Tag Archives: Radio Astronomy

SDRs processing Fast Radio Bursts from distant universe

The Green Bank Telescope (Source: NRAO)

Many thanks to SWLing Post contributor, Ed, who shares a link to the following article at Breakthrough Initiatives:

Green Bank Telescope observations of a dwarf galaxy three billion light years away reveal 15 bursts of radio emission. This is the first time bursts from this source have been seen at these frequencies.

San Francisco – August 29, 2017 – Breakthrough Listen – the initiative to find signs of intelligent life in the universe – has detected 15 fast radio bursts emanating from the mysterious “repeater” FRB 121102. Fast radio bursts, or FRBs, are brief, bright pulses of radio emission from distant galaxies. First detected with the Parkes Telescope in Australia, FRBs have now been seen by several radio telescopes around the world. FRB 121102 was discovered in 2012, on November 2nd (hence its name). In 2015, it was the first FRB seen to repeat, ruling out theories of the bursts’ origins that involved the catastrophic destruction of the progenitor (at least in this particular instance). And in 2016, the repeater was the first FRB to have its location pinpointed with sufficient precision to allow its host galaxy to be identified. It resides in a dwarf galaxy about 3 billion light years away from Earth.

Attempts to understand the mechanism that generates FRBs have made this galaxy a target of ongoing monitoring campaigns by instruments across the globe. Possible explanations for FRBs range from outbursts from rotating neutron stars with extremely strong magnetic fields, to more speculative ideas that they are directed energy sources used by extraterrestrial civilizations to power spacecraft.

Breakthrough Listen is a global astronomical initiative launched in 2015 by Internet investor and philanthropist Yuri Milner and cosmologist Stephen Hawking. As part of their program to observe nearby stars and galaxies for signatures of extraterrestrial technology, the Listen science team at UC Berkeley added FRB 121102 to their list of targets. In the early hours of Saturday, August 26, UC Berkeley Postdoctoral Researcher Dr. Vishal Gajjar observed the location of FRB 121102 using the Breakthrough Listen backend instrument at the Green Bank Telescope in West Virginia. The instrument accumulated 400 TB of data on the object over a five hour observation, observing the entire 4 to 8 GHz frequency band.[…]

Analysis by Dr. Gajjar and the Listen team revealed 15 new pulses from FRB 121102. As well as confirming that the source is in a newly active state, the high resolution of the data obtained by the Listen instrument will allow measurement of the properties of these mysterious bursts at a higher precision than ever possible before.

The observations also show for the first time that FRBs emit at higher frequencies (with the brightest emission occurring at around 7 GHz) than previously observed. The extraordinary capabilities of the Listen backend, which is able to record several gigahertz of bandwidth at a time, split into billions of individual channels, enable a new view of the frequency spectrum of FRBs, and should shed additional light on the processes giving rise to FRB emission.
When the recently-detected pulses left their host galaxy our entire Solar System was just 2 billion years old. […]

The new results are reported as an Astronomer’s Telegram at www.astronomerstelegram.org/?read=10675 and will be described in further detail in an upcoming scientific journal article.

Breakthrough Listen is a scientific program in search for evidence of technological life in the Universe. It aims to survey one million nearby stars, the entire galactic plane and 100 nearby galaxies at a wide range of radio and optical bands.[…]

The linked animation shows 14 of the 15 detected bursts in succession, illustrating their dispersed spectrum and extreme variability. Capturing this diverse set of bursts was made possible by the broad bandwidth that can be processed by the Breakthrough Listen backend at the Green Bank Telescope:

https://storage.googleapis.com/frb121102/FRB121102_Cband_GB.gif

Click here to read the full article at Breakthrough Initiatives.

Spread the radio love

Image shows the extent of human radio broadcasts

Click to enlarge (Image credit: Adam Grossman of The Dark Sky Company)

(Source: Popular Mechanics)

Carl Sagan’s famous line from his 1990 speech about the Pale Blue Dot image—”Our planet is a lonely speck in the great enveloping cosmic dark”—is an understatement. We might consider our Milky Way, with its estimated 100 to 400 billion stars, a significant fixture in the cosmos. But there are some 100 billion galaxies just like it in the observable universe. It’s a daunting reality to consider when we’re thinking about the possibility of making contact with any intelligence that might be out there.

