Category Archives: Ham Radio

RAC Canada Winter Contest 2020 now includes a “Rookie Plaque”

Many thanks to SWLing Post contributor, Brice Atchison, who shares the following announcement from the RAC:

RAC Canada Winter Contest 2020:
Contest Period: 0000 UTC to 2359 UTC December 19, 2020.
New “Rookie” Subcategory and Sponsors for the RAC Contests
https://www.rac.ca/rac-canada-winter-contest-2020/

For immediate release:

In December each year, Radio Amateurs of Canada sponsors the RAC Canada Winter Contest. Amateurs all over the world are invited to participate.

The global pandemic will most likely still be a fact of life on Saturday, December 19 when the RAC Canada Winter Contest takes place and we want to make sure that everyone participates safely. The RAC Contest Committee is therefore asking all participants to follow the guidelines provided by the government and health officials in your respective area for any of the multi-op categories enabled within the contest. If you do carry out an operation in any of the multi-op categories, please advise as part of your log submission that you have followed your locally applicable guidelines for group sizes and social (physical) distancing.

New “Rookie Plaque”

Radio Amateurs of Canada is pleased to announce the creation of a new “Rookie” subcategory for both the RAC Canada Day Contest and the RAC Canada Winter Contest.

The new “Rookie Plaque” will be sponsored by RadioSport Manitoba and the Winnipeg Amateur Radio Club and will begin with this year’s RAC Canada Winter Contest which will be held on Saturday, December 19.

“Rookie” is defined as a single operator who was first licensed as a Radio Amateur less than 36 calendar months (three years) before the date of the contest being entered in this subcategory. Any level of Amateur Radio licence available from the licensing jurisdiction qualifies for the subcategory.

The participating licensed Amateur is required to self-declare their eligibility, but the RAC Contest Management Committee reserves the right to request proof of eligibility to assist in resolving any disputes.

Eligible Categories for the Rookie Plaque:

Participants are eligible for the new Rookie Plaque in the following categories. Note: only one plaque is available across the three categories designated below.

Single Operator All Band Low Power (SOABLP)
Single Operator All Band High Power (SOABHP)
Single Operator All Band QRP Power (SOABQRP)

Qualification for the Rookie Overlay Category:

Any Single Operator All Band entrant, in the categories noted above, who meets the Rookie requirements will need to select or enter the Rookie category by adding a new “Category-Overlay: Rookie line” in the Cabrillo log file header. You may need to manually enter this line if the logging software you use does not support this category overlay.

In addition, entrants will need to indicate the date they were first licensed by adding a comment with that information in a “Soapbox:” field in the Cabrillo header. An example would be: “Soapbox: First licensed in January of 2019.”

Rookie participants will still qualify for the plaques in the three eligible categories should they receive the highest score in one of those categories. Previous rookie winners are ineligible for an additional Rookie Plaque in future contests.

RAC Cabrillo Guidelines:

As indicated above, as part of the contest rules update around the new Rookie subcategory we have updated the RAC Contest Cabrillo Guidelines document to reflect these changes. Specifically there is now a Category-Overlay field in the specifications with the expected input to be “Rookie”.

We hope that contest software authors will be able to update their software to include these changes. Until that time, contesters will have to manually enter the following line in their Cabrillo log: “Category-Overlay: Rookie” if they qualify as a rookie and wish to compete for this new plaque.

We have also aligned our Cabrillo document to update to all the current Cabrillo specifications to the published standards that apply to our contests based on the 2020 publication of the V3 standards.

The updated document is available for download at:

RAC Canada Winter Contest 2020 Rules

Alan Griffin
RAC MarCom Director
wp.rac.ca
720 Belfast Road, #217
Ottawa, ON K1G 0Z5
613-244-4367, 1- 877-273-8304
[email protected]

Spread the radio love

Using the new Xiegu GSOC and G90 transceiver combo for shortwave broadcast listening–?

Listening to Radio Prague via WRMI with the Xiegu GSOC

Many thanks to SWLing Post contributor, Tim R, who writes:

Dear Thomas,

First of all thank you so much for the all of the energy you put into the SWLing Post. When crazy things are happening in the world it’s a very welcome sanctuary! Sending you some coffee money.

I plan to become a ham radio operator next year. Bought the book last week and once I finish a large project for work, I’m on it. Of course, the Tech license will only give me limited exposure to HF, but I’m already plotting an HF radio purchase because I can’t WAIT do do some SWLing with it. Up to this point, I’ve only owned portable radios and never really have used external antennas other than some cheap wire.

My question…

I’ve been considering grabbing a Xiegu G90 because it seems to be a nice comprehensive beginner’s HF rig and is very affordable. I read your review and understand your caveat that there’s no way to completely disengage the transmit so that it can’t be accidently hit if connected to an RX only antenna. I’m not worried about that because I’m going to hang a G5RV wire antenna and use it both for TX and RX. No problem if RF is accidently sent through it.

Of course, there’s a lot of buzz in the Xiegu community about the new GSOC controller. I had not planned to exceed $600 for my radio purchase, but I love the idea of the controller. But when I add $550 for the controller and $450 for the radio, all the sudden I’m at $1,000.

After some deep soul-searching (and let’s be frank here, a blessing from my wife and CFO) I’ve decided to raise my budget to $1,000.

All of this to ask, if you had $1,000, would you buy the G90 and GSOC controller, or would you get something else keeping in mind I want to use this as much for shortwave listening as for future ham radio work?

Any advice would be appreciated.

-Tim

Thanks for your question, Tim! And thanks for giving me a complete picture of your budget/radio requirements and the antenna you plan to use.

I’ll try to answer your question here, but understand this is more what I would do if I were in your shoes. This is a pretty simple question, but not simple to answer because there are so many options on the market.

