Tag Archives: NIST

Jock says, “It’s about time…and beacons!”

A WWV Time Code Generator

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


It’s about time . . . and beacons

By Jock Elliott, KB2GOM

Shortwave time stations can be incredibly useful for shortwave listeners, not just for checking the time, but also for finding out what’s going on with radio signal propagation. What makes these stations particularly valuable is that they are available all the time. I use them often when I am testing radio equipment or tweaks to my listening post.

Chief Engineer Matt Deutch at WWV/WWVB. (Photo: Thomas)

The National Institute of Standards and Technology (part of the U.S. Department of Commerce) maintains a couple of stations devoted to broadcasting time announcements, standard time intervals, standard frequencies, UT1 time corrections, a BCD time code, and geophysical alerts 24 hours a day, 7 days a week.

WWV in Fort Collins, Colorado, according to NIST:

“radiates 10 000 W on 5 MHz, 10 MHz, and 15 MHz; and 2500 W on 2.5 MHz and 20 MHz. Each frequency is broadcast from a separate transmitter. Although each frequency carries the same information, multiple frequencies are used because the quality of HF reception depends on many factors such as location, time of year, time of day, the frequency being used, and atmospheric and ionospheric propagation conditions. The variety of frequencies makes it likely that at least one frequency will be usable at all times.”

In addition, WWV broadcasts the same signal heard on the other WWV frequencies on 25 MHz on an experimental basis. The power is 2500 W and, as an experimental broadcast, is may be interrupted or suspended without notice.

WWVH crew from left to right: Dean Takamatsu, Dean Okayama, Director Copan, Adela Mae Ochinang and Chris Fujita. Credit: D. Okayama/NIST

WWVH, based in Kekaha, Hawaii, transmits 10000 W on 10 MHz and 15 MHz, and 5000 W on 2.5 MHz. A NIST notes that the 5 MHz broadcast, which normally radiates 10 000 W, is currently operating at 5000 W due to equipment failure.

Photo Thomas (K4SWL) took in 2014 of the sign above WWV’s primary 10 MHz transmitter.

Both stations have voice announcements. WWV uses a male voice; WWVH, a female voice. They are staggered in time so that they don’t talk over each other. While doing research for this blog, one afternoon on 5 MHz and 10 MHz, I could hear the female voice, followed by the male voice, so I was hearing both Hawaii and Colorado. On 15 MHz, I could hear only Hawaii. Both stations transmit in AM mode, although I sometimes use upper sideband to pick the signals out of the noise.

CHU’s QSL card used in the 1980s depicting Sir Sanford Fleming, father of uniform times zones.

In addition, there is a Canadian time station. CHU transmits 3000 W signals on 3.33 and 14.67 MHz, and a 5000 W signal on 7.85 MHz.

The frequencies were chosen to avoid interference from WWV and WWVH. The signal is AM mode, with the lower sideband suppressed.

The same information is carried on all three frequencies simultaneously including announcements every minute, alternating between English and French. The CHU transmitters are located near Barrhaven, Ontario.

According to a posting on Radio Reference, there is also a time beacon in Moscow, Russia that transmits on 9996 and 14996 kHz in CW mode. I have never heard that station.

If anyone knows of additional shortwave time stations, please post the information in the comments section below.

Beacons

Another “standard reference” that can be used to figure out what’s happening with shortwave propagation is the International Beacons Project, a worldwide network of radio propagation beacons. It consists of 18 Morse code (CW) beacons operating on five designated frequencies in the high frequency band. The project is coordinated by the Northern California DX Foundation (NCDXF) and the International Amateur Radio Union (IARU).

This page shows the locations of the beacons and gives samples of the signals that can be heard. Each beacon transmits once on each band once every three minutes, 24 hours a day. A transmission consists of the callsign of the beacon sent at 22 words per minute followed by four one-second dashes. The callsign and the first dash are sent at 100 watts. The remaining dashes are sent at 10 watts, 1 watt and 100 milliwatts. At the end of each 10 second transmission, the beacon steps to the next higher band and the next beacon in the sequence begins transmitting.

