Author Archives: Troy Riedel

Radio on TV: Science Channel Segment

Image Credit: Wiki Logos Public Domain

Guest Post by Troy Riedel

In keeping with a popular theme here – “radio in/on TV & movies” – I wanted to share the following that I saw on the Science Channel (part of the Discovery Network):

Show: What on Earth?
S5 Ep2
Originally aired 1/15/19

The above referenced episode has a segment on Cuban Numbers Stations – it’s at minute-45 in the 60-minute broadcast version with commercials.

Of course the show’s premise is “what’s this” so the segment starts out (as every segment does) analyzing a satellite photo and shapes (that turn out to be antennas). This segment is more about the “set-up” than the numbers stations themselves. It’s not really geared for radio enthusiasts but rather as something that may interest the general viewer – that there are active “espionage” Cuban Numbers Stations, when & why they started, and a brief mention of the arrests of what eventually became known as the Cuban Five.

The entire segment is only 5-minutes (approximately the same length as their “non-feature”, or minor segments).

I know it’s available free On Demand via Dish Network & is likely available for free on other services. Again – this won’t enlighten anyone who already knows there are “Cuban Numbers Stations”, but it is nice to see shortwave radio on mainstream “educational” TV programs.

Spread the radio love

AM Dxing with the Sangean PR-D15

Guest Post by Troy Riedel

Since the demise of my Sony ICF-SW100, I’ve decided to do some AM Dx’ing. A few years ago I purchased a Sangean PR-D15 as my dedicated “AM Dx Radio”. Despite owning it for a few years, I hadn’t yet really put it through its paces.

Note: My 1994 Gründig Yacht Boy 400, with its 150mm (5.9″) ferrite rod antenna, performs splendidly on AM and until this purchase, the YB400 was the radio I grabbed for AM Dx.

At the time of my purchase – if my memory is correct – the other models I had considered were the CC Radio 2 (now discontinued), the CC Radio 2E (it was a relatively new release at the time), and the Original CC Radio EP (now discontinued & replaced by the CC Radio EP Pro).

Admittedly, part of my decision was based on cost. At the time, the CC Radio 2 & 2E were priced over 2x the cost of the PR-D15 and the CC Radio EP was $15-$20 more when shipping was added. Besides the cost, I chose the PR-D15 based on a few things I had read online. But the aspect that really appealed to me is the 200mm (7.9”) Ferrite Rod Antenna and that compared favorably with the C. Crane offerings (yes – ferrite size isn’t everything, but it is an important consideration). So after having read online comments (reviews, discussion boards, etc.) about the PR-D15, I felt very comfortable with my decision and it wasn’t based on cost alone.

Frankly, I don’t really care how well my AM radio performs during the day (I hope this isn’t sacrilege). Why? During the day whether I’m in the car, working in the garage – whatever – I’ll typically stream my favorite station (NYC) via radio.com on my iPhone so I can pause, rewind, or pick-up where I left off. Until my Sangean PR-D15 can do that, I prefer to daytime stream. My “hobby” of AM Dxing is in the evening – to relax and have fun (and isn’t that what a hobby is supposed to be?). Keep that in mind as I reveal my results.

I intended to do my AM Dx Nighttime Test in one night, but I was getting so may stations that I had to extend it over two nights. I started each session around 8PM and they lasted until 11:30PM – 12AM (over 7.5-hours of testing on consecutive nights late this week). I had my PR-D15 on a lazy susan turntable and I had two nearby laptops – one to aid as an AM Station locator and the other I used to stream. Stream? Yes – to count as a recorded station I had to get a positive station ID. However, many radio programs are syndicated. Syndicated radio (and ESPN radio) can go on seemingly forever between station IDs. If I didn’t get a station ID within 15-minutes, I used the second laptop to go to the web site of the station I believed it to be to “listen live” to see if the radio and the stream matched-up (luckily live web streams are slightly behind live terrestrial radio so the IDs were easy). Often by the time I had given-up and gone to my 2nd laptop, I’d finally get an on-air station ID. I just didn’t want to waste too much time on one station and miss other stations.