This map designed by Adam Grossman of The Dark Sky Company puts into perspective the enormity of these scales. The Milky Way stretches between 100,000 and 180,000 light-years across, depending on where you measure, which means a signal broadcast from one side of the galaxy would take 100,000 years or more to reach the other side. Now consider that our species started broadcasting radio signals into space only about a century ago. That’s represented by a small blue bubble measuring 200 light-years in diameter surrounding the position of the Earth. For any alien civilizations to have heard us, they must be within the bubble.[…]

Continue reading at Popular Mechanics online…

Spread the radio love

Solar Eclipse 2017: In the path of totality

A portion of the PARI campus

Tomorrow, we will be experiencing a total solar eclipse here in the mountains of western North Carolina.

Instead of enjoying the eclipse at home, I will be volunteering as a docent at the Pisgah Astronomical Research Institute in Rosman, North Carolina. Post readers might recall PARI as it was the location of our 2015 PARI DXpedition.

One of PARI’s 26 meter radio telescopes.

PARI is expecting at least 1,000 visitors tomorrow, from a number of countries. Many are scientists, astronomers, and guests who want to be in the path of totality.

On the PARI campus, we will be in totality for about 1 minutes, 47 seconds.

What makes the event truly special for PARI is that this is the first time in history a world-class radio astronomy observatory has been in the path of totality. To say the PARI astronomers are excited is simply an understatement. All four of PARI’s telescopes will be trained on our local star and gathering copious amounts of data.

If you don’t live in the path of the Eclipse, I invite you to check out PARI’s YouTube channel where they will host a live stream:

Click here to watch on YouTube.

Gathering spectrum

I will also be gathering data of my own during the event.

I will remotely record the entire mediumwave (AM broadcast) band several hours before, during and after the eclipse. I will also set up a separate SDR to record either the 31/30 meter bands and my buddy, Vlado (N3CZ) is kindly using his SDRplay RSP1 to record from 6 MHz – 8 MHz.

What do I expect to see/hear in the spectrum recordings? Certainly a drop in noise. If I’m lucky, I also hope to hear some DX anomalies–hopefully a signal or two that I wouldn’t normally here in the middle of a summer day.

I don’t expect any dramatic results (though I would love to be proven otherwise!) since the ionosphere takes time to change states. My buddy Mike (K8RAT) likens it to an oven: it takes time for it to heat up to the desired temperature, and it takes time for it to cool down as well. I’m not so sure the shadow of the moon, which moves at a good clip, will be persistent enough to change the state of the ionosphere in any meaningful way.

If it does, I’ll be there to record it!

There are many other radio related experiments happening during the solar eclipse. A notable one that you can even help with is the 2017 Ham Radio Eclipse Experiment.

SWLing Post contributor, Dan Srebnick also suggests a few stations you might try catching on the AM broadcast band. Dan notes:

Something to do during the solar eclipse on Monday. There are 13 clear channel AM stations along the path of totality. Give a listen for them:
[LIST OF AM CLEAR CHANNEL STATIONS]
kHz CALL Location Eclipse UTC
—— ——- —————- ————–
650 WSM Nashville, TN 18:28
670 KBOI Boise, ID 17:27
750 WSB Atlanta, GA 18:36
840 WHAS Louisville, KY 18:27
880 KRVN Lexington, NE 17:57
1030 KTWO Casper, WY 17:43
1040 WHO DesMoines, IA 18:08
1110 KFAB Omaha, NE 18:04
1110 WBT Charlotte, NC 18:41
1120 KPNW Eugene, OR 17:17
1120 KMOX St. Louis, MO 18:18
1190 KEX Portland, OR 17:19
1510 WLAC Nashville, TN 18:28

Kudos to Bob WB4APR (of APRS fame) for producing this list.

Post readers: Will you be in the path of totality or do you plan to enjoy a partial eclipse? Have you ever experienced a total solar eclipse?  What are your plans if any? Please comment!

Spread the radio love

Reminder: 2017 Eclipse Experiment

A map of the United States showing the path of totality for the August 21, 2017 total solar eclipse. (Source: NASA)

The 2017 eclipse is quickly approaching (August 21)–!!

If you would like to participate in a fascinating radio experiment coinciding with the event, check out this undertaking outlined on the website HamSCI. Note that you do not need to be in the path of totality in order to participate.

Here’s the summary:

On 21 August 2017, a total solar eclipse will traverse the continental United States from Oregon to South Carolina in a period of just over 90 minutes.

Previous research shows that the shadow of the eclipse will impact the ionospheric state, but has not adequately characterized or explained the temporal and spatial extent of the resulting ionospheric effects.

HamSCI is inviting the amateur radio community to contribute to a large scale experiment by participating in an Eclipse QSO party and further developing automatic observation networks such as the Reverse Beacon Network.

Data resulting from these activities will be combined with observations from existing ionospheric monitoring networks in an effort to characterize and understand the ionospheric temporal and spatial effects caused by a total solar eclipse.