Clicking around the International Beacons Project website will reveal a wealth of information, including a Reverse Beacon Network — https://www.ncdxf.org/beacon/RBN.html — no kidding.

Finally, if you would like to disappear down the rabbit hole of chasing shortwave beacons, here is a list of 411 beacons around the world: http://www.dl8wx.de/BAKE_KW.HTM

The listing includes the frequency, the location, and the power of the transmitter (among other things). If any reader has experience with these beacons, please post in the comments section.

Spread the radio love

Radio Waves: Life-Changing Song on Radio Australia, NZ Voices in the Air, NIST Test Signal on WWV/WWVH, and 1980s NYC Offshore Pirates

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Paul, Dave Zantow, Mark Fahey, Jerome van der Linden, and Phil Brennan for the following tips:


A former Chinese soldier turned artist explains how a song on Radio Australia changed his life (ABC)

It was 1979 and Jian Guo was stationed at a military camp in Yunnan, a province in south-western China bordering Vietnam, when he listened to Radio Australia for the first time.

The then-17-year-old was patrolling the base one night when he saw a group of fellow People’s Liberation Army (PLA) soldiers tuning radio equipment on the back of a truck.

He initially thought they were intercepting enemy signals, but, as he got closer, he realised they were listening to a radio broadcast.

It was the ABC’s international broadcasting service, which was considered an “enemy channel” at the time.

“The so-called ‘enemy channels’ included almost every station outside mainland China,” Guo told the ABC.

“The biggest ones were the VOA [Voice of America] from the US, Voice of Free China from Taiwan, and Radio Australia.”

Guo had joined the PLA in 1979 during the peak of the Sino-Vietnamese War but, thanks to his talent in the arts, he was chosen to be a secretary of his company, so he could avoid fighting on the battlefield.

Apart from painting propaganda materials, he also looked after weapons and communication equipment like the radios, which was an extraordinary privilege.

He was not supposed to use the equipment he maintained, and was fearful of breaking the rules, but after seeing his comrades listening to the Australian broadcast the curiosity grew inside him.

One night, alone in his room, he turned on a radio.

It took a while for him to find the right frequency, because of the interference put out by China, but then suddenly he was listening to Radio Australia and the song that would change his life.

“It was broadcasting The Moon Represents My Heart by Teresa Teng,” Guo said.

“That was the first time I knew such music existed in the world.” [Continue reading…]

Voices in the Air: Sarah Johnston on 100 years of radio (RNZ)

Kia ora koutou k?toa. Thank you to RNZ and National Library for organising this celebration of the start of radio in New Zealand, 100 years ago tonight.

Tonight is something of a game of two halves: first I will talk about the first broadcast of voice and music by radio and the start of radio broadcasting in this country – and then I’m also going speak about a research project I am working on, radio recordings made of New Zealand’s forces overseas during World War II.

I have always been a huge fan of radio, ever since childhood listening to the Weekend children’s request sessions, and then as a teenager, eating my breakfast with Morning Report coming out of the family transistor beside me. As a radio journalist I became one of those voices and worked for RNZ and Deutsche Welle in Germany, where I experienced the power of voices coming out of the air from the other side of the world. And as a sound archivist working with the Radio New Zealand archives, I learnt that that power of the voice doesn’t diminish with time – listening to a voice from 80 years ago can transport you not just through space but also time. Sound to me, has a power that in many ways seems different to that of visual images. Continue reading

Spread the radio love

Washington Post features WWV and WWVB

A WWV Time Code Generator

(Source: Washington Post via Ulis K3LU)

If you tune a shortwave radio to 2.5, 5, 10 or 15 MHz, you can hear a little part of radio history — and the output of some of the most accurate time devices on Earth.

Depending on where you are in the United States, those frequencies will bring you to WWV and WWVH, two extremely accurate time signal stations.

Developed before commercial radio existed, WWV recently celebrated its 100th anniversary. It’s the oldest continually operating radio station in the United States.