Since my test extended for 2 nights, on night two I quickly dialed-through nearly all of the stations I confirmed on night one to make a quick re-confirmation they were still audible on the 2nd night.

Since I captured so many stations, I was overwhelmed trying to finish and thus I feel this test is still incomplete. My wife typically ends all of my radio playtime (my man cave is a “sitting room” off the side of the master bedroom & there is no wall – no door – so it’s completely open). But my wife and my step-daughter have a weekend out of town in mid to late March. And that means I can stay up all night and do one non-stop test session. Is it bad to say that I cannot wait to be alone?

My QTH is ~ 35-miles east of RIC (Richmond, VA) Airport. The tables below (broken into three files) are my results. Some frequencies have multiple station IDs – since when turning the radio and nulling signals, sometimes one station disappeared and another jumped onto the dial. If/when I post an update of my all-nighter, I’ll add another column to the spreadsheet to include the transmitter strength for better context. It should also be noted that I recorded straight-line distances & not driving distances (via an online straight-line/GPS calculator).

I was impressed that I successfully captured three Iowa stations. And though I find it almost unfathomable, I truly believe I was on the verge of successfully logging a station in Sandy, UT which is over 2000-miles away (there are only six stations assigned to the 1640 frequency, and given the content I [barely] heard, all indications are that it was KBJA)!

I also believe I captured at least one Super-Clear Channel station from Mexico, but unfortunately I just couldn’t successfully verify the station ID. I hope to have a future opportunity to add it to my list.

My ultimate goal is to: (1) compile & maintain a spreadsheet of every AM station that I am able to successfully ID; and (2) maintain a record of the most AM stations I was able to ID in a single one-night, non-stop session.

Despite being somewhat incomplete, I’m impressed by my results. I’m interested to see what you think so please post your comments below!

I should note that my results are strictly off the internal ferrite antenna – no external antenna, no passive loop antenna was used to enhance any signal.

To save column space, please click on each table below. A larger & easier to read image will open in a separate window or tab (depending upon your browser setting).

Spread the radio love

Autopsy Report: Sony ICF-SW100s

WARNING: due to the graphic nature of these photos, those radio enthusiasts who love the Sony ICF-SW100 may want to look away. Parental Discretion is advised.

Guest Post by Troy Riedel

Some of you may remember my recent lamenting regarding the unexpected loss of my beloved Sony ICF-SW100 posted on this blog. The Medical Examiner opened the radio’s chassis last week. The manner of death is rather obvious, but what caused it?  Before I reveal my research, allow me to quicky remind you of the context to the situation.

Due to a medical emergency, I “deployed” for two months to tend a remote farm (one of the few benefits was being able to drive a tractor – a kid from my generation grew-up dreaming of piloting heavy construction equipment and farm implements). I traveled there with two shortwave portables: the Sony ICF-SW100s and the XHDATA D-808. After a long day of work, shortwave radio was my only mode of relaxation during my extended period of solitude.

I had always used Eneloop nickel metal hydride (NiMH or Ni-MH) rechargeable batteries in my SW100. I’m not a physics nor a chemistry major (the closest knowledge I have is enough atmospheric physics to have once been a moderately successful synoptic weather forecaster & aviation weather briefer in the military). As such, my education doesn’t directly correlate so I offer an advance apology for my overly simplistic and layperson synopsis of the specific cause & manner of death of my SW100.

I think we all know that a battery is “energy stored inside of a small container”. And energy is heat – measured by random motion (random motion is directly proportional to heat meaning as motion increases or decreases, the heat generated by the motion will do the same).

