Category Archives: Ham Radio

RSGB Convention is live Saturday, October 10, 2020 until 17:00 BST

I’ve been watching some of the RSGB Convention programs this morning. There are a number of fascinating topics now and this afternoon (UK time).

There are actually two simultaneous video streams with different topics each hour. I’ve embedded both below.

Click here to check out the program.

Stream 1

Stream 2

The perils of radio self-enabling…

So the SWLing Post has been online now for twelve years and during that time I’ve been accused of being a “radio enabler.” Of course, I’ve never counted just how many, but I’m guessing somewhere in the region of 115,900 times.

Truth is, radio love is infectious.

In the past, I’ve read reviews and articles about radios that have lead me down the path to making a purchase. Countless times.

Yesterday, though, I quite literally enabled myself.

It all started with the Elecraft KX1

I posted this article on QRPer.com where I listed four ham radio transceivers I regretted selling. The number one pick was the Elecraft KX1 QRP CW transceiver.

I owned the KX1 for years. It was my first CW-only transceiver and my fist backpack-friendly radio for proper lightweight, low-impact, field radio fun. I sold it in 2016 to help fund the purchase of my Elecraft KX2.

Besides simply admiring a radio that embraced the philosophy of “form following function,” the KX1 had features you wouldn’t expect in a radio so compact and so lightweight. For example…

SWL Band RX

Wayne Burdick (N6KR)–co-founder and engineer/designer at Elecraft–is a shortwave radio enthusiast.

The KX1 was designed so that while you’re camping, hiking, or activating a SOTA site, you can also do a little SWLing!

Even though the KX1 is a CW-only rig in transmit, they added both LSB and USB out-of-band reception. Depending on the KX1 band configuration, you can zero-beat broadcasters, widen the adjustable filter, and enjoy shortwave listening in the field.

When I owned the KX1, I did this quite often. Don’t get wrong: it couldn’t compete with, say, a dedicated shortwave receiver like the Tecsun PL-680, but it worked well enough that listening to even weaker stations was very doable. When one-bag travelling or camping, it was great to have one radio that could serve two functions.

LED Log Book Lamp

Photo: Eric (WD8RIF)

To my knowledge, the KX1 is the only portable transceiver I know of that includes a built-in logging lamp.

I remember once operating the KX1 on the beach at Jekyll Island, GA one evening and using the lamp to illuminate my logging sheet. Good times…

Perfect ergonomics for winter field operating

Elecraft KX2 (top) and KX1 (bottom)

Even though the KX1 is a small radio, it was one of the first field rigs to have top-mounted controls. All of the buttons, knobs, and pots are well-spaced and easy to access. I especially love the pots used for the RF Gain, Filter, and AF Gain–raised, thin, tactile stems, essentially, that could be easily adjusted even while wearing thick winter gloves.

In fact, the KX1 is the only portable radio I’ve ever operated that didn’t require me, at some point, to remove my gloves.

Insane amount of features

In true Elecraft fashion, the KX1 packs a ton of features specifically designed around field operation. Check out the features from their quick reference sheet above.

Here’s what happened

I published my article on QRPer.com and decided, on a whim, to see if there were any listings for the KX1 on QTH.com’s classifieds list via my QRP Transceiver shopping list.

One ham had a KX1 listed. It was nearly identical to the one I owned and even included the same Pelican case. The only difference was my KX1 sported 4 bands (80, 40, 30, and 20m)–this one only had three bands (40, 30, and 20). Not a big deal because typically when I’m hiking I do little operating on 80 meters. If I decide to add 80 meters, I may still be able to snag the appropriate kit module.

The listing had no price.

I called the seller–who turned out to be fairly local–and within an hour he came back with his offer: $300 for the entire kit plus true shipping costs. I thought that was a fair price, so I purchased it and he even shipped it same day.

Moral of the story?

Next time I make a post about radios I’ve regretted selling, trading, or giving away, I need to publish it, then slowly back away from the computer.

I’m not going to be too hard on myself this time, though: I’m truly looking forward to putting the KX1 back in rotation here at SWLing Post HQ.