Both stations are overseen by the National Institute of Standards and Technology, the federal agency that governs standards for weights and measures and helps define the world’s official time.

That time can be heard on shortwave radio 24/7.[…]

Click here to read the full article.

If you’d like to hear why I believe WWV/WWVH and WWVB are important services, check out this interview I did with Scott Simon for NPR Weekend Edition.

Spread the radio love

KUNC piece features WWV

Chief Engineer Matt Deutch at WWV/WWVB. (Photo: Thomas)

(Source: Southgate ARC via Eric McFadden)

Broadcaster KUNC reports that a little-known radio station in Fort Collins might one day save the world

An array of radio towers sits behind security fences amid farms and pastures north of Fort Collins. This is home to WWV, the country’s oldest radio call letters. The station’s high-frequency broadcasts can be heard around the globe if you have the right kind of radio.

Now playing: pulsing sounds, every second, followed by an announcement of the exact time.

The station is run by the National Institute of Standards and Technology in Boulder, which is home to the atomic clock. WWV is capable of more than telling time. It could, if need be, save the world.

“Could be,” said Elizabeth Donley, chief of NIST’s Time and Frequency Division. “It’s an important part of our work.”

This year the station conducted communications exercises in coordination with the Department of Defense. Thirty-seven states, National Guard units, emergency management agencies and others participated in simple announcements. They were meant to see how many listeners are out there and how far away they can be reached. The answer: there are thousands of listeners as far away as Australia and New Zealand.

Mark Jensen, a civilian planner with U.S. Northern Command, the military’s homeland security operation in Colorado Springs, called WWV a “most essential asset to our nation.”

Should an emergency arise, volunteers would jump into action. They’re part of a program the military dubs MARS, which stands for Military Auxiliary Radio System. While jokes abound that the operators should not be confused for Martians, their work is serious. It’s doomsday stuff, like responding to the aftermath of a nuclear attack because the associated electromagnetic pulse could wipe out most communications.

Listen to program and read the full story at
https://www.kunc.org/post/how-little-known-radio-station-fort-collins-might-one-day-save-world

Spread the radio love

“NIST Radio Station WWV Celebrates a Century of Service”

NIST radio station WWV from the air. Each of the six frequencies the radio broadcasts in has its own antenna, each one surrounded by a white safety fence. The tall antenna for the lowest frequency has a flashing white strobe on top (in the left foreground) to make it visible to aircraft pilots.
Credit: Glenn Nelson, NIST

(Source: NIST Blog via Eric McFadden)

NIST Radio Station WWV Celebrates a Century of Service

By Laura Ost

What technological application has had musical, timekeeping, navigational, scientific, traffic-control, emergency-response, and telephone applications?

Answer: WWV, one of the world’s oldest continuously operating radio stations.

NIST received the call letters WWV a century ago, in 1919. Since then, it has operated the station from several different locations — originally Washington, D.C., then a succession of locales in Maryland, and now Fort Collins, Colorado.

The programming is rather dry but very, very useful. WWV broadcasts time and frequency information 24 hours a day, seven days a week, to millions of listeners worldwide. The station broadcasts standard time (aka Coordinated Universal Time) and standard frequencies (e.g., at 5, 10 and 15 megahertz) for use in calibrating radio receivers, alerts of geophysical activity, and other information.

WWV broadcasts on six different shortwave frequencies because transmission effectiveness and reception clarity vary depending on many factors, including time of year, time of day, receiver location, solar and geomagnetic activity, weather conditions and antenna type and configuration. Broadcasting on different frequencies helps to ensure that the radio transmission can be received on at least one frequency at all times.

Over the years, WWV has had a startling number of applications.

“Historically, WWV will always be interesting because of the huge role it played in the development of radio in the United States by allowing broadcasters and listeners to check and calibrate their transmit and receive frequencies,” says Michael Lombardi, leader of NIST’s Time and Frequency Services Group.