NiMH & Lithium battery cells have an alkaline electrolyte, usually potassium hydroxide (potash). The electrolyte serves as the catalyst to make a battery conductive by promoting the movement of ions from the cathode to the anode on charge and in reverse on discharge. The electrolyte is sensitive as it has to be to promote charging & to generate power. And the heat that’s produced by the battery can be dangerous because as we previously discussed, a battery is a “closed” container that stores energy … and if we think about it, so is a bomb, right?

Well, the term closed is slightly misleading and not 100% correct. A rechargeable household battery has a vent which acts as an exhaust. This vent allows excess heat to escape. If you Google image search “NiMH battery anatomy”, there are two ways to vent heat. On Panasonic Eneloops and most commercial household batteries, the vent is the rubber puck (disk) under the positive button tab. This disk seals the internals (thus the term “closed”) while also permitting excess heat to [generally] safely vent. Some manufacturers actually have multiple exhaust openings (holes) around the button top that act as vents. Regardless of how it’s done, these batteries do have an exhaust or venting system.

To summarize thus far, rechargeable batteries vent excess heat (whether generated during use or during charging) from the top of the battery. Venting heat during charging is critical because as well all know, one does not want to overheat batteries during (re)charging. This is why everyone should use a smart charger.  A smart charger is one that monitors the energy level of the battery and shuts-off when it reaches capacity (I learned that capacity is defined differently by different manufacturers but all seem to shut-off somewhere at 90% or greater). I remember the portables that were released maybe 10-15 years ago that introduced charging inside the radio. The very early models were not smart, the user had to either program how many hours you wished to charge the battery/batteries or the radio itself was programmed to charge for x-amount of hours regardless of whether the batteries needed to be charged for that long (you could very easily continue charging for hours after the battery attained 100% capacity – a very dangerous situation for your valuable radio!). Thankfully most newer radios, except the inexpensive “no-frills” radios, have smart changing technology. Regardless, I have never been a fan of using my radio to charge batteries as I’ve always felt this is too dangerous because the process produces heat and I do not want [excess] heat generated (or vented) inside of my radio!

There are typically more shipping restrictions, more transportation restrictions with Lithium batteries than there are for NiMH batteries (I’m sure most people have noticed shipping restrictions when buying electronics regarding the shipment of Lithium batteries – and if shipment is allowed, it’ll cost more to ship because Lithium batteries cannot be shipped via all modes). Lithium (3.7v) & NiMH (1.2v) batteries are essentially the same technology, except Lithium generates more “power” aka “more heat” (3x the voltage) and are thus much more sensitive to heat (including environmental heat) .

In doing my research, I found a slight conflict regarding the stability of NiMH batteries in storage. Some manufacturers warn that NiMH batteries should not be stored in temperatures over 30C (86F) while others list 40C (104F) as the threshold. What happens above this threshold? The electrolyte catalyst is activated, and the battery will generate its own heat (heat that must be vented).

At this point, I’m sure you can see where this is going. I had two NiMH batteries inside of my SW100. The two stacked batteries increased the inherent risk (in a worst-case situation, two batteries would create & release/vent more heat than a single battery). I was in a hot environment, I lacked air conditioning for most of the time, and I had a long drive of nearly 300-miles to/from my location at the start & the end of the two months I was there. My SW100 was apparently put into peril when it encountered environmental [ambient] temperatures that exceeded the Eneloops threshold (30C? 40C?). And this caused the NiMH Eneloops to heat-up beyond normal, vent the excess heat, and thus “melt” part of the PCB and the back case of the SW100.

This did not happen during normal storage of my radio in my temperature-controlled house, but rather it happened in the adverse environment I temporarily subjected the radio to.

                      

Yes, I know … think what you want (but please don’t say it). User error.  I should have known better.  It was my fault. It was dumb. Yes, yes, yes & yes answer those four statements. I know, I know …

There are three positives to this:

(1) I learned a painful albeit valuable lesson;

(2) Maybe others can learn from my folly; and

(3) Parts to maintain these classics must be salvaged. I donated my radio (including the AC adapter) – it’s not a total loss and it still has value as a “parts radio”. My SW100 is now in the hands of a skilled, master technician who might be able to save the life of another (or multiple) SW100 radio(s).