If you feel inclined, I would encourage you to comment on this post about radios you’ve regretted selling (click here to read the full QRPer post). I love hearing why specific radios have strong appeal for certain enthusiasts.

Just take my advice and stay away from the classifieds!

Radio Waves: Signals from Mars, Two More Hamstronauts, M17 Digital Voice Mode, and Climbing Trees for a Better Signal

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Troy Riedel, LG, Ron and the ARRL News for the following tips:


Radio Signals from Mars (Spaceweather.com)

How close is Mars? Close enough for radio reception. On Oct. 4th, amateur radio operator Scott Tilley picked up a carrier wave from NASA’s Mars Reconnaissance Orbiter (MRO) circling the Red Planet. Turn up the volume and listen to the Martian Doppler shift:

Tilley is a leader in the field of satellite radio. Dead satellites, zombie satellites, spy satellites: He routinely finds and tracks them. “But this was a first for me,” he says. “A satellite around Mars!”

It’s not easy picking up radio signals from distant planets. NASA does it using the giant antennas of the Deep Space Network. Tilley uses a modest 60 cm dish in his backyard in Roberts Creek, BC. This week’s close encounter with Mars set the stage for his detection.

“MRO’s signal is weak, but it is one of the louder signals in Mars orbit,” says Tilley. “The spacecraft has a large dish antenna it uses as a relay for other Mars missions. With the proximity of Mars these days, it was the perfect time to try.”[]

Two More Astronauts Earn Amateur Radio Licenses (ARRL News)

Although the lockdown of Johnson Space Center (JSC) postponed amateur radio training and licensing over the past 7 months, NASA ISS Ham Project Coordinator Kenneth Ransom, N5VHO, was able to work with all of the new astronaut-class graduates, as well as offer some refresher courses with already-licensed astronauts. Licensed astronauts on the International Space Station (ISS) may operate the on-station ham radio equipment without restrictions.

Astronauts often participate in Amateur Radio on the International Space Station (ARISS) contacts with schools and groups on Earth.

NASA Astronaut Kayla Barron, who completed her introductory course in June and received basic ham radio operations training in late September, recently tested and received the call sign KI5LAL.

European Space Agency astronaut Matthias Maurer passed his amateur radio exam on July 30, and he got his basic ham operations training in July. He now is KI5KFH.

Astronauts Shane Kimbrough, KE5HOD, and Shannon Walker, KD5DXB, completed the refresher course earlier this year. Two other new astronauts are in the queue to take the Technician license exam. — Thanks to Rosalie White, K1STO[]

M17 Aims to replace proprietary ham radio protocols (Hackaday.io)

While M17 might sound like a new kind of automatic rifle (as actually, it is), we were referring to an open source project to create a ham radio transceiver. Instead of paraphrasing the project’s goals, we’ll simply quote them:

The goal here should be to kick the proprietary protocols off the airwaves, replace DMR, Fusion, D-Star, etc. To do that, it’s not just good enough to be open, it has to be legitimately competitive.

Like some other commercial protocols, M17 uses 4FSK along with error correction. The protocol allows for encryption, streaming, and the encoding of callsigns in messages. There are also provisions for framing IP packets to carry data. The protocol can handle voice and data in a point-to-point or broadcast topology.

On the hardware side, the TR-9 is a UHF handheld that can do FM voice or M17 with up to 3 watts out. The RF portion uses an ADF7021 chip which is specifically made to do 4FSK. There’s also an Arm CPU to handle the digital work.[]

Armed with a radio, Cambodian girl climbs tree to access education (SE Asia Globe)

When Cambodian schools closed due to Covid-19, poor internet access and a lack of minority language materials made distance learning in rural communities near impossible. But armed with a simple radio, children are rising above these obstacles to their education

Jumping down from the tree near her home, Srey Ka assumes her spot in the shade underneath as she adjusts the dials on her radio. Her pet piglet remains asleep at her feet, twitching his nose as he dreams, his belly full of leftover rice. Around her, cows meander by, their ringing bells competing with the sound of static from her radio.