“Today, WWV still serves as an easily accessible frequency and time reference that provides information not available elsewhere,” he says. “For example, along with its sister station, WWVH in Hawaii, WWV provides the only high-accuracy voice announcement of the time available by telephone [by calling 303-499-7111 or — in Hawaii — 808-335-4363]. These phone numbers receive a combined total of more than 1,000 calls per day.  Both the radio and telephone time signals are used by many thousands of citizens to synchronize clocks and watches, and also by numerous industries to calibrate timers and stopwatches. We also know that WWV is highly valued by scientists performing radio propagation studies because it provides them with accurate time markers on six different shortwave frequencies.”

NIST time and frequency broadcasts are also available via the internet, of course, but the internet is not always available. Radio broadcasts can also support celestial navigation (i.e., using the stars to set one’s course) and can provide backup communication of public service announcements during disasters or emergencies.

WWV is also popular with amateur radio (aka ham radio) operators, who use the broadcasts to get geophysical alerts — indicating how far high-frequency radio signals will travel at the current time and receiver location — as well as to tinker with their electronics and teach young people how radio works.

As a ham operator said on NPR, WWV is “the heartbeat of shortwave radio. When something goes wrong, you check WWV to see if you’re picking up their signal. And you know then that everything’s OK. Maritime operators, military operators, amateur radio operators, we all listen to and use WWV regularly.”

Many technical papers and even books have been written about NIST’s radio work. One such book, published by NIST, is Achievement in Radio.

The radio broadcasting craze started after World War I. NIST, then known as the National Bureau of Standards (NBS), got the call letters WWV for its experimental radio transmitter on Oct. 1, 1919.

A 1919 newspaper story recounted that NBS experimented with broadcasting “music through the air,” transmitting tunes played on a Victrola record player several hundred yards to an NBS auditorium. That demonstration might have been sponsored by military laboratories then operating at NBS.

WWV began broadcasting in May 1920 from Washington, D.C., at a frequency of 600 kilohertz. The first broadcasts were Friday evening music concerts that lasted from 8:30 to 11. The 50-watt signal could be heard about 40 kilometers away.

Among many other relevant activities, NBS supported the public’s use of the novel technology by publishing instructions on how to build one’s own radio receiver. The agency’s 1922 how-to publication cost 5 cents.

A legacy of impact

WWV and WWVH had a broad impact on the world in their early years, as the 1958 NBS annual report indicated:

The radio broadcast technical services are widely used by scientific, industrial, and government agencies and laboratories as well as by many airlines, steamship companies, the armed services, missile research laboratories and contractors, IGY [International Geophysical Year (PDF)] personnel, satellite tracking stations, schools and universities, numerous individuals, and many foreign countries. They are of importance to all types of radio broadcasting activities such as communications, television, radar, air and ground navigation systems, guided missiles, anti-missile missiles, and ballistic missiles.

NIST has conducted several surveys of WWV users. Many people rely on WWV to set the clocks and watches in their homes, as indicated by regular increases in calls to the telephone time-of-day service whenever Daylight Saving Time starts or ends.

In one interesting example of the NIST radio station’s impact, WWV time codes were used in a 1988 project by the city of Los Angeles to synchronize traffic lights at more than 1,000 intersections. City officials estimated that this project saved motorists 55,000 hours a day in driving time, conserved 22 million gallons per year in fuel, and prevented 6,000 to 7,000 tons of pollutants per year.

“It’s not easy to think of a lot of technical services offered by the government that have stayed relevant for 100 years, but WWV is about to do just that,” Michael Lombardi says.

WWV history highlights

WWV has been very useful to the general public and to many industries and government agencies over the years, as indicated by the newly published article, “A Century of WWV,” by NIST electronics technician Glenn Nelson. Following are some of the station’s highlights:

1919—First public announcement of call sign WWV being assigned to NBS in Washington, D.C.

1923—First WWV broadcast of standard frequencies to help users calibrate their radios. (In subsequent years, the station began broadcasting at higher frequencies, as well, to get better transmission and reception.)

