Tag Archives: Radio Astronomy

Radio Waves: Signals from Mars, Two More Hamstronauts, M17 Digital Voice Mode, and Climbing Trees for a Better Signal

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Troy Riedel, LG, Ron and the ARRL News for the following tips:


Radio Signals from Mars (Spaceweather.com)

How close is Mars? Close enough for radio reception. On Oct. 4th, amateur radio operator Scott Tilley picked up a carrier wave from NASA’s Mars Reconnaissance Orbiter (MRO) circling the Red Planet. Turn up the volume and listen to the Martian Doppler shift:

Tilley is a leader in the field of satellite radio. Dead satellites, zombie satellites, spy satellites: He routinely finds and tracks them. “But this was a first for me,” he says. “A satellite around Mars!”

It’s not easy picking up radio signals from distant planets. NASA does it using the giant antennas of the Deep Space Network. Tilley uses a modest 60 cm dish in his backyard in Roberts Creek, BC. This week’s close encounter with Mars set the stage for his detection.

“MRO’s signal is weak, but it is one of the louder signals in Mars orbit,” says Tilley. “The spacecraft has a large dish antenna it uses as a relay for other Mars missions. With the proximity of Mars these days, it was the perfect time to try.”[]

Two More Astronauts Earn Amateur Radio Licenses (ARRL News)

Although the lockdown of Johnson Space Center (JSC) postponed amateur radio training and licensing over the past 7 months, NASA ISS Ham Project Coordinator Kenneth Ransom, N5VHO, was able to work with all of the new astronaut-class graduates, as well as offer some refresher courses with already-licensed astronauts. Licensed astronauts on the International Space Station (ISS) may operate the on-station ham radio equipment without restrictions.

Astronauts often participate in Amateur Radio on the International Space Station (ARISS) contacts with schools and groups on Earth.

NASA Astronaut Kayla Barron, who completed her introductory course in June and received basic ham radio operations training in late September, recently tested and received the call sign KI5LAL.

European Space Agency astronaut Matthias Maurer passed his amateur radio exam on July 30, and he got his basic ham operations training in July. He now is KI5KFH.

Astronauts Shane Kimbrough, KE5HOD, and Shannon Walker, KD5DXB, completed the refresher course earlier this year. Two other new astronauts are in the queue to take the Technician license exam. — Thanks to Rosalie White, K1STO[]

M17 Aims to replace proprietary ham radio protocols (Hackaday.io)

While M17 might sound like a new kind of automatic rifle (as actually, it is), we were referring to an open source project to create a ham radio transceiver. Instead of paraphrasing the project’s goals, we’ll simply quote them:

The goal here should be to kick the proprietary protocols off the airwaves, replace DMR, Fusion, D-Star, etc. To do that, it’s not just good enough to be open, it has to be legitimately competitive.

Like some other commercial protocols, M17 uses 4FSK along with error correction. The protocol allows for encryption, streaming, and the encoding of callsigns in messages. There are also provisions for framing IP packets to carry data. The protocol can handle voice and data in a point-to-point or broadcast topology.

On the hardware side, the TR-9 is a UHF handheld that can do FM voice or M17 with up to 3 watts out. The RF portion uses an ADF7021 chip which is specifically made to do 4FSK. There’s also an Arm CPU to handle the digital work.[]

Armed with a radio, Cambodian girl climbs tree to access education (SE Asia Globe)

When Cambodian schools closed due to Covid-19, poor internet access and a lack of minority language materials made distance learning in rural communities near impossible. But armed with a simple radio, children are rising above these obstacles to their education

Jumping down from the tree near her home, Srey Ka assumes her spot in the shade underneath as she adjusts the dials on her radio. Her pet piglet remains asleep at her feet, twitching his nose as he dreams, his belly full of leftover rice. Around her, cows meander by, their ringing bells competing with the sound of static from her radio.

While her school is still closed due to Covid-19 regulations, she still wears her Grade 3 uniform as she attempts to locate a signal. She’s listening out for distance learning programmes – six hours of educational radio broadcasts per week for children in Grades 1-3, some of which are in her ethnic minority language.

It was August and Srey Ka had just received a radio from international nonprofit Aide et Action, two weeks before her school reopened as pandemic measures eased in Cambodia in early September.

