Author Archives: Guy Atkins

A Compact RSPdx & Wellbrook Loop Kit for the Beach — My Approach

I have enjoyed three to four medium wave and shortwave DXpeditions per year since 1988, to sites on the Washington and Oregon coasts. I love the chance they give to experiment with antennas in a (hopefully!) noise-free location, and concentrate on catching stations that might not be heard from home.

All of my DX trips have been via car–until now! I’ve just returned from nine vacation days in Hawaii (Waikoloa Beach, on the Big Island), and I thought others might like to see the radio related items I chose to take along for air travel. I’m pleased to report that everything worked as planned, and I have five days of SDR IQ WAV files of the MW band for review, all recorded in the time frame surrounding local dawn.

My goal was not the smallest, most compact portable setup, but one with high performance and modest size. Fitting everything into a day pack was another requirement. A simple wire antenna and an even smaller Windows tablet or laptop than the one I’ve used (and a smaller SDR like the HF+ Discovery, for that matter) would make a much smaller package. However, the items I’ve assembled worked excellently for me during my enjoyable Hawaii vacation. The directional loop antenna provided nulls on medium wave of 30 dB during preliminary tests indoors, a less-than-ideal test situation.

Waikoloa Beach–just one of a zillion picturesque scenes in Hawaii.

Here is a list of what I’ve put together for my DXing “kit”:

    • SDRPlay RSPdx receiver
    • Short USB cable for receiver<>PC connection, with two RFI chokes installed
    • Lenovo X1 tablet— a Windows 10 device with magnetically attached keyboard; this model is a competitor to Microsoft’s Surface Pro tablet
    • Wellbrook Communications’ ALA1530 head amp module, modified for female SO239 connectors enabling use of large diameter LMR-600 coaxial cable as a 2-turn loop element. My antenna setup is similar to Wellbrook’s commercial flexible loop
    • Wooden base for the antenna (ALA1530 is bolted to the base)
    • 20 feet of lightweight RG-174 coax
    • Wellbrook DC interface module for the ALA1530
    • 3.0 Ah LiFePO4 rechargeable battery for the Wellbrook antenna
    • 15 foot long section of high grade “Times Mfg.” LMR-600 coax cable with PL259 connectors (bought from Ebay already assembled/soldered)
    • Fold-up beach mat
    • Small day pack to hold everything

All the contents of this DXing setup fit a standard size day pack.

You’ll note the absence of headphones in the list. This is because my intent from the start was to record all the DX (MW band) as SDR WAV files for DXing post-vacation. That said, I did have headphones in my travel luggage for later spot checks of a few frequencies. That’s how I found 576 kHz Yangon, Myanmar lurking at their 1700 sign-off with national anthem and English announcement. The remainder of the DX to be uncovered will have to wait until I’m back home near Seattle!

The LMR-600 is a very thick and stiff coax cable, whose diameter approaches that used in the standard aluminum tubing ALA1530 series from Wellbrook. It has the benefit of being self-supporting in a 2-turn configuration and will also coil up into an approx. 12-inch package for transport. It just barely fits within the day pack I’m using. As I understand it, magnetic loops with tubing or large coax as the active element, versus simple wire, are more efficient in operation. Whether or not this holds true in practice remains to be seen.

I fashioned a wooden disc 3/4″ thick to attach the ALA1530 head amplifier, as I didn’t want to bring along a tripod or other support stand. The Wellbrook antennas all work well near or at ground level, so I was able to get great reception with the antenna right on the beach. The diameter at two turns of the coax is only a few inches smaller diameter than Wellbrook’s aluminum tubing loops. Three strips of strategically placed Velcro straps help keep the turns together when deployed as well as during storage.

In theory a two-turn loop should give 5 dB less gain than a single turn version; however, my older ALA1530 module has 5 dB more gain than the newer “LN” type, according to Andrew Ikin of Wellbrook Communications. The net result is that my two-turn antenna should have equal gain to the larger one-turn variety. Future experimentation with this DIY coax loop antenna is in order!