1931—The WWV broadcasting station moves to College Park, Maryland.

1933—The WWV station moves to Beltsville, Maryland.

1936—The FBI asks NBS to conduct tests using WWV to determine the feasibility of using one transmitter to cover the entire country. (Such a system was eventually ruled out.)

1936—In response to requests, WWV broadcasts its first musical note. Such tones are useful to piano tuners, for example, and in later years to the police for calibrating radar used to check vehicle speeds.

1937—WWV begins broadcasting time interval signals.

1939—Pioneering NBS effort to reflect WWV transmissions off the moon. It didn’t work then but the military later accomplished it. (It turns out that bouncing signals off the moon is easier and scientifically more useful if done with lasers.)

1943—NIST begins using quartz crystal oscillators to provide greater accuracy in setting standard frequencies.

1945—WWV begins broadcasting the time using telegraphic code.

1948—NBS’ second high-frequency radio station, WWVH, begins operating in Maui, Hawaii (later moved to Kauai), in order to broadcast to the West Coast and to ships and countries throughout the Pacific Ocean.

1950—WWV voice announcements of standard time begin.

1954—The NBS Central Radio Propagation Laboratory moves to Boulder, Colorado, and the quartz crystals are flown to Denver and driven to Boulder (although WWV still broadcasted from Maryland).

1957—WWV broadcasts its first solar-storm and geophysical data alerts.

1960—WWV becomes the nation’s first radio station to place a digital time code in its broadcasts.

1961—The WWV station moves to Greenbelt, Maryland

1963—NIST’s low-frequency radio station, WWVB, goes on the air from Colorado, to broadcast accurate standard frequencies needed by satellite and missile programs.

1966—WWV moves to Fort Collins, Colorado, and begins broadcasting from there.

1967—The second is internationally redefined to be based on the vibrations of the cesium atom, and NIST’s radio stations begin broadcasting Greenwich Mean Time rather than the local time at the stations. (Several years later, WWV and the other stations begin broadcasting Coordinated Universal Time, as they do today.)

1971—WWV begins offering the time of day by telephone, gets 1 million calls per year by 1975.

1980s—GPS and the internet are introduced, offering new and more accurate ways to distribute time and to support navigation, and NBS is renamed NIST.

[…]

Click here to read this full post with accompanying photos via the NIST Blog.

Spread the radio love

Please Take Action: DOD Broadcast and Listener Survey on WWV and WWVH

A WWV Time Code Generator

Many thanks to SWLing Post contributor, Dennis Dura, who shares the following note from Paul English (WD8DBY), Chief, Army MARS:

DOD Broadcast and Listener Survey on WWV and WWVH

From 14-24 August, WWV and WWVH will be broadcasting a DOD message at 10 mins past the hour on WWV and 50 mins past the hour on WWVH. As part of the message, all listeners are asked to take a listener survey at the URL specified in the message.

www.dodmars.org/home/wwv-survey

The results of this survey are shared with WWV/H personnel to show their NIST chain of command how often their stations are monitored and how the various timing signals and messages are used by the listeners.

Please take a listen to this message and take the survey…as the saying goes, “every vote counts” and your input to this survey is being used to help demonstrate the importance of these stations.

Thanks for your consideration in this effort.

Paul English, WD8DBY
Chief, Army MARS

Many thanks for sharing this, Dennis. Readers have also shared this ARRL News item urging listeners to take the DOD survey.

If you appreciate WWV/WWVH, please take a moment to complete this short survey.

Spread the radio love

NIST Radio Stations: MARS COMEX asks for reception reports and suggestions in survey

Many thanks to SWLing Post contributor, Skip Behnke (W2OZ), who notes that MARS (Military Auxiliary Radio System) COMEX website is asking for your reception reports, notes, and suggestions regarding the NIST radio stations WWV, WWVH and WWVB.

This survey is being conducted while WWV and WWVH are announcing military communication exercises.

Click here to take the survey and submit your report at the DoD MARS COMEX website.

Spread the radio love