My loss just might be someone else’s gain? I take comfort that my radio may live on (as an organ donor) to potentially provide years of enjoyment for someone else.

Postscript re: my initial post:

I have picked-up a few of my other shortwave radios since my initial post (PL-390, PL-880, XHDATA D-808, Satellit 750) & I have started listening again.

And I did have surgery a couple of weeks ago for the physical injury I sustained while tending the farm (my ICF-SW100 wasn’t the only casualty during this period of time). After a frustrating 2+ weeks, I’m starting to make progress with my physical healing. And now that I have a definitive answer on the manner & cause of death of my SW100, I’m psychologically healing from that as well.

UPDATE after my initial post:

I neglected to make the following statement: one can debate whether the excessive heat being vented caused the PCB & case to melt, or if the vent(s) in one or both batteries failed, or if the battery heated-up too quickly & too much for it to safely vent?  The only thing I do know: the batteries exhibit no physical damage or defect so the exact mechanism of the the excessive heat will remain unknown.

Spread the radio love

Radio life after death

A guest post by Troy Riedel:


This is a sad story.  Well, it’s sad for me.  But hopefully my sad story will yield “radio life” for somebody else and that life will bring them joy.

I’ve been an SWL’er since the early-90s.  Due to the decline of international broadcasters, “collecting” has become just as – if not more – important to me than listening.  I’ve always been fond of the Sony ICF-SW100 pocket radio.  I often read here on this blog about Thomas’ affection for it.  To make my dream a reality, on 19 November 2017 I found the perfect SW100 (with the leather case) and I purchased it.  It did not disappoint!  That radio has to be the most sensitive radio for its size out there.  No, correction – that little baby has held its own against any other portable shortwave radio (of any size) that I own (I have 17 or 18, incl. this SW100).  That’s quite amazing for a true pocket radio.

But please allow me go back to the beginning of my story.  Once I acquired the ICF-SW100, I assembled a “kit” … piece-by-piece (remember, I’m a collector).

I surmised that the SW100 would fit into the Sony ICF-SW1 case – and I was correct (sans the SW100’s leather case).  The SW1 case was one of my first purchases for my SW100 as I wanted something rugged to protect it.

The Sony AN-1 antenna works great with the SW100, and that was part of my kit.  Of course, I also wanted the OEM Sony Compact Reel Antenna.  “Check” – found one on eBay!  The OEM AC adapter? Yes, “check” that one off the list.  A photocopy of the OEM manual would not do – I found an original on eBay and “check”, that was added to the kit.

I already owned a Sony AN-LP1 (active) antenna.  That would not fit into the case, so I added a TG34 active antenna that I already owned (that’s a Degen 31MS clone).  Why?  I gotta have a ready passive antenna in my kit.

Wait, who wants a 30+ year old OEM set of earbuds?  Exactly, neither do I.  This is the only thing I did not want to be OEM!  I bought a new pair of Sony earbuds (off Amazon) to throw into the kit.  Other than the TG34, everything in the kit had to be Sony.  In the end, this handy little case was my Eutopia – it had everything I needed in its own “shortwave bugout kit”.

Of all of the radios in my shortwave arsenal, this was by far my favorite.  Hobbies should bring us joy.  So even if there weren’t many broadcasters to listen to, this little pocket radio never failed to bring me joy.

The last time I really used this radio was June-August 2020.  My newborn grandson was in the NICU far from my son’s home.  I “deployed” (with my SW100 bugout kit & 5th wheel camper) to my son’s very rural & very remote farm (275-miles from my home).  I was there to tend the farm, solo, for that period of time while my son and his family could be with my grandson at a specialty hospital some 350-miles away.  During this stressful & physically demanding time – tending to more farm animals than I care to mention and rustling bulls that escaped from the pasture – my SW100 was the only friend that I had.  It provided many, many hours of enjoyment.  Literally, other than a neighbor about ¾ of a mile up the road my ICF-SW100 and I were alone (not including the 50+ animals I tended to) from June through August.