While her school is still closed due to Covid-19 regulations, she still wears her Grade 3 uniform as she attempts to locate a signal. She’s listening out for distance learning programmes – six hours of educational radio broadcasts per week for children in Grades 1-3, some of which are in her ethnic minority language.

It was August and Srey Ka had just received a radio from international nonprofit Aide et Action, two weeks before her school reopened as pandemic measures eased in Cambodia in early September.

From the Phnong ethnic minority group, Srey Ka struggled to find learning resources in her language during school closures. Eager to cram as much as she can before returning to school, Srey Ka tied the antenna of her radio to the highest point of a tree to get the best reception. Even a clear radio signal is hard to come by in the small fishing village of Pun Thachea, located along a remote stretch of the Mekong river in Cambodia’s northeast Kratié province.[]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Steve tracks down the source of persistent radio interference and gets it addressed

Photo via Unsplash

Many thanks to SWLing Post contributor, Steve Allen (KZ4TN), who shares the following guest post:


Tracking Down Radio Frequency Interference

by Steve Allen, KZ4TN

I first noticed the RFI in late November 2019 as a steady buzz at around S9. It was present over most of the high frequency spectrum. I waited until the second week of December to see if you would end on its own, no such luck. I put an HF rig in my truck and started driving around the area to see if I could find a potential source. About a quarter mile from my home is a 161 KVA substation operated jointly by the Tennessee Valley Authority and my local electrical utility. When I parked in the driveway outside of the gated substation the sound of the interference was very strong and blanked the HF spectrum. I called the phone number on the gate and after an explanation of why I was calling I was connected to a fellow radio operator. I explained the situation and he said he would bring the issue to someone’s attention and get back to me.

A week went by and I didn’t hear back from the TVA. I called the person I spoke with previously and he said that the individuals that he spoke with questioned the validity of my findings. He was very helpful but said he didn’t have much clout with the TVA, RFI investigations were not his area of responsibility. I told him I would be happy to meet with someone from the TVA and show them what I had found. I also said I would contact my local electric utility and see if they had an RFI detector so we could eliminate their equipment. My initial contact at the TVA said he would keep trying to get someone to take this issue on and work with me to investigate. I said I would call him back next week.

I then called the local utility company and talked to someone there who was familiar with these kinds of issues. The local utility company owns the output side of the equipment at the substation. He told me he was going to perform an infrared (heat) inspection of their equipment at the substation mid January as part of their annual maintenance and will also check the low voltage utility lines near the substation. I told him that I didn’t notice this RFI until after they had a power outage nearby. He said he would try and get over earlier and check the power lines that run along the streets and look into the power outage history for this area.

All during this time I kept a daily log of the RFI including time of day, frequency effected and S unit level. I also logged the weather conditions. To eliminate the electronics in my house as a possible source I connected my transceiver to a 12 VDC battery and shut off the mains circuit breaker, the RFI did not change at all. I also visited the ARRL webpage that provide information on RFI including recordings of known RFI:

http://www.arrl.org/radio-frequency-interference-rfi

The ARRL is the best source I have found in finding and fixing RFI.

By December 27th,  no word back from anyone. I assumed that they were off for Christmas but decided to write a letter to the TVA as a follow up to what had happened so far. In early January I received and email from one of the TVA engineers who said he would contact a field engineer who would contact me. The next day I received an email from the field engineer who said he was going to be in the area on another job but would meet me at the substation.

So, of course as soon as I am making headway with finding the problem the RFI diminished to the point of not being a problem. By this time here in Northeast Tennessee the winter temps are in the 40s and the humidity is lower. For whatever reason, the RFI ended. I met with the field engineer and we agreed that if there is no RFI there is nothing to search for.

Fast forward to August, 2020. In June and July I had been operating digital, mostly FT8. I usually had the volume control at zero and as it was summer I was doing no shortwave listening. One day I decided to tune around the bands and found that the RFI was back as strong as it was during December at S4-S9 from 2-30 MHz. I emailed the principal engineer I had previously been in contact with at the TVA and he told me he would contact another field engineer and that he would come to my house with an RFI locator and start a thorough investigation. The next day I received an email from the field engineer and we scheduled a time for him come over.