Click here to read the full detailed experiment at HamSCI online.

Spread the radio love

The Itty Bitty Radio Telescope Kit

(Source: The SETI League)

Many thanks to SWLing Post contributor, Troy Riedel, who writes:

You know my amateur astronomy background. And With the building interest in next month’s Solar Eclipse – and your recent posting from Sky&Telescope re: “How to watch the solar eclipse with your AM radio” – I thought this might be of interest if you haven’t see it yet.

Introducing: “The Itty Bitty Radio Telescope”

Background is here:
http://www.setileague.org/articles/lbt.pdf

Here’s a guide written for teachers as a class project:
http://www.aoc.nrao.edu/epo/teachers/ittybitty/procedure.html

Here’s a guide for building one yourself:
http://www.stargazing.net/david/radio/itty_bitty_radio_telescope.html

And here’s a pre-assembled kit off eBay:
https://goo.gl/HnLUu2

Thank you for sharing this, Troy! I’m amazed at how affordable simple radio telescopes have become. In the 1990s, I was absolutely fascinated with the SETI League’s Project Argus and had planned to build a telescope, but the parts (including an Icom IC-7000) easily totaled over $1,000 at the time–too much for a college student! I imagine a proper Project Argus scope can be built for less than $300 today. Perhaps it’s time to reconsider!

Thanks again, Troy!

Spread the radio love

Ham Radio: 2017 Eclipse Experiment

A map of the United States showing the path of totality for the August 21, 2017 total solar eclipse. (Source: NASA)

Many thanks to SWLing Post contributor, Colin Newell, who shares a fascinating 2017 eclipse experiment outlined on the website HamSCI.

Here’s the summary of the experiment:

On 21 August 2017, a total solar eclipse will traverse the continental United States from Oregon to South Carolina in a period of just over 90 minutes.

Previous research shows that the shadow of the eclipse will impact the ionospheric state, but has not adequately characterized or explained the temporal and spatial extent of the resulting ionospheric effects.

HamSCI is inviting the amateur radio community to contribute to a large scale experiment by participating in an Eclipse QSO party and further developing automatic observation networks such as the Reverse Beacon Network.

Data resulting from these activities will be combined with observations from existing ionospheric monitoring networks in an effort to characterize and understand the ionospheric temporal and spatial effects caused by a total solar eclipse.

Click here to read the full detailed experiment at HamSCI online.

Spread the radio love

Receiving Jupiter with the SDRplay RSP1

I’ve been fascinated with radio astronomy since my university days. In the 1980s and 90s almost any radio astronomy experiment equated to forking out some serious money to purchase a wideband receiver (serious money to a student, at least). With the advent of SDRs, though, radio astronomy has become affordable for everyone.

Many thanks to RTL-SDR.com for publishing the following video and post about monitoring Jupiter radio bursts:

Over on YouTube user MaskitolSAE has uploaded a video showing him receiving some noise bursts from Jupiter with his SDRplay RSP1. The planet Jupiter is known to emit bursts of noise via natural ‘radio lasers’ powered partly by the planets interaction with the electrically conductive gases emitted by Io, one of the the planets moons. When Jupiter is high in the sky and the Earth passes through one of these radio lasers the noise bursts can be received on Earth quite easily with an appropriate antenna

In his video MaskitolSAE shows the 10 MHz of waterfall and audio from some Jupiter noise bursts received with his SDRplay RSP1 at 22119 kHz. According to the YouTube description, it appears that he is using the UTR-2 radio telescope which is a large Ukrainian radio telescope installation that consists of an array of 2040 dipoles. A professional radio telescope installation is not required to receive the Jupiter bursts (a backyard dipole tuned to ~20 MHz will work), but the professional radio telescope does get some really nice strong bursts as seen in the video.

Click here to view on YouTube.

Click here to read at RTL-SDR.com.

As Carl mentions above, you do not need a professional radio telescope to receive Jupiter noise bursts, a dipole will do.

In fact, the Pisgah Astronomical Research Institute (PARI) has a dedicated Jupiter receiver–a simple SDR kit called the Radio JOVE Receiver which is promoted by NASA. While PARI has the resources to install any number of antennas, PARI uses two simple dipoles which are mounted only a few feet off the ground as their radio telescope. I doubt their investment in the antennas exceeded $50. It works brilliantly.

The Radio JOVE receiver at PARI

I had planned to purchase and build a JOVE receiver (and, for fun, still may!), but it would be much easier to simply use the SDRplay RSP I already have in my shack. What a great project this fall.

Post readers: Please comment if you’ve used an SDR or JOVE kit to receive Jupiter bursts!

Spread the radio love