Tag Archives: SDRplay RSP

A comprehensive SDRplay and SDRuno how-to video series

The SDRplay RSP2

Mike Ladd, with SDRplay, has done an amazing job putting together a comprehensive series of how-to videos for those of us with the SDRplay RSP1 and RSP2 receivers. His first set of videos have focused on using SDRuno (SDRplay’s custom SDR application), and now he’s started an SDR Console series as well.

I’ve embedded much of his video series below, but you can also find them at the SDRplay YouTube channel.

If you own an SDRplay RSP, take time to watch some or all of these videos as they’ll help you unlock RSP functionality you likely never knew existed. I’ve learned something new in each one I’ve watched.

Below, I’ve embedded 23 SDRuno how-to videos, a new SDR Console video and PDF/printable SDRplay documentation. Enjoy! (And thanks again, Mike!)


SDRuno Videos

#1 SDRuno Basic layout and settings

Click here to view on YouTube.

#2 SDRuno with VAC 1 of 2

Click here to view on YouTube.

#3 SDRuno VAC 2of 2 (showing MultiPSK)

Click here to view on YouTube.

#4 SDRuno Noise reduction intro on HF.

Click here to view on YouTube.

#5 SDRuno Memory Panel part 1 of 2

Click here to view on YouTube.

#6 SDRuno Memory Panel part 2 of 2

Click here to view on YouTube.

#7 SDRuno Calibrate your RSP-1 & RSP-2

Click here to view on YouTube.

#8 SDRuno VAC & DSDdecoder

Click here to view on YouTube.

#9 SDRuno Notching filter function

Click here to view on YouTube.

#10 SDRuno FM Broadcast RDS data decoding

Click here to view on YouTube.

#11 SDRuno, FTDX 3000, Omnirig & LOG4OM Logger

Click here to view on YouTube.

#12 SDRuno, FTDX 3000, Omnirig & LOG4OM Logger In Action

Click here to view on YouTube.

#13 SDRuno EX-Control Module

Click here to view on YouTube.

#14 SDRuno with CSV user list browser using virtual com ports.

Click here to view on YouTube.

#15 SDRuno & MultiPSK decoding APRS

Click here to view on YouTube.

#16 SDRuno & MultiPSK decoding ACARS

Click here to view on YouTube.

#17 SDRuno with the TM-2 USB Controller

Click here to view on YouTube.

#18 SDRuno Tune-LO-LO Lock

Click here to view on YouTube.

#19 pre-selection filters of the RSP-1 and RSP-2

Click here to view on YouTube.

#20 SDRuno and the VRX feature

Click here to view on YouTube.

MISC SDRUno videos

SDRuno EXT/IO Edition for a range of SDRs and dongles

Click here to view on YouTube.

SDRplay RSP with the DX Engineering RTR-2

Click here to view on YouTube.

Using the RSP-1 for the IARU HF World Championship

Click here to view on YouTube.

SDR Console videos (Brand new series)

#1 SDRplay RSP 1 & 2 with SDR Console v3

Click here to view on YouTube.

SDRplay How To documentation

Brand new SDRuno User Manual
http://www.sdrplay.com/docs/SDRplay_SDRuno_User_Manual.pdf

Frontend Reset
http://www.sdrplay.com/docs/SDRplay_Software_reset.pdf

Optimizing WIndows 7 for SDRuno
http://www.sdrplay.com/docs/SDRuno_Windows7.pdf

Setting up VSPE
http://www.sdrplay.com/docs/SDRuno_VSPE.pdf

Setting up VAC
http://www.sdrplay.com/docs/SDRuno_VAC.pdf

Decoding APRS using SDRuno and MultiPSK
http://www.sdrplay.com/docs/SDRuno_APRS.pdf

Decoding MIL-ALE using SDRuno and MultiPSK
http://www.sdrplay.com/docs/SDRuno_ALE.pdf

Decoding AIS Marine messages using SDRuno and MultiPSK
http://www.sdrplay.com/docs/SDRuno_AIS.pdf

Decoding ACARS messages using SDRuno and MultiPSK
http://www.sdrplay.com/docs/SDRuno_ACARS.pdf

Video: Ivan shares a bandscan from the 2017 Eclipse QSO Party

Many thanks to SWLing Post contributor, Ivan Cholakov (NO2CW) who shares the following:

I finally got around to listening through some of the amateur radio band spectrum captures from the 2017 Solar Eclipse QSO party. I used an SDRPlay receiver with an end fed LNR antenna in portable field setting in Nashville, TN.

About 30 minutes of solar eclipse contacts and chatter:

Click here to view on YouTube.

Thank you, Ivan, for taking the time to put this video together and sharing it. The RSP did a fantastic job capturing this spectrum–I do love the SDRuno application for reviewing spectrum recordings as well. Cheers!

SDRplay lowers RSP1 price to $99.95 US

The SDRplay RSP software defined radio

(Source: SDRplay Press Release via Jon Hudson)

SDRplay are pleased to announce a price reduction for their entry-level SDR receiver, the RSP1 to $99.95 USD making it the most competitive mid-range SDR to include reception down to low frequencies without the need for an upconverter.