The Wellbrook loop antenna, RSPdx receiver, and Windows 10 tablet on the beach in Waikoloa, Hawaii.

Another view of the DXing position. Being this close to the water with my radio gear was unnerving at first, but the wave action on a calm Hawaii beach is totally different from the Oregon/Washington beaches with waves that can move in and out by a hundred feet or more.

The Wellbrook “DIY FlexLoop” works fine at beach level, and is less conspicuous this way, too.

The ALA1530 module is bolted to the 11-inch wooden disc for support. I’ve modified the module’s sockets to securely hold SO239 female connectors.

The commercial Wellbrook FLX1530LN is a fine product, and worthy of your consideration as a compact and high performance travel antenna. Full details can be found at this link.

SDR WAV Files for Download

One of my goals from the start for my Hawaii trip was to bring back SDR “IQ” WAV files for sharing with others. These approx. 900 Mb files cover the entire medium wave band as heard from my beach location in Waikoloa.

The overall page is: https://archive.org/details/@4nradio   Clicking on any of the entries will bring you to a details page. From there just right click on the “WAVE” link, and choose “Save as…” to download. For a few of the recordings I also posted the file that precedes the one that goes across the top-of-the-hour, because things seemed a bit more lively prior to 1700 (which  was at local sunrise, give or take a couple of minutes).

The IQ WAV files are only playable with suitable SDR radio software: SDRuno is first choice (but you need a RSP receiver connected). The files are also is compatible with HDSDR and SDR-Console V3. It may also play on Studio 1 software.

I hope other DXers enjoy the chance to tune through the MW band, as heard from the Big Island of Hawaii.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Amazon Price Drop: Eton Elite Executive Portable Now $129.99

The relatively new Eton Elite Executive, formerly Eton Executive Satellit, has dropped $50 USD on its Amazon page to $129.99:

This rather major price drop lowers the cost to just $20 more than Amazon’s price for the older, silver-cased Eton Executive Satellit. According to Jay Allen’s review the new radio has identical performance to the older model; only the color is updated.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

AirSpy HF+ Discovery: First Impressions on Medium Wave vs. Elad FDM-DUOr

The highly anticipated AirSpy HF+ Discovery SDR has been in the hands of early adopters for about two weeks–and I’ve seen nothing but positive comments!

After a long run (2007-2013) with a Microtelecom Perseus, my SDR of choice became the Elad FDM-S2, and more recently an Elad FDM-DUOr “hybrid” SDR receiver. The two Elads have the same core processing components and identical performance when the DUOr is connected via SDR software.

This week I’ve compared the HF+ Discovery ($169) against the FDM-DUOr ($899) using Studio 1 software and identical modes & settings. The following video features the radios’ performance on a crowded daytime medium wave band from suburban Seattle-Tacoma USA.

Click here to view on YouTube.

Notes:

  • Software used is two “instances” of Studio 1, version 1.06e
  • Antenna is an east-west oriented Wellbrook ALA1530LNP Imperium loop
  • Mode, filter bandwidth, AGC, etc. are the same for each radio
  • 768 kHz sampling bandwidth used for both receivers

Stations tuned are:

  • 1320 KXRO Aberdeen WA, 74 miles @ 5 kW (in-line with antenna)
  • 1110 Oak Harbor WA, 78 miles @ 500 watts (in antenna’s null)
  • 1040 CKST Vancouver BC, 147 miles @ 50 kW (in antenna’s null)
  • 1430 KBRC Mt. Vernon WA, 85 miles @ 5 kW (in antenna’s null)
  • 750 KXTG Portland OR, 118 miles @ 50 kW (in antenna’s null)

I purposely sought out signals difficult to hear in the presence of powerhouse stations. Only 1320 kXRO (in-line with my antenna) and 750 KXTG are what you might consider average or fair quality signals. Headphones are recommended for most of these, particularly 1040 kHz.