From the Phnong ethnic minority group, Srey Ka struggled to find learning resources in her language during school closures. Eager to cram as much as she can before returning to school, Srey Ka tied the antenna of her radio to the highest point of a tree to get the best reception. Even a clear radio signal is hard to come by in the small fishing village of Pun Thachea, located along a remote stretch of the Mekong river in Cambodia’s northeast Kratié province.[]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Jupiter’s radio noise

Many thanks to SWLing Post contributor, Bruce Atchison, who writes:

I came across this video last year and I thought you’d be interested in it. I also picked up Jupiter on my CB radio one morning. We all wondered what was generating those sounds of waves crashing on the beach. Later on, I learned about Jupiter’s powerful radio bursts.

Click here to view on YouTube.

Thanks for sharing this, Bruce!

I got a kick out of the narration–especially the subjective comment regarding the sound of Jupiter heard on radio: “The noise is disturbing…”

The narrator is obviously not a radio listener or astronomer! Ha ha!

Spread the radio love

Big Sunspot Produces “Ocean Surf” Sounds on Shortwave

Though sunspots have been rare this year, Sunspot AR2738 has been producing bursts which have been heard as radio static – that sounds like “ocean surf” – on shortwave.

This was posted early this morning at spaceweather.com – along with a recording:

If you have a shortwave radio, you might have heard some unusual sounds this week. Big sunspot AR2738 is producing strong bursts of radio static. “They sound like ocean surf,” says Thomas Ashcraft, who recorded this specimen on April 13th using an amateur radio telescope in New Mexico:

Credit: Observation of Thomas Ashcroft via Spaceweather.com

Please refer to the Spaceweather.com Archive for more info.

Guest Post by Troy Riedel

Spread the radio love

Fast Radio Bursts (FRBs) from a distant galaxy detected

Many thanks to a number of SWLing Post contributors who’ve shared the following news:

(Source: Southgate ARC)

Mysterious radio signals from deep space detected

BBC News report astronomers have revealed details of mysterious signals emanating from a distant galaxy, picked up by a telescope in Canada.

The precise nature and origin of the blasts of radio waves is unknown.

Among the 13 fast radio bursts, known as FRBs, was a very unusual repeating signal, coming from the same source about 1.5 billion light years away.

Such an event has only been reported once before, by a different telescope.

“Knowing that there is another suggests that there could be more out there,” said Ingrid Stairs, an astrophysicist from the University of British Columbia (UBC).

“And with more repeaters and more sources available for study, we may be able to understand these cosmic puzzles – where they’re from and what causes them.”

The CHIME observatory, located in British Columbia’s Okanagan Valley, consists of four 100-metre-long, semi-cylindrical antennas, which scan the entire northern sky each day.

The telescope only got up and running last year, detecting 13 of the radio bursts almost immediately, including the repeater.

Read the full BBC News article
https://www.bbc.co.uk/news/science-environment-46811618

Spread the radio love

“Radio on the Edges”: Robert’s lifelong pursuit

(Photo source: All Things Radio by Robert Gulley)

SWLing Post contributor, Robert Gulley (AK3Q), recently published a post on his blog discussing the edges of radio reception and his pursuit of DX in all forms. I think this article speaks to many of us.

(Source: All Things Radio by Robert Gulley)

Radio on the Edges can mean a number of different things, depending on one’s perspective. For me, at the moment, it means distance. It means reaching the edges of where a signal can go.

One of the more intriguing aspects of radio is just how far a signal will travel. I have been a DX chaser for years, starting with AM Broadcast signals when I was a kid. The further the station, the cooler the signal in those days.

Then of course there was Shortwave radio. Now that was cool! That was real DX! Hearing countries from around the world was just the best! Well, that it, the best until I became an amateur radio operator and could send signals around the world! Whoo-Hoo! Hot Dog! Oh yeah, baby!!

Still to do on my DX list is to bounce a signal off the moon. Technically my signals have already gone into space, to the ISS and to orbiting satellites. But the moon so far has eluded me. Well at least, confirmation of bouncing off the moon back to myself or to another amateur has so far eluded me.

But Radio on the Edges also means a different kind of DX.[…]

Click here to continue reading on Robert’s excellent site, All Things Radio.