Fast-forward to the present: last weekend I reached for my kit and I removed the my SW100.  I turned it on and there was no power.  Not surprising but actually very unusual as my NiMH Eneloop batteries typically last for a year or more inside my radios in “storage”.  I reached for the battery compartment, I felt an anomaly on the backside of the case and imagine my horror seeing this as I turned it over!

Surprisingly, there is zero damage to the Eneloop batteries (they did not leak).  I can no longer power the radio via ANY batteries, but amazingly the radio seems to operate at full capacity via AC Adapter.  Whatever happened inside the radio, it still seems to operate (though admittedly I haven’t taken it through all of its usual paces).

Unfortunately, a pocket radio that only operates via AC power does not suit me.  There is a better option: my loss may be someone else’s gain?  I am sending the radio and the necessary components to Thomas’s friend Vlado for a full autopsy (Vlado emailed that he has worked on these radios for years and has “never” seen this issue before).  After the autopsy, my radio will become an organ donor.  The remaining healthy components of this radio – and there are many – will be used for repairing other SW100s (singular or plural).

Strangely, I cannot detect any other “trauma” to the radio other than that one melted corner.  The battery compartment *seems* undamaged though I refuse to open the case as I do not want to accidentally damage the radio’s healthy components (I’ll let the professional “coroner” do that).  I am looking forward to the coroner’s report because I need to know what the heck happened to my baby?!

In closing, though we’ve only had a 3-year plus relationship I can honestly say this amazing little pocket radio had become a great friend.  I’m sure it’s grief, but I am considering liquidating the remainder of my radio & antenna collection – my heart just isn’t “in” to SWL at the moment.  And the timing of this is just awful for me: I’m having surgery Tuesday for an injury I incurred eight months ago while tending my son’s farm.  I had big plans that my SW100 and I would pass the time while I convalesce.  But alas, my buddy will be headed to radio heaven as an organ donor.  May others benefit from my loss.

Guest Post by Troy Riedel

Spread the radio love

New Space Weather from VLF Communications

Image Credit: NASA

As an amateur astronomer & SWL enthusiast, I always find it interesting when both disciplines overlap.  I came across an article on the Internet posted by sciencealert.com of such an overlap.

The Earth is surrounded by two radiation belts (Van Allen Belts).  But something strange has been discovered.  After NASA launched a space probe in 2017 – and after analyzing collected data – the two Van Allen belts have been pushed farther away from Earth by a third “area”.  That area is a “man-made barrier” created by Very Low Frequency (VLF) radio communications.

Scientists postulate this new man-made VLF barrier, a form of man-made Space Weather, has pushed the two radiation belts farther from Earth.  And as such, this has created a “protective bubble” from potentially dangerous solar discharges and their radiation streams.

For those interested, you can read the full article here..

Guest post by Troy Riedel

Spread the radio love

My Replacement Stand Journey for the Grundig G6 Aviator

 

Guest Post by Troy Riedel

I’ve mentioned here in the past that I am an astronomy hobbyist first, and an SWL hobbyist second (call SWL my cloudy nights hobby).

A couple of years ago my Grundig G6 suffered from the troublesome “sticky” body that afflicts all of the Grundig/Eton radios of that era.  I used the recommended cleaning agent as has been posted here (Purple Power) to remove the sticky residue.  It worked great – but I discovered one must be very careful using this cleaner.  Why?  Excess cleaner seeped into the crevices where the radio stand mounts, was not fully removed/dried, and the cleaner “ate” the nubs off that hold the radio stand in place.  The result: a broken radio stand!  Right Photo: you’ll see glue residue smeared on the broken stand – where I tried to make & glue new nubs and failed miserably.