Xiegu GSOC and G90 combo option

Keeping in mind, I feel like the GSOC is a work in progress at the moment and not fully developed–check out my initial review. Once the next firmware update is available it could certainly solve a number of small issues I found with the unit. It works, but it’s not a refined product yet.

It’s ironic, actually. When I received your message this morning, Tim, I was SWLing with the GSOC and G90–listening to Radio Prague on WRMI. In the end, though, the GSOC is primarily an enhanced interface for the G90. While it does add some extra functionality (and should, over time, add much more) it doesn’t really change the performance characteristics of the G90. I’d check out my G90 review for more info about performance.

Would I purchase the G90/GSOC combo if I were in your shoes? Again, it’s early days, so I don’t feel comfortable making a recommendation call yet. The G90 is, without question, a great value at $450 (often even less) investment. I like it primarily as a field radio, though, and once you add the GSOC to the mix, it’s a little less portable because it’s two units with quite a few interconnect cables. Of course, you can swap the GSOC unit for the G90 control head at any time, but that involves attaching and re-attaching the control head each time (there’s no accessible serial port on the back of the G90, for example)

If you’re a huge fan of the G90, the GSOC should eventually be a worthy addition. At present, for your use as a new ham and for SWLing, I’d perhaps consider other options too.

The Icom IC-7300

The Icom IC-7300 SDR transceiver

Since you’ve raised your budget to $1,000, I’d consider adding the Icom IC-7300 to your list. At present, via Universal Radio you can buy a new IC-7300 for a net price of $1039.95 after rebates. Sometimes, the price will go even lower although during the C-19 pandemic, I think that’s less likely to happen since supplies are lower than normal for many items.

The IC-7300 has better performance specs than the G90 and can output a full 100 watts if you like. The display is touch sensitive rather than capacitive like the GSOC. The display is also much smaller than that of the GSOC. The IC-7300 has a lower noise floor than the G90.

I think the IC-7300 is a great radio for SWLing, but the audio for broadcasts is sort of “flat.” You might check out this post where we did some audio comparisons. It does have native broadcast recording to an SD card, which I love. The GSOC should be adding this soon, too.

I would include the new Icom IC-705 as a recommendation here, too, but it’s $300 over your budget.

A PC-connected SDR and separate transceiver

 

This might be the option I’d take if I were in your shoes.

Get the 20 watt Xiegu G90 ($450) as planned or consider a radio like the 100 watt  Yaesu FT-891 ($640), Both of these radios are general coverage and would serve you well for SWLing and ham radio activities. I’d personally invest the bit extra and get the FT-891 since it would also give you 100 watts output and even has advanced features like memory keying.

We actually mentioned both radios in a similar post this year.

If you buy the pricier Yaesu FT-891, you’d still have $360 to invest in your shack!

I’d then buy an Airspy HF+ Discovery ($170–my review here) or SDRplay RSPdx ($200–my review here) and get all of the benefits of a PC-connected SDR.

These SDRs would take your SWLing to the next level. They have uncompromised performance for the price.

Both companies continuously improve their products/applications based on customer feedback. Indeed, check out some of our recent posts about SDR# free upgrades. Mind blowing stuff–!!!

You could even use the SDR as a panadapter for your transceiver which would give you the ability to have a full-screen spectrum display on an external monitor at home.

More options?

Of course, these answers only scratch the surface. I haven’t even included used, late model gear in these recommendations.

I’d like to give you a firm recommendation about the GSOC and G90 combo, but I’m waiting to see how this next firmware upgrade goes–early days still.

Post readers: Please comment if you have even more options/suggestions for Tim. What works for you within a $1,000 budget.

Spread the radio love

Shortwave listening with the Yaesu FT-817, FT-817ND, or FT-818–?

I recently re-acquired a Yaesu FT-817ND general coverage QRP transceiver. I wrote a post with some info about this radio and how it came into my possession over at QRPer.com, if you’re interested.

My question here: Have any folks in the SWLing Post community ever used the FT-817 or FT-818 series transceivers for serious shortwave broadcast listening?

I originally owned a first production run FT-817 back in 2000 when I lived in the UK. I did quite a bit of SWLing with it then, but I never compared it with other radios. I do recall feeling it was a very capable general coverage transceiver, though, and remember logging a number of broadcasters (although I can’t seem to find those logs these days). Of course, propagation was quite a bit better back then, too!

Please comment if you use or have used the FT-817/818 for shortwave listening!

Spread the radio love

First look at the new Xiegu GSOC Touch Screen Transceiver Controller!

Yesterday, I took delivery of the new Xiegu GSOC Touch Screen Controller which has kindly been sent to me by Radioddity on loan for a frank evaluation. [Thank you, Radioddity!] GSOC development has been closely watched by Xiegu owners since its announcement this summer.

To be clear: the GSOC is not a transceiver, it’s a control head for the Xiegu G90 and X5105. Readers might recall my recent review of the Xiegu G90.

The Xiegu G90

I’ve heard some GSOC reviewers on YouTube note that the GSOC may also work with the tiny Xiegu G1M transceiver, but I’m not sure how it could convey the I/Q information since I don’t believe the G1M has I/Q output (perhaps someone can correct me as I’ve never used the G1M).

Connecting the GSOC to the G90 is a simple process:

  1. Remove the G90’s control head
  2. Use the supplied 9 pin serial cable to connect the GSOC to the G90
  3. Connect the G90 I/Q out to the GSOC I/Q in with the supplied 1/8″ (3.5mm) stereo patch cable
  4. Connect the G90 and the GSOC to a power supply or battery (each unit has a separate power connection)

The GSOC Sports a Large Touch Screen Interface

No doubt, the best thing about the GSOC is the 7 inch color touch LCD screen. It’s a capacitive touch screen as well, so feels more like a tablet screen than a soft pressure-sensitive screen.

While it doesn’t seem to have the pixel density of some modern tables, the resolution is more than adequate for the task and is, frankly, quite attractive!

The GSOC has a large encorder with a finger dimple that “floats” as you turn the the knob (much like my Icom IC-756 Pro).

This firmware version does have a number of adjustable settings for the GSOC and transceiver–all are easy to use.

A huge bonus is that the GSOC sports two USB ports. I’ve connected my portable wireless Logitech keyboard/trackpad to the GSOC via one of the USB ports and it works brilliantly.

I find it’s much easier to use a mouse or trackpad to click buttons on the screen as some buttons–especially the cluster below the frequency display–are tiny and a little more difficult to accurately click/select with a finger.

Form factor

The GSOC form factor works well for tabletop operation. There’s a fold-out bail that tilts the display forward for very easy operation. In fact, the GSOC bail must be used because it also acts as a stand-off to give the serial cable and IQ cable room to be connected. I prefer this rather than having all of the cables exit one side of the unit, for example.

When everything is connected, there are quite a few connections and cables in play:

  • Two power cords (G90 and GSOC)
  • Microphone
  • CW Key
  • Serial Cable
  • IQ cable
  • Antenna cable (for the G90 body)

If I owned a GSOC, I would sort out a way to manage the cables better and move the G90 body off of my table to save space.

One note: while the GSOC has a dedicated microphone port, it does not have a CW key port.  Your CW key still needs to be connected to the G90 body.

Notes

Keep in mind, all of these notes only pertain to the initial firmware version:

  • Startup time is about 29-30 seconds.
  • Many features such as CW/Voice memory keyers, CW reader/decoder, audio recording, auto notch filter, and many others have not been implemented yet but will be in the next firmware release according to the manufacturer.
  • The pointer arrow shows on the display regardless if you’re making selections with an attached mouse or your finger.
  • There’s a latency issue with the CW keyer in this firmware version which makes it difficult to form CW characters properly so I can’t test CW functionality. I understand this will be fixed in the next firmware version.
  • I’ve noticed some images across the spectrum display (most notably on 31 and 20 meters. I believe this may be due to the I/Q signal being a little too “hot.” I’m not sure if there’s a way to adjust this with the current firmware.

At time of posting, there’s very little in the way of a manual for this radio. It was shipped to me with this quick operation guide (PDF).

Price

The GSOC retails for $550 US via Radioddity–which is more than the G90 transceiver (currently $430).

If you’re a fan of the G90 or the X5105, though, it makes for an attractive and useful addition in the shack. It not only adds features to the G90, but even an FM mode.  While the GSOC is certainly portable, I’m not sure I’d take it to the field often because it would require extra setup time, bulk and weight. In an extended field event like Field Day or a park vacation, it might be worth the extra weight and space as it will soon give you programmable voice and CW memory keying.

What I find most interesting about the GSOC, in fact, is that it’s a case in point about how our radio world is moving into a “modular” area where components like the transceiver, amplifier, and panadapter/controller can be swapped out.

Any questions?

The Xiegu GSOC is following in the footsteps of other rado products out of China these days in that they’re initially released with a basic set of features to get you on the air, but advanced features and adjustments/tweaks are made in firmware upgrades after production. Based on the success of the G90 and Xiegu’s attention to customer feedback, I assume many of the missing features will be added soon. I’ll take a deeper dive into the GSOC in the coming days and certainly note when firmware upgrades have been made.

If you have any questions about the GSOC feel free to ask in the comments section of this post. I’ll do my best to answer, but keep in mind I’m pretty much learning the ropes here without a manual!


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

A review of the lab599 Discovery TX-500 QRP transceiver

The following review of the TX-500 was first published in the October 2020 issue of The Spectrum Monitor magazine.

Last year, a company out of Russia started dropping hints about a QRP transceiver they were developing called the Discovery TX-500.

The prototype photos looked like nothing else on the market: it was unusually thin––only 30mm thick––and sported a CNC-machined aluminum alloy body. The radio also featured top-mounted controls ideal for field use, and a high-contrast LCD backlit screen with a spectrum display.

Some of the initial photos of the prototype showed water droplets on the front faceplate indicating that the TX-500 would be water/weather resistant––certainly a first for the amateur radio market.

After the initial hints dropped by lab599, the TX-500 developed somewhat of a cult following among field-portable radio operators (like yours truly) as well as those into radio preparedness. However, after this tantalizing flurry of initial images, there was a lull, and very little information was available about the rig. Then in late July/early August 2020, we finally learned that the TX-500 would be sold in the US by Ham Radio Outlet. HRO’s product page posted a price of $789.95 with a projected availability date of mid-to-late September 2020.

Thus I felt quite lucky when I learned that a loaner TX-500 was being sent to me for one week to evaluate and review. Those of you who know me and read my reviews know that I typically prefer to spend several weeks with a radio before I feel comfortable enough writing a review. In this case, that simply wasn’t an option. I decided to push aside all of my other obligations and simply dive into this radio.

The following review is based on using the TX-500 in the shack and in the field over the course of seven days.  During this week, I managed to activate eight parks for the Parks on the Air (POTA) program, exclusively with the TX-500. I’ve taken the TX-500 to state parks, lakes, game lands, a National Forest, and a National Park. The TX-500 experienced full-on sunshine during a long operating session, and was even rained on once.

I’ve also made a number of QSOs with this radio from home, both via CW and phone. In total, I’ve logged an average of 31 CW and SSB contacts with the TX-500 each day I’ve had it.

Initial impressions

The TX-500 looked so impressively machined and designed based on the initial photos and few videos published, I honestly feared it couldn’t possibly measure up to the expectations built up about it. Would it be the rugged radio we’d heard about? Could it travel? Could it hold up in the field, under variable conditions and in fickle weather?

With the radio finally in hand, I noted the build quality and thought to myself, This rig might just do it. 

The body of this radio is absolutely solid.  It’s weighty without being heavy, and there are no loose parts––no wobbly encoders, no wonky buttons, and relatively few seams or openings that might be subject to dust or water penetration. It’s rugged, sturdy––and, I must add––beautifully engineered.

The layout is simple: there’s a backlit LCD screen on the left of the radio with four function buttons above and below it. These buttons control most of the functions and features you use while operating: CW adjustments, Receive and Transmit audio EQ, Noise Reduction, Noise Blanker, CW Memory keying, A/B VFO control, and more.

To the right of the display you find a set of buttons stacked vertically that include the power button, mode, band switching, and a menu button for making less common adjustments. The encoder is raised and feels silky-smooth to operate. There appears to be no brake control, but this is not a problem because this rig doesn’t need it: it’s well-balanced and feels of excellent quality. Indeed, tuning is adaptive and fluid; I’ve been very pleased with the lab599 tuning.

There are two knobs above the encoder which adjust the AF gain and RIT. Other buttons next to the encoder control things such as the tuning steps and speed, controls lock, and memory writing.

The low-profile side panels do protect the TX-500 front faceplate on flat surfaces.

You can tell the TX-500 was designed by an amateur radio operator because the radio is laid-out beautifully. All frequently used functions are easy to find and intuitive. There’s no need to do a deep-dive into embedded menus to, say, change the RF gain control.

There are a number of general coverage QRP transceivers on the market, so even just looking through the features and specs it’s clear how it might stack up.

This being said, the TX-500 does lack a few things you might find in other field portable QRP general coverage transceivers. We’ll start with those.

No (Built-In) Speaker

The TX-500 does not have a built-in speaker. With weather-resistance in mind, lab599 may have opted to leave the speaker out of the chassis, and instead include a speaker microphone combo with their basic package. The supplied speaker/mic is of good quality and the audio can be made incredibly loud. And, although I’m not a fan of speaker mics, I must admit this one has grown on me: in the field doing SSB, it’s much easier to bring the speaker closer to your ears when trying to work a particularly weak station.

But what about when operating CW––? In that case, the speaker mic becomes inconvenient as you are forced to port out the audio via the speaker/mic connector. It’s worth noting here that the TX-500 package being sold by Ham Radio Outlet includes an audio breakout cable so you can attach your favorite headphones or boom/mic set. My pre-production unit did not include this, so I had to use the speaker/mic and its mono audio port.

I, however, tend to operate with headphones in the field unless someone is helping me log stations. Headphones help me isolate myself from noises and distractions around me (like my dog straining on her leash, whining over her inability to chase squirrels). Headphones also improve my ability to detect and work weak signals.

When I operate CW in the field, I tend to place the TX-500 on my backpack and attach the speaker mic to the top flap. It’s worked out quite well.

Audio from the speaker microphone is tinny, but actually well-tailored for voice and Morse Code. For shortwave radio listening, however, that’s another story:  you’ll certainly want to connect a proper speaker.

No ATU

The TX-500 does not include an internal automatic antenna tuner. For those used to operating an Elecraft field radio, the Xiegu G90, or the CommRadio CTX-10, for example, this might seem like a major omission.

While it would be nice to have an internal ATU, I’m quite happy to do without one, as all of my field antennas are resonant on the bands I operate. But as a point of comparison, it’s nice when, say, my end-fed antenna isn’t ideally deployed and can’t get that 1:1 match on the 40 meter band; with my KX2, I can simply push the ATU button and the rig solves the match.

I carry a simple Emtech ZM-2 balanced-line manual antenna tuner, just for when an ATU is needed. But out of the eight field activations I’ve done thus far with the TX-500, only once did I add the ZM-2 to the mix, and just to bring the match from a 2.3:1 to 1:1. If I wanted an external automatic antenna tuner, I’d grab an Elecraft T1. It’s a gem of an ATU.

No internal rechargeable battery (yet!)

The TX-500 transceiver doesn’t have an internal rechargeable battery option like the CommRadio CTX-10 or Elecraft KX2. But like the new Icom IC-705 sports, lab599 is designing an attachable rechargeable battery pack that will fit the TX-500 beautifully. You can see the recessed battery connections on the back/bottom of the TX-500.

 

As of this time, no availability date for this future option has been announced, but I can confirm it is indeed in the works.

What makes the TX-500 unique

For some, the idea of a radio which lacks an internal speaker and ATU might lead the rapid decision to dismiss it outright. I would urge those folks to continue reading, however; the TX-500, due to some very unique features, has certainly carved out a market niche, and thus is worth the consideration.

Rugged, weather-resistant body

As I mentioned above, the TX-500 has a solid aluminium-alloy body which gives it a distinctly solid feel. There are no gaps between chassis plates, and all of the buttons, knobs, as well as the encoder are sealed to prevent water penetration.

The TX-500 design smacks of military-grade construction, but in truth is a blend of military specs and amateur radio functionality. For example, the chassis is, if anything, over-engineered for most amateur radio applications. If I owned the TX-500, I wouldn’t hesitate to take it on extended hiking trips, even in dubious weather. Of course, that’s not to say I’d intentionally leave the rig out in heavy rain. But I wouldn’t worry about a sudden rain shower ruining my radio. If this were a military radio, it would have fewer controls and likely be somewhat channelized. Instead, the TX-500 has the full set of controls, features, and filters you’d expect in an amateur radio transceiver with a military-build quality.

In short, it might appear to belong to rugged military kit, but it’s very much designed for the demands of amateur radio operators.

Although the TX-500 is incredibly solid, it’s also lightweight. I weighed the radio with its speaker/mic and power cable. The total weight was 1 pound, 7 ounces. One of my blog readers noted that such a lightweight radio would simply break in half if they hit it over their knee. My reply? No way. In fact, I’m willing to bet such an action could break your knee cap!  Please don’t try this, you’ll surely regret it.

Connectors

One of the most frequent questions readers ask about the TX-500 is why its makers chose to include non-standard (to radio) GX12mm multi-pin aviation connectors for the rig’s power port, CAT control, data, CW, and speaker/mic…?

The answer? In brief, it’s water resistance.

GX12mm connectors allow for a watertight connection and protect the radio very well from water intrusion. And while GX12 connectors aren’t standard in the world of amateur radio, they are certainly standard in aviation, commercial, and military applications.  These connectors are widely available online and there are even mom-and-pop ham radio retailers like W2ENY selling premade TX-500 cables and adapters on his eBay store and website.

Meanwhile, the TX-500 uses a standard BNC antenna connection for antennas, which I’m very pleased to note.

LCD screen with spectrum display

 

Most of us now expect modern SDR-based transceivers to sport a full-color backlit––and sometimes touch screen––display. In the field, however, color TFT displays can be incredibly difficult to read in full sunlight.

Like the Elecraft K and KX series radios, lab599 opted for a more simple, higher contrast monochrome backlit LCD display. This pleases me to no end, because I much prefer this type of display in a POTA or SOTA field radio just because it’s so much easier to read in bright outdoor light. Also, I feel touch screens aren’t as well suited for hiking, camping, and heavy field use–they’re more vulnerable to being damaged.

The TX-500 LCD is chock-full of information and very responsive. The spectrum display (no waterfall) is fluid and useful, as effective as any full-color display.

Benchmark current drain

When operating on battery in the field, current drain in receive mode is a major factor. The more slowly you can sip from the battery while the radio is receiving, the longer play time you’ll have. I like my general coverage field radios to consume less than 400 milliamps.

My benchmark general coverage radio, the Elecraft KX2, consumes a mere 135-140 milliamps at moderate volume levels. I can operate for hours with a compact battery. The TX-500 consumes between 110-120 milliamps at a moderate volume level; yes, even a smidge better than the KX2. The company lab599 actually specs out this radio at 100 milliamps, and I’m confident one could achieve it simply by using headphones.

While there are transceivers like my MTR-3B which have even lower current drain, they’re CW-only and lack general coverage reception, large displays, and the like. Thus, the TX-500 sets a benchmark for general-coverage full-featured portable transceivers in terms of drain.

On the air

In terms of operating the TX-500 in the field, I have very few complaints. The menu system is very easy to use and is intuitive. I never needed to reference the manual––but if you do, the manual is one of the best I’ve seen from a new transceiver manufacturer (click here to download he manual and other TX-500 files).

The buttons are easy to press. They have a tactile feel and proper response so you know you’ve properly engaged a setting. The features and buttons are well spaced, too, and the thin-but-wide chassis actually provides generous surface area for the controls. One could easily operate the TX-500 with gloves on, should it be necessary in cold climates or winter conditions.

As mentioned earlier, the TX-500 does not have an internal ATU option like the Elecraft KX2 or the Xiegu G90. For some, this will be a huge negative against the TX-500. Good internal ATUs allow operators to use a much wider array of antennas in the field–including random wire antennas–and I’ll admit that I’ve gotten quite used to having one in my KX2 and KX3. But again, to get the most signal per watt, I use resonant antennas in the field these days, so very rarely need or employ an ATU.

So how does the TX-500 play? In the following sections I’ll address putting the TX-500 on the air as both a CW and SSB operator. Note that I did not have the opportunity to test the TX-500 on digital modes––like PSK-31 and FT8––as my pre-production model lacked the necessary cables, nor was building my own possible during the week of testing.

CW

Of the (very few) videos that were produced prior to the TX-500’s release, a couple of these were made by a CW operator in Russia. Unfortunately, I was able to glean little information from those videos. I was very eager to try the TX-500 in CW mode as this has become my preferred method of activating parks for POTA.

When I received the TX-500, it did not come with the same cables that Ham Radio Outlet will include. It did, however, include the 5 pin connector for the CW port, so I simply soldered a cable and connected it to the terminals on the back of my Vibroplex single lever paddle.

This way, I was able to avoid purchasing and attaching a three conductor ?” female plug. (This intervention did mean that, in the field, my key would weigh more than the transceiver–!)

But the question every CW operator has asked me is “Does the TX-500 support full break-in QSK?” Full break-in QSK allows instantaneous transmit/receive recovery time, so that even higher speed operators can hear between sent characters while operating. This means if another op wants to grab your attention while you’re operating––or, in the parlance, “break in”––you’ll hear them in the middle of sending a word.

Unfortunately, the TX-500 does not support full break-in QSK. Instead of being based on pin diodes (like the Elecraft KX series) the TX-500 uses a relay. This means that you’ll hear a relay click each time the radio switches between transmit and receive.

In the past, I’ve reviewed transceivers in which the relay click was honestly quite loud, even annoyingly so. Fortunately, the TX-500 has such a solid and well-sealed body that I find the relay sound to be the least distracting of any relay-based transceiver I’ve tested. You can still hear it, but it’s reasonably soft. So that you can hear what I mean, in this video, you’ll hear the relay clicking when I point the camera toward the rig.

The T/R recovery time on the TX-500 is quite rapid. While I can’t hear audio between characters sent within a word, I can hear between words when the relay is set to the quickest recovery and I’m operating around 17-20 WPM. If, however, you operate at higher speeds and prefer full break-in QSK, you may wish to give the TX-500 a pass.

The TX-500 comes with a full complement of CW operation adjustments, like Iambic type, straight key, weight ratios, sidetone volume, and the like. One oddity is that it doesn’t measure CW speed in words per minute. It uses a completely different scale that measures with a much wider number range. I set my speed to “97,” which I guessed might be an equivalent of about 17 or 18 WPM. While I first thought this feature odd, I soon came to appreciate this specificity because without the restriction to 1 WPM increments, as with most transceivers, it gives the op more flexibility to adjust speed.

I discovered that the TX-500 can handle dense RF environments while doing a park activation during a CWT contest. Even with a 400 Hz filter engaged (and it could have been much narrower), the TX-500 effectively blocked adjacent signals. To demonstrate, I made the following short video in the field:

Rob Sherwood recently tested the TX-500 and published the results on his excellent receiver test data table.  Although very respectable, I expected the TX-500 to sport more competitive numbers based on my “real-world” tests. Still: this is a field radio. Not a rig I’d reach for to win the CQ WW contest. In field operations, TX-500 is a brilliant performer and has better overall specs than a number of popular radios including the immensely popular Yaesu FT-891, for example.

CW ops should keep in mind that the TX-500 has no internal speaker, so to operate you’ll either need to connect an external speaker, the supplied speaker/mic, or headphones. Since I primarily operate with headphones, this will be no inconvenience to me. As there was no headphone connector with this pre-production model TX-500, I simply used the speaker mic for all operations.

When the TX-500 was first released and HRO made a product page on their website, the rig had no CW memories, which I truly rely on for field operations. CW memories allow me to manage my logging workflow, pre-format responses, and CQ calls without having to manually key everything. Lab599 must have noted this omission, and by the time I received my evaluation unit, a firmware release had been issued which added CW memories. I immediately performed a firmware update (a simple process, by the way). I even passed along some suggestions and critiques of the CW memory keyer; lab599 immediately made adjustments and fixes as needed for optimal performance.

If you’ve ever saved CW memories in a radio, you may have found it frustrating to achieve the right spacing for the radio to provide a proper playback. It often takes me multiple tries, for example, to save a park number into my KX2. The TX-500, fortunately, is very forgiving and I found it very simple to set CW memories in the field.

While not on the radio I used at time of evaluation, I understand lab599 is planning to add a “beacon mode” for calling CQ, as well.

All in all, I find the TX-500 a pleasure to operate in CW mode. Indeed, 75% of all of my logged stations were made in CW mode.

Speaking of which, funny story…I activated Pisgah National Forest and the Blue Ridge Parkway in the mountains of western North Carolina. I hammered out 13 logged stations from Maine, Vermont, Ontario, Illinois, Kansas, Louisiana, Florida, and several states in the middle of that footprint.

On this map, all of the green pins below were CW contacts and made with one watt of power. The red pins are SSB contacts with 10 watts. The yellow star is roughly my location:

I switched to SSB mode to make a few phone contacts, and called CQ. No one heard me. I was puzzled…but suddenly I realized I had left my power setting at 1 watt! The previous day, I was running tests into a dummy load. Yes, all of those CW contacts were made with truly low power, indeed!

SSB

The TX-500 has a lot to offer the SSB operator. I’ve gotten great reports from my SSB contacts, and have even listened to my own signals via the KiwiSDR network.

The TX-500 includes all of the features a phone operator would expect, such as compression and gain control.  Of course, you can enable VOX operation if you’re using your favorite boom headset. The TX-500 allows you to not only to change the receiver EQ settings, but also transmit EQ settings. This means you can tailor your TX-500 to get the most audio punch per watt while operating phone. Very nice!

The TX-500 ships with a rugged, simple speaker microphone. I’ve been using this exclusively during the evaluation period, and have been very pleased with it. The mic even has a protected mono audio out port on the side, should you wish to attach a different external speaker.

Perhaps the only negative from my point of view as a phone operator is that the TX-500 lacks a voice memory keyer. While it has this feature for CW, it lacks it for SSB.

UPDATE – February 4, 2021: lab599 has just added voice memory keying in their latest firmware update! The TX-500 now has two voice memory memory slots of 20 seconds each: VXM1 & VXM2. After performing the firmware update, it’s easy to record voice memories:

  1. Navigate to CW memory menu.
  2. Press and hold VXM1 or VXM2 to record. REC icon on.
  3. Press the associated VXM key again to stop.
  4. Press VXM key to Play. PLY icon on.
  5. Press VXM key to stop.

To put this in context: all recent Elecraft rigs have voice memory keying; the new IC-705 includes this as well. Even the Yaesu FT-891, which is one of the most affordable compact transceivers in the Yaesu line, has voice memory keying. For POTA and SOTA activators, voice memory keying is huge, as it frees you to do other things like log, eat a sandwich, or talk to others while calling CQ. It also saves your voice. For example, on the KX2, I record a CQ message like “CQ POTA, CQ POTA, this is K4SWL calling CQ for Parks On The Air;” I save the message to memory location #1, then play it back in “beacon mode.”  The KX2 will continuously transmit my voice CQ message with a few seconds between each call. When someone answers my call, I can easily pause the beacon by hitting the PTT switch or one of the transceiver keys.

I do wish the TX-500 had this handy feature, but because of a lack of internal storage, I don’t expect it will be added. This isn’t a deal-killer for me, as I could add an external voice memory keyer, but it certainly would make for ideal SSB field-radio operating.

Shortwave broadcast listening

Of course, since I’m a hardcore shortwave radio listener and the TX-500 has a general coverage receiver, I did quite a bit of casual shortwave radio listening during the week I had the radio in the shack.

What’s great about the TX-500 is that it has a very capable receiver with a low noise floor and superb sensitivity and selectivity. The preset filter bandwidths can be adjusted in all modes including AM. I have the widest setting at 10 kHz, which gives one proper fidelity with strong shortwave broadcasters.

Here’s a link to a quick video I made showing how the TX-500 sounds while tuning around the 31 meter band.  Note that the amplified speaker I use for this demo is limited in fidelity and I recorded this using an iPad. Still, I think you’ll get a decent idea how well the TX-500 plays as a shortwave receiver:

The TX-500 will tune to the bottom of the AM broadcast band as well, and I’ve spent time listening there. I did not have the time to do a deep dive, but I find that the TX-500 performs rather well in those low bands…a rarity for a ham radio transceiver.

Summary

Every radio has its pros and cons. When I begin a review of a radio, I take notes from the very beginning so that I don’t forget those initial impressions. Here’s the list I created over the time I’ve spent evaluating the TX-500.

Pros:

  • Solid, rugged chassis with weather/water resistance and built-in low-profile side protection panels
  • High-contrast LCD display that’s responsive and easy to read in the field
  • Excellent receiver sensitivity, selectivity, and low noise floor
  • Full complement of features and adjustments expected in a modern transceiver
  • Multiple adjustable filter settings
  • Very low current drain for a full-featured general coverage transceiver (100-120 milliamps)
  • GX12mm connections provide further water protection (see con)
  • CW memory keying
  • Easy firmware upgrades with supplied USB cable and lab599 firmware application
  • For US customers: a Nevada-based service center for repairs (no word yet on similar centers elsewhere)
  • Per lab599 announcement, hopefully available next year: an attachable TX-500 battery pack

Cons:

  • No built-in speaker
  • No internal ATU option
  • No full break-in QSK CW operation (although relay is quiet and audio recovery fast)
  • GX12mm connections are non-standard on amateur radio transceivers for water resistance, thus one might need to purchase or build cables for non-standard accessories (see pro)
  • No voice keyer for phone operation Update: this feature was added in the February 4, 2021 update!
  • No notch or auto-notch filters at time of publication (these may be implemented in future firmware upgrades) It does indeed have a notch filter now!
  • Fold-out feet could scratch soft surfaces, such as wood

Conclusion

Would I buy the TX-500 myself? Well, since I’m a heavy field operator, yes, without hesitation. Moreover I believe the $800 price tag is reasonable for a radio with its feature set and rugged military-spec type design.

I confess, I have been looking forward to getting the TX-500 in hand for a year now. So when HRO put up a product page and started accepting orders, without much thought, I placed mine. Yet within an hour, I was rethinking my decision, and soon I called to cancel it. Why? A bit of buyer’s remorse. For although instinct told me I’d like the rig, common sense said I was getting ahead of myself. The truth was, at that time the TX-500 didn’t have CW memory keying, and without that, I knew this field radio would not get a lot of use during my park and future summit activations. Moreover, I’ve no less than six eight QRP transceivers––not to mention an Icom IC-705 on order for review––so it wasn’t as though the need was great. Instinct or no, I felt I’d made the decision in haste, and my head said my heart should take a few beats before committing.

Yet, after receiving the TX-500 loaner, and taking it to the field––and, of course, lab599’s addition of that all-essential memory keying––all of a sudden the TX-500 became much more appealing. And I’ll admit, this radio really grew on me over that evaluation week (ah, the dangers of reviewing radios…you do often become attached). There’s also been comfort in knowing the TX-500 wouldn’t be harmed should I be caught in a pop-up shower and anxious for the safety of my equipment. But there’s something more: it turns out my initial instincts were correct. I just happen to really like this radio.  The way it feels and functions suits me as an operator and its performance exceeds expectations. And that’s a thing I couldn’t have known until I gave it a spin.

While no radio is perfect, I nonetheless suspect the TX-500 will gather a loyal customer base soon; indeed, it had a following well before anyone laid hands on it. Including me.

So now I am seriously considering purchasing the TX-500 for keeps.

Click here to check out the lab599 Discovery TX-500 at lab599.

Click here to purchase a TX-500 from HRO.

Check out W2ENY’s TX-500 cables and adapters on his eBay store and website


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

The new Yaesu FTDX10: Yaesu’s latest hybrid SDR HF transceiver

I’ll admit it: I like what I see here.

Yaesu has announced their latest compact 160-6 M transceiver: the FTDX10. Based on the specifications, it looks like it borrows heavily from the FTDX101 series, which is a very good thing.

At 5″, the color TFT display is larger than that of the IC-7300 & IC-705. The specifications appear to be benchmark with excellent dynamic range (3rd IMDR quoted at “109 dB or more”).

We’ll post more details as updates become available. Wimo has listed a pre-order price of €1,550.00 w/out shipping or VAT.

Here’s the full press release via WIMO:


We are pleased to introduce the FTDX10, a new long-waiting compact HF/50MHz 100W SDR Transceiver!

Hybrid SDR Configuration
Like the FTDX101 series, the new FTDX10 utilizes the Yaesu Hybrid SDR configuration – Narrow Band SDR and Direct Sampling SDR. The Narrow band SDR receiver emphasizes excellent receiver performance, while the Direct Sampling SDR provides a Digital Processing Real-Time Spectrum Scope.

Narrow Band SDR with 3 types of Roofing Filters and Phenomenal Multi-signal receiving Characteristics
Like the FTDX101 series, the Down Conversion type receiver configuration with the first IF at 9MHz has been adopted. It makes it possible to incorporate excellent narrow bandwidth crystal roofing filters that have the desired sharp “cliff edge” shape factor. Thanks to the Narrow Band SDR with the latest circuit configuration including 500Hz, 3kHz and 12kHz roofing filters and lownoise oscillator, the RMDR (Reciprocal Mixing Dynamic Range) reaches 116dB or more, the close-in BDR (Blocking Dynamic Range) reaches 141dB or more, and 3rd IMDR (third-order Intermodulation Dynamic Range) reaches 109dB or more, in the
14MHz band at 2kHz separation.