Spread the radio love

Scott Tilley (VE7TIL): The Amateur Astronomer Who Found a Lost NASA Satellite

Many thanks to SWLing Post contributor, Cap Tux, who shared a link to the following video on YouTube. This short video is brilliant and will be the reference I use when people ask about the intersection of radio and amateur astronomy:

Click here to view on YouTube.

Amateur astronomer Scott Tilley made international headlines when he rediscovered NASA’s IMAGE satellite 13 years after it mysteriously disappeared. In this interview with Freethink, Scott discusses his role in the satellite’s recovery, why he enjoys amateur astronomy, and how citizen scientists like him have contributed to our knowledge of space from the space race to the present day.

And I personally think our Post friend, Troy Riedel–who is an avid amateur astronomer–should start tracking satellites! (We’ll see if he’s reading this post!)

I’m curious: are there any Post readers who are into the satellite tracking side of amateur astronomy?

Spread the radio love

Radio enthusiasts receive images from the Longjiang-2 in lunar orbit

Image received by astronomer Cees Bassa (@cgbassa) using the Dwingeloo Telescoop

Many thanks to SWLing Post contributor, Eric McFadden (WD8RIF) who shares the following story from The Planetary Society:

Earlier this week, on October 10, radio amateurs all around the world worked together to get the Chinese Longjiang-2 spacecraft to take an image of the Earth and the far side of the Moon. Radio commands were generated by MingChuan Wei in China, transmitted to the spacecraft by Reinhard Kuehn in Germany after which they were received by the spacecraft in lunar orbit. In turn, the spacecraft transmitted the image back to Earth, where it was picked up by radio amateurs in Germany, Latvia, North America and the Netherlands.

Since June this year, the Chinese Longjiang-2 (also known as DSLWP-B) microsatellite has been orbiting the Moon. The satellite is aimed at studying radio emissions from stars and galaxies at very long wavelength radio waves (wavelengths of 1 to 30 meters). These radio waves are otherwise blocked by the Earth’s atmosphere, while the lunar environment offers protection from Earth-based and human-made radio interference. Longjiang-2 was launched to the Moon together with an identical twin, Longjiang-1 (DSLWP-A), together acting as a radio interferometer to detect and study the very long wavelength radio waves by flying in formation in lunar orbit.

Besides the scientific instruments, both Longjiang satellites carry a VHF/UHF amateur radio transmitter and receiver (a transceiver) built and operated by the Harbin Institute of Technology (in Chinese). The Longjiang-2 transceiver also includes an onboard student camera, nicknamed the Inory Eye. The Harbin team built on experience gained with the Earth-orbiting LilacSat-1 and LilacSat-2 nanosatellites, which allow radio amateurs to receive satellite telemetry, relay messages and command and download images taken with an onboard camera.

While receiving signals from satellites in low Earth orbit requires only relatively simple antennas, doing so for satellites in orbit around the Moon (a thousand times more distant), is much harder. To this end Longjiang-1 and 2 transmit signals in two low data-rate, error-resistant, modes; one using digital modulation (GMSK) at 250 bits per second, while the other mode (JT4G) switches between four closely spaced frequencies to send 4.375 symbols per second. This latter mode was developed by Nobel-prize winning astrophysicist Joe Taylor and is designed for radio amateurs to relay messages at very low signal strengths, typically when bouncing them off the surface of the Moon.

[M]any radio amateurs have been able to receive transmissions from Longjiang-2. Usually, the transceiver is powered on for 2-hour sessions at a time, during which GMSK telemetry is transmitted in 16-second bursts every 5 minutes. After some testing sessions in early June, the JT4G mode was activated, with 50 second transmissions every 10 minutes.

Specialized open source software written by MingChuan Wei and the Harbin team enables radio amateurs to decode telemetry as well as image data and upload it to the Harbin website.

The JT4G mode has allowed radio amateurs with small yagi antennas to detect signals from Longjiang-2 (using custom software written by Daniel Estévez).[…]

Click here to read the full article at The Planetary Society.

This is fascinating, Eric!  Thank you for sharing. It would be amazing fun to grab one of these Lunar signals! Anyone up to the task?

Spread the radio love