Upon his arrival he connected his RFI locator to my vertical antenna and tuned across the spectrum. The locator immediately displayed the signal. He captured an electronic image and said that he could now drive around the area and try and find a match. A hour and a half later he called and said he was unsuccessful and wanted to come back  and make sure the signal was still present. Sure enough, it still displayed on his locator and he was puzzled why he could not find a similar signal while driving the area. He said he would send a copy of the recording to the TVA engineer and get back to me.

A few days later I heard back from him and he wanted to come over again and make another recording. I believe after discussing this issue with his supervisor he was going to use a different method of searching the area. After a couple of hours I received a phone call from the field engineer telling me that he thought he had found the source of interference. Using a parabolic antenna he had found two different utility poles that appeared to have defective lightening arrestors on them. Both are within a quarter mile of my QTH. These poles are the responsibility of the local electrical utility not the TVA. He said he would contact them and follow up with me in a few days.

In a couple of days the interference was very low to nonexistent. Shortly thereafter the engineer contacted me saying the local utility company had completed the repairs and wanted to know if the interference was still present. I said I hadn’t hear it in a couple of days and I would get back to him if it returned. A couple of weeks later I received an email from the field engineer detailing the incident, what he had done to locate the interference, and what was done to repair it. In his email he stated the service was provided at no cost by the TVA Right of Way and Elizabethton Electric Department through TVA’s Comprehensive Services Program (CSP). I am so appreciative of the Tennessee Valley Authority. The airwaves are now free of manmade interference and I am looking forward to another winter of operating and listening to shortwave radio. Here in the 21st century there are so many electronic devices that are capable of causing RFI. I am very thankful that my station is RFI free (for the time being).

Steve Allen, KZ4TN
Elizabethton, TN


Thank you so much for sharing your story, Steve. Only recently, we posted Emilio’s article about tracing interference to poorly made switching power supplies. Thank you for sharing how you approached your local utility company, in your case, to resolve your RFI!

Very encouraging! Readers note that you don’t always have to live with persistent RFI. If you know the source isn’t coming from within your home, sometimes it’s simply a matter of getting your local utilities company to investigate.

Reading an interval signal in the waterfall

I’ve been doing a lot of SWLing with the new Icom IC-705. I suppose I’ve not much to post here other than to simply say: I think Radio Exterior de España‘s interval signal looks brilliant on the ‘705 waterfall. I captured this at the end of their scheduled broadcast around 22:02 UTC today.

Of course, the audio was pretty nice, too. Their interval signal is unmistakable:

I’ll admit: I’m loving the native recording capabilities of the IC-705. This came straight off of the MicroSD card. Bandwidth was set to 9 kHz.

The HobbyPCB IQ32 transceiver fills a special niche in the ham radio world

The following review was first published in the September 2020 issue of The Spectrum Monitor magazine:


The HobbyPCB IQ32 transceiver fills a special niche in the ham radio world

This summer, I’ve been exploring the world of general coverage QRP transceivers. I’ve been taking my LnR Precision LD-11, Elecraft KX3 and KX2 into the field; and I’ve just finished a comprehensive review of the Xiegu G90. I also have a TX-500 and IC-705 arriving in the near future [update].

Yes, I’ll admit, I’m a devotee of the “all-in-one” nature of the latest model portable QRP transceivers.

Most of the QRP transceivers now on the market are products of large, popular ham radio manufacturers. Usually, a company will come up with a product concept, follow through with their market research, then design, develop, and produce the radio. In fairness, that’s an over-simplification of the process, but let’s just call it a “top down” design approach––meaning, the product idea is generated within the company, and is often based upon customer feedback.

Not all ham radio products come about this way, though. Some have more “grassroots” or collaborative origin.

The HobbyPCB IQ32

(Image Source: HobbyPCB)

I first noticed the HobbyPCB IQ32 transceiver at the Dayton Hamvention a few years ago. I checked it out carefully at their booth, and recall a crowd gathering around their table. Noting this, I decided, at a later time, I would also find an opportunity to check out the radio in more detail.