The RSP1 provides general coverage receiver and panadapter capability from 10 kHz to 2 GHz. As well as providing SDRuno SDR software, support for popular 3rd party packages like HDSDR, SDR-Console and Cubic SDR is provided. Recent availability of an SD Card image makes for easy set up on a Raspberry Pi.

Click here to visit SDRplay online.

Click here to read our RSP1 review.

Receiving Jupiter with the SDRplay RSP1

I’ve been fascinated with radio astronomy since my university days. In the 1980s and 90s almost any radio astronomy experiment equated to forking out some serious money to purchase a wideband receiver (serious money to a student, at least). With the advent of SDRs, though, radio astronomy has become affordable for everyone.

Many thanks to RTL-SDR.com for publishing the following video and post about monitoring Jupiter radio bursts:

Over on YouTube user MaskitolSAE has uploaded a video showing him receiving some noise bursts from Jupiter with his SDRplay RSP1. The planet Jupiter is known to emit bursts of noise via natural ‘radio lasers’ powered partly by the planets interaction with the electrically conductive gases emitted by Io, one of the the planets moons. When Jupiter is high in the sky and the Earth passes through one of these radio lasers the noise bursts can be received on Earth quite easily with an appropriate antenna

In his video MaskitolSAE shows the 10 MHz of waterfall and audio from some Jupiter noise bursts received with his SDRplay RSP1 at 22119 kHz. According to the YouTube description, it appears that he is using the UTR-2 radio telescope which is a large Ukrainian radio telescope installation that consists of an array of 2040 dipoles. A professional radio telescope installation is not required to receive the Jupiter bursts (a backyard dipole tuned to ~20 MHz will work), but the professional radio telescope does get some really nice strong bursts as seen in the video.

Click here to view on YouTube.

Click here to read at RTL-SDR.com.

As Carl mentions above, you do not need a professional radio telescope to receive Jupiter noise bursts, a dipole will do.

In fact, the Pisgah Astronomical Research Institute (PARI) has a dedicated Jupiter receiver–a simple SDR kit called the Radio JOVE Receiver which is promoted by NASA. While PARI has the resources to install any number of antennas, PARI uses two simple dipoles which are mounted only a few feet off the ground as their radio telescope. I doubt their investment in the antennas exceeded $50. It works brilliantly.

The Radio JOVE receiver at PARI

I had planned to purchase and build a JOVE receiver (and, for fun, still may!), but it would be much easier to simply use the SDRplay RSP I already have in my shack. What a great project this fall.

Post readers: Please comment if you’ve used an SDR or JOVE kit to receive Jupiter bursts!

Raspberry Pi image with preloaded SDRplay RSP software

The $35 Raspberry Pi 3

SDRplay support have just posted the following news on their community forum:

We have released a Raspberry Pi 3 image that has a number of SDR applications pre-built and tested that support the RSP. Periodically, we will update the image with software updates and new software.

The current list of software included on the image is:

SoapySDR/SoapySDRPlay, SoapyRemote, ADS-B (dump1090), CubicSDR and SDR-J DAB receiver

Please note: This is a complete OS with software image. Writing the image to a micro SD card will wipe the micro SD card of any other data that is on there, so we recommend you make sure you have backed up any data on your existing micro SD card or you use a new micro SD card.

Instructions:

1. Download image. There are two downloads provided, the 7zip version is just a smaller download but not everyone has 7zip which is why we also provide a zip download. The links are here:

http://www.sdrplay.com/software/SDRplay_RPi3_V0.1.zip (2.7 GB)

http://www.sdrplay.com/software/SDRplay … 0.1.img.7z (2.0 GB)

2. Extract the contents of the compressed file. This will extract to a .img file which will be about 7.2 GB

3. Use an image writer such as Win32DiskImager (https://sourceforge.net/projects/win32diskimager) to put the image onto the micro SD card.
WARNING: Please make sure that you use the correct drive letter for the micro SD card. The image writing software will completely remove any data that is on the destination media.

That’s it – put the micro SD card into the Raspberry Pi 3 micro SD card slot and boot the system. Allow the system to fully boot and you will see a GUI that will allow you to run each of the applications or read further information.

We also recommend that you use an active cooling system on your Raspberry Pi 3 to avoid any issues with over heating. In our tests, we have used heatsinks and a fan in a case. The CPU speed will be throttled if the temperature gets too hot, so for optimum use this is really recommended. These cases are available at reasonable prices from many Raspberry Pi stores.

If you are a developer of software that supports the RSP and you would like to be included on the image that we will release periodically, please contact us at software@sdrplay.com – currently we’re aiming to update the image every quarter, this will largely depend on software availability and what the demand is.

We are aware of other software that we are looking to get onto the next release such as Pothos and more SDR-J software. We will work with developers on any issues we’ve seen during this process so that we can get them onto future images.

Best regards,

SDRplay Support

This is great news in my book, because a fully-loaded and configured disk image makes it much easier to get started with an RSP/Pi combo.

Note that the message above is merely the announcement on SDRplay’s community forum. I would strongly encourage you to follow this thread, and the forum in general, if you’re interested in updates and announcements.

Raspberry Pi systems are very affordable and available in a number of configurations (from $35US – $80US depending on accessories) and from a number of retailers including: