Category Archives: How To

Unlocking Rare DX Treasures with SDR-Console’s Powerful Data File Analyzer Tool

Finding Rare DX with the Data File Analyzer

By Don Moore

Don’s DX traveling stories can be found in his book Tales of a Vagabond DXer

I’ve been a real jack-of-all-trades in my over five decades of DXing. I began with SWBC (shortwave broadcast) but soon branched out to medium wave and voice utility. Later I added longwave beacons and more recently I’ve gotten into digital utility stations. My goal has always been to log lots of different stations from lots of different places. And the rarer they are, the better.

For SWBC and medium wave stations, as well as scheduled utility broadcasts such as marine and aeronautical weather reports, the DXing process is simple. You tune to a frequency at a time when a station is scheduled to be on the air. It’s either there or it’s not there. If it’s not there then maybe propagation isn’t right or maybe your antenna/receiver setup isn’t the best for that frequency band or the station’s power level. You tune away to find something else with plans to try again another day.

But it’s not always that easy. Most utility stations do not have fixed schedules and only come on as needed. The best example of that is two-way marine, aeronautical, and military voice communications.

In eastern North America, tune to 8906 kHz anytime from late afternoon until morning and set your receiver to USB mode. You’ll probably hear empty static at first but it’s unlikely that more than ten or fifteen minutes will pass before you’ve heard some aeronautical traffic. The frequency is assigned for communication on the North Atlantic and is heavily used by aircraft communicating with New York Radio, Gander Radio (Newfoundland, Canada), and Shanwick Radio (Shannon, Ireland). If you keep listening, the frequency will probably be occupied around 25% of the time. Wherever you are in the world, there are a few heavily used air frequencies like 8906 kHz and listening to them can be fascinating. But I want to log more than just a few easily heard stations.

Sticking to aeronautical DX, there are many assigned frequencies for different regions and air routes around the world. But propagation to those distant areas is unpredictable and less-used routes have fewer flights. Fewer flights mean less radio communication and more empty static. The most interesting frequencies may only see traffic a few times a week.

Hearing the rarest voice utility DX requires listening to lots of empty static just to get a brief DX catch. For years my process was simple. I would set my receiver to an interesting frequency and leave the tape recorder running while I sat nearby listening and doing something productive. I got some very good DX over the years that way. But I don’t want to think about how many long hours of empty static I listened to in order to get that DX.

 

SDRs offered some improvement. Instead of audibly monitoring a specific frequency I could now make a spectrum recording that included a band of interest, say the 8815 to 9040 aeronautical band. During playback I could visually monitor the SDR waterfall for interesting signals. That works. But watching an SDR waterfall scroll by for three or four hours gets tedious quickly.

(When I refer to SDRs, I mean ones consisting of a small box that is connected to and controlled from a computer using a software program. None of this applies to models such as the Malachite line or the Icom IC-R8600, which use SDR technology inside but mostly function as a traditional receiver.)

Finding a Better Way

That better way is, I think, one of the most exciting DX tools out there – the Data File Analyzer in the SDR-Console program. Since I learned about it a few years ago, the Analyzer has gotten me all kinds of catches that I probably wouldn’t have gotten otherwise. Let’s start with an overview and then dig into the how-to.

SDR-Console is one of the better-known SDR programs and it works well with most of the common SDR radios on the market, including the Airspy, Elad, Perseus, and SDR-Play models. Here’s what the main window looks like:

The Data File Analyzer is a second window that produces a scrollable waterfall display for the entire length of an SDR spectrum recording. The display is similar to a standard waterfall with frequencies along the bottom and times along the side. However, there is also a scroll bar on the right side for browsing through the entire length of the recording. Instead of watching a four-hour spectrum recording slowly roll by in real time, I can scroll through the window looking for DX.

And this is what makes the Data Analyzer really useful. When I spot an interesting signal, I click on it and that causes the main window to start playing at that time and frequency. Now going through a four-hour spectrum recording takes from a few minutes to around half an hour, depending on how much DX I find.

Here’s a closeup of part of that same screen of spectrum recording made on 24 October 2024 at a DXpedition in western Pennsylvania, USA.