A couple of months ago, I was working on my list of General Coverage QRP Transceivers and asked for help filling in details of any radios I’d forgotten. A reader commented and reminded me that the IQ32 was, indeed, general coverage.

At this point, I reached out to HobbyPCB and asked for a loaner unit to explore for a few weeks. The company very kindly sent one my way some weeks ago, and I’ve been testing it on the air ever since.

Form factor

When I received the IQ32 package, I was surprised by how lightweight this transceiver is:  a mere 1.5 lbs (700 grams) packs it all in one compact package.

The chassis is made of aluminum and incredibly sturdy. It even includes side panel extensions to protect the front faceplate and knobs.

The IQ32 sports a 3.2″ color LCD touch-screen display large enough to contain all of the functions, a spectrum display, and even an area for text––both transmitted and received in PSK31 and CW. The display is reminiscent of the uBITX V6 I recently reviewed. It is recommended that the operator uses a blunt plastic stylus (or retracted ballpoint pen) for navigating the color screen, since several of the  menu settings, memories, and the like require some fairly precise tapping. The graphic user interface (GUI) feels a bit like what I’d expect to find on a piece of test equipment: a bit old school, but nonetheless quite functional.

The main encoder and selector knobs are lightweight and made of some sort of plastic or nylon. They work quite well––but if I owned an IQ32, I believe one of the first things I’d do is replace those with a lightweight aluminum equivalent.

As I mentioned earlier, the weight of the IQ32 is very reasonable at 1.5 lbs. I don’t think I’d even notice it packed in a backpack.

The IQ32, like the recently released Lab599 TCX-500, lacks an internal speaker. However, my unit came with a speaker microphone, which works fine.

The right side panel of the IQ32 has a toggle power switch, power amplifier connection, power port (5mm X 2.1mm, positive tip), PS2 keyboard connector, USB Type A, and a BNC antenna port. The left side has a 3.5mm I/Q Output, 3.5mm headphone jack, 3.5mm speaker/mic port,  and a 3.5mm CW key input.

The IQ32 also has two legs that can be adjusted so that the radio will prop up at a comfortable angle for operation. The legs can be a bit finicky to adjust and keep in place, so I preferred using an angled radio support I use for my Elecraft KX3.

A collaboration

The IQ32 also feels like a project joint effort, bringing to mind the old chocolate-peanut butter cup commercial of a bygone era: “My chocolate got mixed with your peanut butter!” And or, “My peanut butter got mixed with your chocolate!”

Curious about this seeming blend of radio ideas, I reached out to Jim Veach (WA2EUJ) at HobbyPCB for more information; he gave me a little history behind the IQ32.

Jim writes:

The IQ32 is the fusion of two products: the HobbyPCB RS-HFIQ, and the STM32-SDR. 

The RS-HFIQ was designed to be a 80-10M, 5W soundcard-based SDR––similar to the popular Softrock SDRs with some expansions and revisions. 

The STM32-SDR was designed to work with a soundcard-based SDR and [thus] eliminate the need for a PC and provide stand-alone operation. 

Inside the IQ32 is a mostly stock RS-HFIQ (in fact, we offered an upgrade kit so RS-HFIQ owners could go the IQ32 route) and a custom version of the STM-32 […] specifically for the IQ32.

The original development of the STM32 [began] a few years ago when PSK31 was the digital mode du jour and [the] PS2 keyboard roamed the land. The firmware team recently released the current FW, which greatly expanded the CW modes and reworked the memory structure based on user input.

And there you have it: even though this unique little rig has been around for a few years, I’m impressed that they continue to refine it and upgrade the firmware. Indeed, if the community of IQ32 users grow, they may be able to do even more.

On the air

To be clear, my intention here isn’t to conduct a comparative review of the IQ32. I simply want to convey what I’ve learned in the process of playing with the rig and trying out some of its unique features.

Immediately after unboxing the radio, I hooked it up to my main skyloop antenna, plugged in the power supply that accompanied the radio, then plugged in the handheld speaker mic.

I discovered rather quickly that the IQ32 user interface takes a different approach than any other transceiver I’ve ever tested. Instead of one main user interface window in which you navigate modes, frequencies, and perhaps alter spectrum and bandwidth settings, the IQ32 has a different screen layout for each mode. It’s as if each mode––SSB, PSK31, CW, etc.––has its own “page.”

Despite the very minimal controls, you can adjust many of the IQ32s settings, macros, and memories in a very granular way via the settings pages using a stylus for fine control of the screen. On the flip side, during operation, it can be frustrating when adjustments need to be made quickly between the AF Gain, RF Gain, CW Speed, and AGC, as they all use the same multi-function knob and switching between them requires several screen taps––not as quick a process as one might prefer.

Indeed, the IQ32 isn’t immediately as intuitive as most commercially-marketed radios.  But once you fully understand the settings and modes pages, it becomes easy to navigate. Note: I would advise any future owner of an IQ32 to read the manual in advance. I did this, and it certainly helped. I should add here that the IQ32 manual is one of the most comprehensive I’ve read––especially considering its collaborative roots.

Now, let’s talk modes.

SSB

Since the IQ32 requires a PS2 keyboard for PSK31, and optionally for CW, I tried my hand at SSB first.

After learning how to switch modes and filter settings, I hopped on the air. Instead of calling CQ, I decided instead to seek a park activator in the POTA program via the POTA spots website. Within 10 minutes, I made contact with two parks: one in Pennsylvania and one in Florida on the 40 and 20 meter bands, respectively. While both parks gave me a “5×9” report, I seriously doubt it was accurate based on their own signal strength. (Some park activators, like contesters, only give 5×9 reports.)

Still, my success in contacting these two parks told me that the mic settings were probably suitable and that the audio had enough punch on 5 watts to be heard. To confirm, I called CQ a few times and listened to my own signal at a KiwiSDR site in Maryland. The signal was about 5×5, but the audio was clear, clean, and had excellent fidelity.

Over the past few weeks I’ve worked dozens of stations across North America with the IQ32.

PSK31

One of the very unique features of the IQ32 is its ability to natively encode and decode PSK31. This was the second mode I was eager to try.

To use PSK31 on the IQ32, a PS2 keyboard (or USB keyboard with PS2 adapter) must be connected. I searched my shack in vain for a PS2 keyboard, but fortunately, my friend Vlado (N3CZ) came to the rescue and let me borrow one of his keyboards.

Again, note: IQ32 beginners should certainly plan to read the PSK31 section of the IQ32 manual prior to attempting a PSK31 QSO.  For starters, you’ll want to enter in your personal information into the tags settings so that you can use your keyboard function keys to automatically send CQs and to answer calls. The manual will also walk you through any other necessary settings.

Once I had everything set up, I started calling CQ on the 20 meter band; unfortunately I had no luck snagging a station. This had less to do with the radio and much more to do with the mode, which has, alas, fallen out of popularity since the advent of FT8. It’s a shame, really, because although PSK31 is a digital mode, it feels much more like a proper QSO than FT8, in my opinion. While I have a lot of respect for FT8, with PSK31, you can, as we hams say, “rag-chew”––a much more personal interaction.

And rag-chewing is exactly what I did. I contacted a friend, we set a sched for a PSK31 QSO, and it was, indeed, fun. The IQ32 has a screen with enough text space so that it’s easy to follow and to read. In fact, with this radio, I don’t feel like a computer is needed.

With the keyboard attached, PSK31 just works…and works quite well. I really like the way this feature has been implemented in the IQ32.

CW

Truly, the IQ32 actually has a lot to offer the CW operator. The IQ32 supports Iambic keyer modes A and B, with speeds up to 35 wpm. You can also adjust the weight of the dits and dahs. The IQ32 doesn’t support full break-in QSK, however: there is a slight delay after sending before the relay puts the radio back into receive mode. At present, this delay is not manually adjustable but is, rather, based on the selected keyer speed.

I’ve been very pleased using the IQ32 in CW mode with my Begali paddles and Vibroplex single lever paddle.

Of course, a really unique feature of this rig is that it provides the operator with the means to use the PS2 keyboard to send CW, just as you can with the PSK31. At present, there is no CW decoder, but for those who feel their fist isn’t quite up to par, you can surprise the operator on the other end by sending perfectly formed and spaced CW by simply typing it on the keyboard.  Herein lies a very unique feature and application for the IQ32.

Indeed, as a frequent Parks On The Air (POTA) field activator, I rely very heavily on memory keyers to call CQ, send a park number, as well as give my thanks and 73s to those who contact me. Using a pre-programmed message means that I then have time to log a station while it sends, and to ensure my code is cleaner when I send park numbers––especially since I don’t exactly excel at sending strings of numbers!

With the IQ32, I find I can program full CW messages to play when I simply press one of the function keys on the keyboard. This gives me much better flexibility and control than, say, the built-in memory keyer on my venerable Elecraft KX2.

With the IQ32, a CW op would actually have the choice of never even touching a key, and just sending all messages with the keyboard. While I could never see myself doing that (as I quite enjoy sending CW with a key), the flexibility of pre-programming an array of CW memory messages and having them conveniently at hand is nonetheless quite appealing.

As a CW operator, I’m quite pleased with the IQ32. My only wish would be for a slightly shorter relay hang time for use in contesting or on Field Day.

The IQ32 Niche

While I wouldn’t necessarily recommend the IQ32 as a first transceiver to a newly-minted ham, I can certainly envision a niche market for this unique rig.

For one, I think the IQ32 could satisfy those operators who desire a very clean and stable transmitter. The IQ32 sports a Class A 5-watt power amplifier with individual low-pass filters for each band that exceed FCC requirements for spectral purity. It also has a Temperature-Compensated Crystal Oscillator (TXCO) for frequency stability––truly, this is not common in a radio of this price class.

For another, the IQ32 could be used as a driver for a transverter when operating on VHF or UHF. Another of its unique and useful features is that the user can set an offset to display the transverter output frequency rather than the IQ32-driven frequency.

 

 

And, finally, let’s face it: I know of few other radios that you can take to the field, hook up a keyboard, and natively send and decode PSK-31 transmissions. My KX2 can do this to a degree, but I have to input the text as CW, and the number of characters in the display is quite limited. The IQ32 is robust enough to permit you to carry on PSK-31 rag-chews, if you wish. If this is your thing, you’ll definitely want to play with this rig.

Being able to send CW with a keyboard and pre-programmed messages also means CW operators could make their workflow much more efficient in either the shack or the field.

In conclusion, I’ll admit that the IQ32 isn’t as intuitive as other radios and that the ergonomics leave room for improvement. But it’s still a cool little radio. If, after having read this tour of the IQ32, you feel like you’re in this radio’s niche market, then definitely reach out to HobbyPCB: I’ve found their customer care and support to be absolutely benchmark.

All in all, I’ve had a lot of fun tinkering with this unique general coverage QRP transceiver; I expect others like me will, too. Many thanks to HobbyPCB and the IQ32 crew for letting me take a deep dive into this very special little rig!

Click here to check out the IQ32 at HobbyPCB.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Taking the Icom IC-705 to the field for a battery endurance test

I recently posted results from my listening endurance test with the new Icom IC-705 QRP general coverage transceiver. I’ve been on a mission to see just how long the supplied BP-272 Li-ion battery pack can hold up with a full charge in real-world conditions.

Thursday, I took the IC-705 to the field and activated a park using only the charged battery pack. After nearly 2 hours of constant operation (calling CQ and working stations) the BP-272 still had nearly 40% of its capacity.

That’s better than I expected, especially knowing the BP-272 is the slim, lower capacity battery pack.

I have to admit: that was a particularly fun activation because propagation finally gave me a break and I worked stations from the Azores to Oregon on a mere five watts of power.

Click here to read my full field report at QRPer.com.