cabin on PEI.

The first year I took an SDR to the cabin, I made a newbie mistake:  it never dawned on me until I arrived and began to put it to use that my Goal Zero portable battery pack didn’t have a pure sine wave inverter; rather, I found it had a modified sine wave inverter built into it. The inverter could easily power my SDR, sure, but it also injected incredibly strong, unavoidable broadband noise into the mix. It rendered my whole setup absolutely useless. I gave up on the SDR on that trip.

Both the Airspy HF+ (top) and FDM-S2 (bottom) use a USB connection for both data transfer and power. Photo by Guy Atkins.

Today, most SDRs actually derive their power from a computer or laptop through a USB cable, one that doubles as a data and power cable. This effectively eliminates the need for a separate power system and inverter.

Of course, your laptop or tablet will need a means of recharging in the field because the attached SDR will drain its battery a little faster. Nowadays it’s possible to find any number of portable power packs/banks and/or DC battery sources to power laptops or tablets, as long as one is cautious that the system doesn’t inject noise. This still requires a little trial and error, but it’s much easier to remedy than having two separate power sources.

Portable computers

Even a Raspberry Pi 3B has enough horsepower to run SDR applications.

An SDR is nothing without a software application to run it. These applications, of course, require some type of computer.

I the past, SDR applications needed some computing horsepower, not necessarily to run the application itself, but to make spectrum recordings.  In addition, they often required extra on-board storage space to make these recordings sufficiently long to be useful.  This almost always meant lugging a full-sized laptop to the field, or else investing in a very pricey tablet with a hefty amount of internal storage to take along.

Today we’re fortunate to have a number of more portable computing devices to run SDR applications in the field: not just laptops or tablets, but mobile phones and even mini computers, like the eminently affordable $46 Raspberry Pi. While you still have to be conscious of your device’s computing horsepower, many small devices are amply equipped to do the job.


64-128 GB USB flash/thumb drives are affordable, portable storage options.

If you’re making spectrum and audio recordings in the field, you’ll need to store them somehow. Wideband spectrum recordings can use upwards of 2GB of data per minute or two.

Fortunately, even a 64GB USB flash drive can be purchased for as little as $7-10 US. This makes for quick off-loading of spectrum recordings from a device’s internal memory.

My portable SDR setup

It wasn’t until this year that all of the pieces finally came together for me so that I could enjoy a capable (and affordable!) field-portable SDR setup. Two components, in particular, made my setup a reality overnight; here’s what made the difference.

The AirSpy HF+ Discovery

Last year, AirSpy sent me a sample of their new HF+ Discovery SDR to test and evaluate. To be fully transparent, this was at no cost to me.

I set about putting the HF+ Discovery through its paces. Very soon, I reached a conclusion:  the HF+ Discovery is simply one of the best mediumwave and HF SDRs I’ve ever tested. Certainly, it’s the new benchmark for sub-$500 SDRs.

In fact, I was blown away. The diminutive HF+ Discovery even gives some of my other benchmark SDRs a proper run for their money. Performance is DX-grade and uncompromising, sporting impressive dynamic range and superb sensitivity and selectivity. The noise floor is also incredibly low. And I still can’t wrap my mind around the fact that you can purchase this SDR for just $169 US.

The HF+ Discovery compared in size to a DVD

In terms of portability, it’s in a class of its own. It’s tiny and incredibly lightweight. I evaluate and review SDRs all the time, but I’ve never known one that offers this performance in such a tiny package.

Are there any downsides to the HF+ Discovery? The only one I see––and it’s intentional––is that it has a smaller working bandwidth than many other similar SDRs at 768 kHz (although only recently, Airspy announced a firmware update that will increase bandwidth). Keep in mind, however, that the HF+ series SDRs were designed to prevent overload when in the presence of strong local signals. In fairness, that’s a compromise I’ll happily make.

Indeed, the HF+ Discovery maximum bandwidth isn’t a negative in my estimation unless I’m trying to grab the entire mediumwave band, all at once. For shortwave work, it’s fine because it can typically cover an entire broadcast band, allowing me to make useful spectrum recordings.

The HF+ Discovery is so remarkably tiny, that this little SDR, together with a passive loop antenna, can fit in one small travel pouch. Ideal.

The antennas

My homebrew NCPL antenna

Speaking of antennas, one of the primary reasons I’m evaluating the HF+ Discovery is because it has a very high dynamic range and can take advantage of simple antennas, in the form of passive wideband magnetic loop antennas, to achieve serious DX.

AirSpy president and engineer, Youssef Touil, experimented with several passive loop antenna designs and sizes until he found a few combinations ideally matched with the HF+ Discovery.

My good buddy, Vlado (N3CZ) helped me build such an antenna per Youssef’s specifications. Vlado had a length of Wireman Flexi 4XL that was ideal for this project (thanks, Vlad!). The only tricky part was penetrating the shielding and dielectric core at the bottom of the loop, then tapping into both sides of the center conductor for the balun connections.  Being Vlado, he used several lengths of heat shrink tubing to make a nice, clean, snag-free design. I’ll freely admit that, had I constructed this on my own, it wouldn’t have been nearly as elegant!

Click here for a step-by-step guide to building your own NCPL (Noise-Cancelling Passive Loop Antenna.

Youssef also sent me a (then) prototype Youloop passive loop antenna. It’s incredibly compact, made of high quality SMA-fitted coaxial cables. It can be set up in about 30 seconds and coiled to tuck into a jacket pocket.  The AirSpy-built loop has a lower loss transformer than the one in the homemade loop, which translates into a lower noise figure for the system.

Click here to read my review of the Youloop.

Let’s face it: SDR kit simply doesn’t get more portable than this.

The computer

My Microsoft Surface Go tablet on a hotel bed.

In the past, I used an inexpensive, circa 2013 mini Windows laptop with an internal SSD drive.  Everything worked beautifully, save the fact that it was challenging to power in the field and the internal capacity of the hard drive was so small (16GB less the operating system). In addition, it was a few years old, bought used, so the processor speed was quite slow.

This year, on the way back from the Huntsville Hamfest, I stopped by the Unclaimed Baggage Center in Scottsboro, Alabama. This center has a wide variety of used portable electronics at discount prices. I felt pretty lucky when I discovered a like-new condition Microsoft Surface Go tablet and keyboard with original charger for $190. The catch? The only data port on the tablet is a USB-C. But I grabbed a small USB-C to standard USB 3.0 dongle (for $2!) and took a risk that it would work with the HF+ Discovery.

Fortunately, it did! Score!

While the Surface Go is no powerhouse, it’s fast enough to run any of my SDRs and make spectrum recordings up to 2 MHz in width without stuttering. The only noise it seems to inject into the mix is a little RFI when I touch the trackpad on the attached keyboard.


One of my LiFePo batteries

The HF+ Discovery draws power from the Surface Go tablet via the USB port. With no additional power supply, the Surface Go may only power the HF+ Discovery for perhaps an hour at most. Since I like doing fully off-grid operations and needed to avoid RFI from inverters, I needed a portable power solution.

Fortunately, the Surface Go has a dedicated power port, so I immediately ordered a DC power cable with a standard car lighter plug.

At the Huntsville Hamfest I also purchased a small 12V 4.5 Ah Bioenno LiFePo battery and paired it with a compact Powerpole distribution panel kit I purchased in May at the 2019 Dayton Hamvention.

The LiFePo battery is small, lightweight, and can power the tablet /SDR combo for hours on end. Moreover, I have noticed no extra noise injected when the DC power is applied.

My HF+ Discovery-based portable SDR kit

My portable SDR kit on a hotel balcony.

Now I have this kit, I couldn’t be more pleased with it. When all of the components of my SDR system are assembled, they work harmoniously. The entire ensemble is also incredibly compact:  the loop antennas, SDR, Surface Go tablet, battery, and distribution panel all fit in a very small travel pack, perfect for the grab-and-go DX adventure.

The entire kit: SDR, cables, Youloop antenna, connectors and adapters all fit in my Red Oxx Lil’ Roy pack.

In November, I took the kit to the coast of South Carolina and had a blast doing a little mediumwave DXing from our hotel balcony. We were very fortunate in that I had two excellent spots to hang the homemade loop antenna: on the main balcony, and from the mini balcony off the master bedroom. Both spots yielded excellent results.

What impressed me most was the fact that the SDR# spectrum display and waterfall were absolutely chock-full of signals, and there was very little noise, even in the popular resort area where we were staying. I found that my portable radios struggled with some of the RFI emanating from the hotel, but the HF+ Discovery and passive loop combo did a much better job mitigating noise.

Check out the AM broadcast band on the spectrum display.

But no need to take my word for it.  If you would like to experience it first hand, why not download an actual spectrum recording I made using this setup?

All you’ll need to do is:

  1. Download the 1.7 GB (.wav formatted) spectrum file at this address
  2. Download a copy of SDR# if you don’t already have an SDR application that can read AirSpy spectrum files.
  3. Install SDR#, and run it.
  4. At the top left corner of the SDR# screen, choose “IQ File (.wav)” as the source, then point it to where you downloaded the file.
  5. Press the play button, and experience a little radio time travel!

This particular recording was made on the mediumwave band on November 17, 2019, starting at around 01:55 UTC.

My portable SDR kit capturing spectrum during a hike in Pisgah National Forest.

I’ve also taken this setup to several parks and remote outdoor locations, and truly enjoyed the freedom of taking spectrum recordings back home to dig through the signals.


I finally have a portable SDR system that allows me the flexibility to make spectrum recordings while travelling. The whole setup is compact and can easily be taken in a carry-on bag when flying.

The glory of this is, I can tune through my spectrum recordings in real time and DX when I’m back home, or even on the way back home, in the car, train, or airplane. It’s simply brilliant.

If you don’t already own an SDR, I can highly recommend the AirSpy HF+ Discovery if you’re primarily interested in HF and MW DXing. If you need a wideband SDR, I could also recommend the recently released SDRplay RSPdx, although it’s slightly heavier and larger than the AirSpy.

Thankfully, I am now an SDR enthusiast that can operate in the field, and this radio has had a lot to do with it. I’ll be logging many hours and miles with the AirSpy HF+ Discovery: its incredibly compact footprint, combined with its brilliant performance, is truly a winning combo.

Click here to check out the Airspy HF+ Discovery

Related articles:

Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love