“A” marks a short exchange between an aircraft and Ndjamena Radio in Chad on 8894 kHz. “B” is Niamey Radio in Niger on 8903 kHz. “C” is Gander Radio on 8891 kHz. Just to the left of that is a string of digital signals. “D” is New York Radio on 8918 kHz. Again, there is a string of digital signals just to the left. Finally, “E” is communication from Dakar Radio in Senegal and Sal Radio in the Cape Verde Islands on 8861 kHz. I caught four African aero stations in just four-and-a-half minutes. I could also show you long stretches of time when there was nothing interesting coming in. With the Data File Analyzer I was able to visually find and focus on the DX and not waste my time with the empty static.

Here’s another image taken at the same DXpedition. Notice the three transmissions between 8820 to 8845 that seem to be mirroring one other.

That turned out to be Flightwatch Brisbane, the Australian regional aeronautical network. It uses multiple transmitter sites on 8822, 8831, and 8843 kHz to cover the entire country. I had never logged it before and I doubt I would have found it if DXing in the traditional manner.

The How-To

Here I’m going to assume that you already have SDR-Console installed and know the basics of how to use it, including making spectrum recordings. (If not, see the links at the end.) This article was written using version 3.4 of SDR-Console. Some of the functionalities described are not in earlier versions, so upgrade if you are not up to date. And I should point out that while you can do this on a single monitor, it works more smoothly if you have a dual monitor setup and can put each window on a different screen. Continue reading

Spread the radio love

HF Signal Enhancer for SDR: A Hands-On Build by Steve Allen (KZ4TN)

Many thanks to SWLing Post contributor Steve Allen (KZ4TN), who shares the following guest post:


SDR Signal Enhancer

by Steve Allen

I came across this HF Signal Enhancer for SDR on the RTL-SDR.com website. It was designed and built by Peter Parker, VK3YE from Melbourne, Australia. Below is the link to the video of the signal enhancer in action using an RTL-SDR V4 Software Designed Radio;

www.youtube.com/watch?v=W6OXc_wZTXU

It was very easy to see and listen to the improvement to the signal reception the signal enhancer made. Having been a life-long shortwave listener and current SDR user, I had to build one.

I did a screen capture of the schematic, re-drew it using MS Word, and built the bill of materials. In Peter’s original design he included a T-R relay so you could use the SDR along with a transmitter, which I opted to leave out. I had the passive components in my “junk box” but had to source the enclosure, controls, and antenna connectors. I have used these clam shell extruded enclosures with previous projects and love the build quality and the fact that they incorporate a slot in the sides which let me insert a sheet of PCB material on which I can do the assembly.

Referring to the schematic drawing in Peter’s video, you can see that the variable capacitor “floats” above ground, which is not the usual application for these devices. To do that I mounted the vari-cap on a piece of non-plated PCB material that I cut to the width of the enclosure and it fit nicely within the slot. The vari-cap had three pins on the side of the frame that allowed me to force fit it into three holes I drilled in the PCB material. I was very careful to drill the holes undersize and then slowly open them up until the vari-cap press fit on to the board. For good measure I ran UV curing adhesive down into each hole, letting it flow all the way through before I set it with a UV light source.

I then drilled an oversized hole in the front panel for the vari-cap shaft to pass through.

I then mounted the RF gain and band switch. The next step was the assembly of the AM broadcast filter. As SDRs can be overpowered by local AM radio stations Peter choose to include an internal band pass filter that is configured for around 3.5 MHz. The intent of this filter is to attenuate the signals below 3.5 MHz. Strong AM stations will still be heard but there is much less chance of them bleeding through on the higher frequencies.

I assembled the filter on a piece of perf board and connected the component leads on the bottom. I passed leads back up through the perf board for the signal path and ground. I mounted it on the main board with a standoff.

The next step was the wiring of the inductors to the rotary switch. Simple, and I tied them to the vari-cap frame.

For the back panel I chose an SO-239 and a BNC for the antenna input, and for the radio connection an SMA and another BNC. I sanded off the coating on the enclosure at the antenna mounts as well as the four corners where the back panel screws into the top and bottom of the clam shell enclosure to provide good grounding of the enclosure. I wired the 1N4148 diodes on the antenna connectors, and attached the RG-174 coax. As Peter suggested, I grounded the long (relatively speaking) runs to and from the back panel with coax and grounded it at the back panel.

The last step was to apply a bit of epoxy adhesive to the fiberglass board and the slot it runs in to hold it in place. Once the epoxy set, I did the final wiring of the front and rear panel components. You can see how I sanded the corners of the back panel in the above photo.

I connected it to my inverted L antenna and an SDR Play RSP2 and gave it a test run. I like the fact that I can visually see the changes to the signal strength on the SDR software as well as audibly. It makes a noticeable improvement to the reception.

Thank you Peter. I enjoyed the build.

Steve Allen, KZ4TN

Spread the radio love

Giuseppe’s Multi-Band Milk Crate Loop Antenna

Many thanks to SWLing Post contributor Giuseppe Morlè, who shares the following guest post:

Dear Thomas and Friends of SWLing Post,

I am Giuseppe Morlè from Formia, a town in central Italy on the Tyrrhenian Sea.

I have built a new “Multiloop” antenna using a 40 cm diameter milk crate. The crate is very sturdy and shockproof, making it an excellent base for this project.

Construction Details

I wound three different loops on the crate:
1. A single shortwave coil
2. Two shortwave coils
3. Twelve medium-wave coils

The design includes a single coil placed between the two shortwave coils, which picks up the signal by induction and transfers it to the receiver via an RG58 cable.

The heart of this system is a 2,100 pF variable capacitor with sockets connected to the rotors. Inside the crate, I added another 18 cm diameter loop positioned just below the two main coils.

The ends of this small loop are attached with crocodile clips to the external ends of the rotor. This small loop allows me to exploit induction and, by turning the capacitor, access all decametric bands from 160 to 10 meters.

Tuning Ranges

The variable capacitor enables tuning as follows:

      • In the lower ranges, it covers 80 to 20 meters.
      • When reversed, it tunes all higher ranges from 10 to 20 meters.

This works because the small loop and capacitor couple inductively with the primary turns. By increasing capacity with cables on the rotors, the antenna can even tune up to 160 meters.

The medium-wave turns cover frequencies from 300 kHz to 1,900 kHz. Essentially, this Loop Milk Crate antenna can access a wide range from 300 kHz to 30 MHz.

Testing and Comparisons

I tested the antenna using the Tecsun PL-660 and the Tecsun S-8800 receivers. I also compared the Loop Milk Crate with my “Ferritona” antenna and found surprising results!

Some of the videos were filmed in my shack because it was too cold to work on the balcony. Other videos were shot outside, either on my balcony or on the beach in Formia.

Videos

Final Thoughts

I hope you enjoy my “crazy” constructions. Always remember, I’m not a technician—just a passionate listener who loves building with recycled materials.

Wishing everyone a year full of happiness and satisfaction!

Best wishes to all,
Giuseppe Morlè

Spread the radio love

A File Worth Having: Bob’s guide to building an Electrically Small Resonant Loop Antenna for Mediumwave Reception

Screenshot

This post is short and sweet.

If you click here–Electrically Small Resonant Loop Antenna for Mediumwave Reception (PDF)–you can download a copy of Bob Colegrove’s excellent paper on the Electrically Small Resonant Loop Antenna for Mediumwave Reception.

He has actually built this antenna; it works; and he uses it often. Perhaps you might want to build one for yourself. As an added bonus, Bob is an excellent writer (in my not-so-humble opinion). What’s not to like?

— Jock Elliott, KB2GOM

Spread the radio love

Compact Antenna, Big Results: Giuseppe’s DICA 2 Redesign

Many thanks to SWLing Post contributor Giuseppe Morlè, who writes:

Dear Thomas and Friends of the SWLing Post,

I am Giuseppe Morlè, IZ0GZW, writing to you from Formia, in central Italy, on the Tyrrhenian Sea.

Do you remember the DICA 2 antenna? It was a small, shortened antenna with three ferrite cores inside, capable of tuning across all shortwave bands. Unfortunately, it no longer exists in its original form.

I have completely reworked the windings to enable the ferrites to also function for medium wave (MW) reception. Now, the antenna features:
• 35 turns for medium waves,
• 4 turns for shortwaves, and
• the same variable capacitor of over 1000 pF remains in use.

For medium waves, the antenna works wonderfully by induction. You simply place the ferrite core near the tube and turn the variable capacitor to achieve perfect tuning across the entire MW range.

I was genuinely amazed by its performance on shortwaves. Despite its small size, the antenna provides excellent gain, especially when a ground cable is connected to the variable capacitor’s casing.

I conducted several tests on my balcony. Initially, I thought the random ground wire simply improved the rotor’s tuning capability, but I discovered the antenna works equally well even when placed on a metal surface.