You’ll note that the pass band has been “pulled” over the edge of the carrier frequency by a few hundred Hertz. This is an excellent trick that can often reduce noise and/or improve intelligibility. It’s a feature unique to Perseus, Studio 1, and SDRuno software; it works in sideband modes and in selectable sideband Sync AM (SAM) mode.

After listening to the signal comparisons, what are your thoughts on the HF+ Discovery? Please leave your comments below.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Target Jim Creek: is an Obscure Washington State Naval Radio Facility in Russia’s Nuclear Crosshairs?

A new article in the Seattle Times newspaper discusses a large VLF radio facility that many people even in nearby Seattle, WA are not aware of:

https://www.seattletimes.com/seattle-news/obscure-snohomish-county-navy-radio-station-named-as-top-russian-target/

This story reminds me of my 1960s childhood, growing up with a father who worked on the USA’s Minuteman ICBM missile defense program. This Cold War era missile system was a cousin to the submarine-based nuclear weapons. The Jim Creek transmitter was–and still is–a vital communications link to U.S. subs stationed worldwide.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

“Perfect Fit” Cases for the ATS-909X and D-808 Radios

I’m generally not a fan of slip-cover cases (or pouches) that are included with many portable radios. I like to have a little extra padding around radios, but I don’t like bulky cases either. My preference is to carry accessories separately and keep the case as small as possible while still offering some protection.

With that in mind, others may be interested in my choice of non-original cases for the Sangean ATS-909X and XHDATA D-808 receivers.

The Evecase brand of sleeve for the Apple iPad Mini 4 makes a close fitting case for the ATS-909X. After a day or two in this sleeve, the radio stretches the fabric a little and the result is a fit “like a glove”.

The Evecase sleeve leaves NO room for anything else, except perhaps a pair of earbuds loosely coiled on top of the radio before zipping the case shut. Protection of the ATS-909X is very good though, better than the stock Sangean slip case.

For the XHDATA D-808, I discovered that a model of the popular “Pelican” line of hard cases is an absolutely perfect fit. Model 1040 (Micro Case series) is the one to get, especially if you want the extreme protection this padded, hard-sided case provides. It’ll be right at home among your camping gear for instance, and if it happens to take a tumble from your backpack or car’s trunk, no problem!

It’s important to note that the solid color 1040 cases like mine have a sheet of thin protective foam in the lid, in addition to the molded padding in the bottom half. The clear lid versions of the 1040 case do not have this extra padding.

Let the description and photos of these two case solutions inspire you to consider other ideas for protecting your radio gear! A lot of possibilities exist, considering the wide array of protection available for tablets, laptops, GPS, hard drives, and so on. Many of these can be repurposed for portable receivers.


Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Washington State’s Long-lost ‘Magic Radio’ Santa Gets New Life

This is what the announcer said at 4:30 p.m. one day about a week before Christmas 1950 over the airwaves of radio station KELA in Lewis County: “Yes, stand by for Santa Claus! The Beacon Store, Santa’s headquarters for southwest Washington, presents the most important radio program of the year, Santa’s very own. Santa’s Magic Radio! We’re going to take Santa’s Magic Radio and talk to Santa at his North Pole headquarters! So, stand by for Santa Claus!”

First of all, let me be very clear: I believe in Santa Claus. Second, I’m a sucker for grownups who do things to make the lives of kids more magical. When I was a little kid in the 1970s and was in my “doubting Santa” phase, I’d hear local and national media reports about NORAD tracking Santa’s sleigh, and my doubts were instantly – and permanently – erased.

Fast-forward about 40 years, and I learned this week that there were some grownups in Lewis County who did a pretty special thing every year to help Santa and local kids.

For about three weeks before Christmas, from sometime in the 1940s to sometime in the 1980s, radio station KELA in Centralia/Chehalis would use a “Magic Radio” to connect with Santa Claus at the North Pole for 15 minutes each day. With the swirling sounds of a blizzard in the background, and with help from a fast-talking elf named Tommy Tinker, Santa would read letters from local kids about what they wanted for Christmas.