250MHz HRDDS (High Resolution Direct Digital Synthesizer) affords Quiet and Clear Reception
The local circuit of the new FTDX10 uses 250MHz HRDDS method same as the FTDX101 series. Thanks to its characteristics that improve the C/N (carrier to noise) ratio and the careful selection of components in the design, the phase noise characteristic of the local signal achieves an excellent value of -145dB or less in 14MHz at 2kHz separation.

3DSS (3-Dimensional Spectrum Stream) on the 5-inch Full-Color TFT Display with Touch-Panel Functionality
The 5-inch Full-Color panel shows the 3DSS display. By touching the frequency display, the numeric keypad is displayed, and the active band and frequency adjustment can be set by direct input. Frequency setting and adjustment can also be performed by turning the MAIN dial or touching the scope display. Similar to the FTDX101 series, the MULTI display, RX operation status display, Center, FIX and Cursor modes are available at WiMo.

Front Panel Designed for Superior Operating Efficiency
MPVD (Multi-Purpose VFO Outer Dial), is a large multi-purpose ring around the outside of the VFO dial that enables control of
Clarifier, C/S (custom selection function) and recall of memory channels.

Remote Operation with optional LAN unit (SCU-LAN10, see WiMo Website)
Remote operation of the transceiver is possible with the optional SCU-LAN10 and SCU-LAN10 Network Remote Control Software. In addition to controlling the transceiver basic operations, the versatile scope displays enable sophisticated operation such as monitoring the band conditions on a large display at a location away from the ham shack by connection to a home LAN network.

The features of the new FTDX10 include:
– 15 separate band pass filters
– Effective QRM rejection with the IF DSP (IF SHIFT/WIDTH, IF NOTCH DNF, DNR, COUNTOUR)
– High-quality and super stable final amplifier utilizing the new push-pull MOSFET RD70HUP2
– Aluminum Heat Sink with 80mm low-noise axial flow cooling fan
– High Speed Automatic Antenna Tuner with a large capacity 100-channel memory – RF & AF Transmit Monitor
– Microphone Amplifier with Three-stage parametric Equalizer (SSB/ AM mode)
– QMB (Quick Memory Bank)
– Band Stack Function
– Optional speaker – SP-30 designed for the new FTDX10
– Optional roofing filter (300Hz) – XF-130CN available

The new FTDX10 will be available in early December 2020 at WiMo.

Radio Features:

– HF/50MHz band 100W Transceiver
– Hybrid SDR configuration utilizing a Narrow Bandwidth SDR, and a Direct Sampling SDR
– Narrow Band SDR enables Phenomenal Multi-signal Receiving characteristics (2kHz RMDR 116dB+, 2kHz BDR 141dB+, 2kHz 3rd IMDR 109dB+) – Down conversion,
9MHz IF Roofing Filters produce Excellent Shape Factor
– 250 MHz HRDDS (High Resolution Direct Digital Synthesizer) Ultra Low-Noise Local-Oscillator System
– 15 Separate Powerful Band Pass Filters (BPF)
– Effective QRM Rejection with IF DSP (IF SHIFT/WIDTH, IF NOTCH/DNF,CONTOUR,DNR, APF)
– High-quality and Super-Stable Final Amplifier utilizing the new push-pull MOSFET RD70HUP2
– 5-inch Full Color Touch Panel and 3DSS (3-Dimensional Spectrum Stream) Display
– MPVD (Multi-Purpose VFO Outer Dial) enables Outstanding Operating Performance
– Quick Memory Bank (QMB)
– Supports CW operation with multiple functions such as: CW zero-in, CW Auto zero-in, CW Reverse, CW decode, CW keying Signal form Shaping by FPGA and others
– RTTY (FSK)/ PSK Encode/Decode Function
– Other practical features such as Optional RF Gain Selection by IPO. Automatic Gain Control, Quick Split Function – SD Card Slot
– Remote Operation via Internet with optional LAN-Unit (SCU-LAN10 see WiMo website)

Supplied Accessories:

Microphone SSM-75E
DC Power Cable w/Fuse
Spare Fuse
6.3mm 3-contact Plug
Operating Manual

Specifications:

Frequency Ranges:

RX

  • 30kHz – 75MHz (Operating)
  • 1.8MHz – 29.699999MHz (Specified performance, Amateur bands only)*
  • *5.1675/5.332/5.348/5.3585/5.373/5.405MHz (US only), 5.351500-5.366500MHz (EU only)/ 5.25000-5.406500 (UK
    only)
  • 50MHz – 53.999999MHz (Specified performance, Amateur bands only)
  • 70MHz – 70.499999MHz (Specifed performance, UK Amateur bands version only)

TX

  • 1.8 – 54MHz (Amateur bands only)

Modulation Type: A1A(CW), A3E(AM), J3E(LSB,USB), F3E(FM),F1B(RTTY),G1B(PSK)
Frequency Stability: ±0.5ppm (32°F to +122°F/0? to +50?, after 1min)
Supply Voltage: DC 13.8V ±15%
Circuit Type: Double-Conversion Superheterodyne
Intermediate Frequencies 1st IF 9.005MHz; 2nd IF 24kHz
RF Power Output: 5W – 100W (CW, LSB, USB, FM, RTTY, PKT); 5W -25W (AM)
Case Size(W x H x D): 10.47 x 3.58 x 10.35(inch) / 266 x 91 x 263 (mm) *Protruding parts not included at WIMo
Weight (Approx.): 13lbs/ 5.9kg

Spread the radio love