During a recent outing to Monte Orlando Park in Gaeta, I observed how the ground cable significantly enhanced both the signal strength and audio modulation. You can see this in my latest video, where I received Australian operators Greg and Grant on 20 meters with excellent signals.

The antenna’s two windings are separated and connected to the stator and rotor of the variable capacitor. On one end of the shortwave winding (the 4 turns), I’ve added a crocodile clip that can be attached or detached to switch between shortwave and medium wave operation. All of this functionality is achieved with a single variable capacitor.

I will soon share videos demonstrating all of these details and performances.

Thank you, Thomas, for your incredible activations—I follow them regularly on your channel, and they are a constant source of inspiration for me.

Greetings to you and all the Friends of SWLing Post!

73,
Giuseppe Morlè, IZ0GZW

Videos:

Spread the radio love

Pavel’s Practical Electronics Homebrew Mediumwave Ferrite Antenna

Many thanks to SWLing Post contributor, Pavel Kraus, who shares the following guest post:


Mediumwave Ferrite Antenna

by Pavel Kraus

This antenna for MW was made according to the instructions from Everyday Practical Electronics magazine, September 2000. The author of the Active Ferrite Loop Aerial construction project is Raymond Haigh.

The antenna was only adjusted mechanically according to my capabilities. Reception on this antenna was tested with receivers Malahite DSP 2 – original, Belka, Qodosen DX 286, AOR 7030+, Eton E1 XM and other receivers. Of course, the antenna does not replace a long wire antenna, but in limited urban conditions its performance is sufficient. I compared the antenna to Garry Thomas’ factory Quantum Loop.

Both antennas work similarly, Quantum Loop has a shielded ferrite rod, it is less susceptible to elmg. interference. Raymond Haigh’s antenna shows a bit more gain, the ferrite antenna is made up of 7 pieces of ferrite rods 20 cm long and 1 cm in diameter. The antenna is not shielded.

The construction of the antenna according to the instructions is not difficult. A Raimond Haigh antenna will definitely improve MW reception, especially for radios without an internal ferrite antenna. Instructions can be found at https://www.worldradiohistory.com/UK/Practical-Electronics/00s/Everyday-Practical-Electronics-2000-09.pdf

Belka Test

https://www.youtube.com/watch?v=Yk-ngCQ8TFc

Qodosen DX286 Test

https://www.youtube.com/watch?v=F77HOJSmu_4

Malahite DSP2 Test

https://www.youtube.com/watch?v=C2dvaCT9z6Y

Spread the radio love

Steffen shares some XHDATA D-220 tricks

XHDATA D-220 PortableMany thanks to SWLing Post contributor, Steffen Schultz, who writes:

Hello Thomas,

As a regular reader of your blog, I was fascinated by the reports on the XHDATA D-220 [affiliate link] and ordered a black one. I was not disappointed. Of course it’s not a DXing machine, but finally we have a device wich reaches the reception quality of the old pocket radios again I used to carry around in my childhood. I still have a Philips D1220 from the 80s, which is even less sensitive than the XHDATA D-220.

This reminded me of my early radio days, when I would try to use the simplest methods to manipulate analog radios to do things that were not intended by the manufacturer. For example, by moving the band selector switch to an intermediate position, it was possible to get some radios to receive frequencies outside the intended range. Of course, I couldn’t resist and experimented with the D-220. It takes a bit of patience and sensitivity, but the radio really does hold some secrets.

Medium wave reception with the telescopic antenna

When I was listening to a weak station on medium wave and slowly moved the switch to short wave, the medium wave station got louder for a moment before the slide switch clicked into the correct position. In fact, the radio seems to switch to the telescopic antenna when you move the band selector a little toward short wave. A finger test on the antenna confirmed my suspicion. I also tried connecting a long wire, but that was counterproductive with all the men-made noise inside my house. Extended shortwave reception

A similar trick can be used to change the shortwave frequencies. If you slightly move the band selector from the shortwave position towards medium wave, the receiver switches to a different shortwave frequency range, covering between about 3000 and 7000 kHz. Now I was able to receive shortwave radio from Germany on 3975 kHz without any problems, and of course South Korea via England on 3955 kHz was no problem either.

I have not yet found out if the two FM bands can also be manipulated in this way, an intermediate position of the band selector seems to have no effect here. Perhaps one of the readers has discovered something?

73 and best regards
Steffen
Wittstock/Germany

Thank you for sharing these D-220 tips/hacks, Steffen!

Spread the radio love