Click here to read the full story at MyNorthwest.com, including a recording of the December 1950 broadcast

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Updated and Original Versions of the CCRadio-EP Pro Briefly Compared

Remember the American television game show To Tell The Truth? This very long-running show challenged four celebrity guests and viewers to identify the real “central character” in the midst of two impostors.I was reminded of this game show when attempting to tell the difference between the original and recently updated versions of C. Crane’s CCRadio-EP Pro receiver when viewing the front panels. If there’s a difference, I can’t spot it! You need to turn around the radios to see the new EP-Pro’s key feature: switchable 9 kHz/10 kHz tuning steps.

The only clue to the newest version of the CCRadio-EP Pro is the 9/10 kHz tuning switch on the back panel.

I recently met with a good friend and radio hobbyist from Oregon to compare a few selected portable radios, FSL (Ferrite Sleeve Loop) antennas, and the newest low-noise Wellbrook ALA100LN module that was introduced just a few weeks ago. I was particularly interested in a head-to-head match-up of my friend’s original EP-Pro versus my newly arrived EP-Pro (9 kHz/10 kHz steps) version.

I’m looking forward to Thomas’ usual thorough review of the new CCRadio-EP Pro, but I want to offer a few observations of medium wave tuning after my time with the two models:

  • On very weak daytime MW signals, the radios are equally sensitive except on higher frequencies where the new model excels to a moderate degree. It’s enough of an advantage to make the difference between catching an ID or not on a low, DX-level signal.
  • The new EP-Pro feels more accurate–and simply more enjoyable–to tune, thanks to the elimination of false “peaks” surrounding the main signal. This is a BIG plus for the new radio, and frankly the CCRadio-EP should have performed this way from the start. Kudos to C. Crane for correcting this problem, but I can understand why the original version was brought to market with the odd tuning quirk. It isn’t a deal breaker for most non-DXing purchasers.
  • I could not find an instance of soft muting on either radio. I listened for a while to signals barely above the noise floor, and never did audio “cut in and out” suddenly, a clue to soft muting. Both receivers are very useful for chasing weak MW stations…but the new version is highly preferred for ease of tuning because of the lack of false audio peaks.
  • With the tuning working way it should, medium wave channels “snap” in and out as you slowly tune. This took a little getting used to, but after a while I began to appreciate the sense of exactness with the newest CCRadio-EP Pro.
  • Fast excursions up or down the band (either radio) will blank the audio, recovering when you stop tuning or slow down. I believe this is simply a case of exceeding the AGC’s recovery time, not soft muting. It’s easy to live with, but granted the effect is not one of smoothness as found on traditional, non-DSP analog receivers. Successful DXing takes a slower approach anyway when scanning the band; casual listeners may be more annoyed by either version of the radio if they are used to very quick knob-cranking.
  • The Twin Coil Ferrite “AM Fine Tuning” control works well on both units, and gives significant gain to weak signals on either extremity of the band. I love this feature; it makes digging out the weak ones a lot more fun!

So, should you buy the newest CCRadio-EP Pro with the 9 kHz/10 kHz steps?

  • If you already own a CCRadio-EP Pro and are fine with the false tuning peaks and have no desire for the 9 kHz MW step option–keep your radio! Only on high band does the new model have a sensitivity edge. Especially don’t make the jump if you’re a casual listener and listen only to a handful of local stations, or a single distant station.
  • If you do not own a CCRadio-EP Pro yet, but are in the market, definitely buy the newest version. Be aware that you can only be assured of getting the newest model if you purchase directly from C. Crane. Amazon does not yet carry the newest version according to some reports.
  • If you’re a radio junkie and just have to have both…go ahead…we understand!

I also made a short video comparison of the new EP Pro versus the top-ranked Panasonic RF-2200 on medium wave:

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

 

Spread the radio love