Through my astronomy hobby, I discovered someone (Joel) who 3D prints some astronomical accessories.  After ordering & receiving three quality products, we established a friendly rapport.  I asked him if he knew of anyone who 3D printed and commercially sold radio stands.

He replied “No” – and frankly he wasn’t quite sure what I was referring to – but he essentially conveyed “if you supply me a photo and dimensions, I will gladly print one that you can try”.  Great news!

After supplying him a photo and supplying dimensions, Joel printed off a stand plus a spare and shipped it to me.  Unfortunately, it did not fit … the side nubs were simply too small.

I wrote-off the encounter as having been worth the nominal cost & effort.  But Joel was not ready to write this off!  He asked for more details re: why it didn’t fit (we designed the stand about .25mm too thin – a small tolerance but significant in that the stand simply would not fit – the nubs were too small at the thickness that was printed).  We consulted, both made recommendations, then Joel promptly 3D printed another stand (v.2) and mailed it to me.

The end result: it fits perfectly – works perfectly.  I now have a replacement G6 stand and I feel my little Grundig Aviator Buzz Aldrin Edition (note the astronomy connection) was now, once again, whole!

 

For those who’ve replaced radio stands before, the biggest obstacle is *not* breaking it when you try to insert it into the back of the radio.  A tried and true trick is to freeze the replacement stand, so it contracts very slightly (by the mm), and then insert it into the body of the radio.  The great thing about this stand: it is designed with a cut-out on each side.  This cut-out allows the stand to ever-so-slightly flex (better – and probably more safely – than the freezing trick). This design allowed me to safely and rather effortlessly insert the stand without fear of breaking it.  And the stand’s thickness is quite capable of supporting the weight of the radio (note: the plastic of the 3D printed stand is not quite as hard as the OEM stand but it is still more than capable of supporting the radio’s weight).

I’m sharing this because Joel has added the G6 stand to his little BuckeyeStargazer Web Store , for $10 – what a great deal for us suffering G6 folks with broken stands.

At this time, the Buckeye Stargazer only offers the G6 stand.  But, who knows?  Before I came along, he didn’t offer any stand.  You might be able to cajole Joel into prototyping another stand?  For that – you’d have to contact him directly to see if he were receptive to more experimentation.

So, thanks again to the Buckeye Stargazer!  It’s always nice to tie my two hobbies together: astronomy & shortwave radio.

Spread the radio love

Solar Minimum: Deep, Deeper…and even Deeper?

Solar Minimum is DEEP and appears to be continuing.  Observer Franky Dubois from Belgium – who posts for the Solar Section of A.L.P.O. – Assoc. of Lunar & Planetary Observers (http://alpo-astronomy.org/) has fully observed three complete Solar Cycles over the past 38-years and he’s graphed the Sunsport R Number – defined as R = K (10g + s), where g is the number of sunspot groups and s is the total number of distinct spots. 

This is what he posted yesterday on the A.L.P.O. Solar Message Group:

Minimum cycle 21: 11.4 April 19[8]6

Minimum cycle 22: 10.4 May 1996

Minimum cycle 23: 2.88 November 2008

Status of cycle 24 thus far: 1.6

Many experts in December (2019) speculated we had reached “Solar Minimum” (error factor of +/- 6-months).  Well, it’s 5-months later and we’ve only seen a couple of next cycle [reversed polarized areas] sunspots/small groups – most of which died-out very quickly and did not sustain a full transit across the observable disc of the sun.  We’ve seen no real evidence – yet – that we’re on the other side or up-side of Minimum.  As an amateur/hobbyist astronomer & Solar Observer myself, I’ve seldom taken the time to set-up my gear & observe (even in wavelengths other than visible).

It’s been discussed here and elsewhere before, but looking at the last 53-years of data there has been a very, very sharp decline in Solar Maximums [and Minimums] sunspot numbers.

Guest Post by Troy Riedel

Spread the radio love