Tag Archives: ELAD

ELAD introduces new products

Elad FDM-S3

Many thanks to SWLing Post contributor, Mike Hansgen (K8RAT), who notes that Italian manufacturer, ELAD, has introduced a new speaker, an amplifier and the FDM-S3 SDR is now available to purchase.

Elad-FDM-S3 Screenshot

The ELAD FDM-S3 was first announced last year, but has only recently started shipping. We know its processing bandwidth is impressive–wide enough to include the entire FM broadcast band! The price is 949.90 EUR.

ELAD has also introduced a matching amplified speaker–the SP1:

ELAD SP-1 Speaker Front

ELAD SP-1 Speaker Back

If I owned an FDM-DUO transceiver, I would grab this matching speaker! Knowing ELAD, I imagine the audio is impressive.  The price of the SP-1 is 140.30 EUR.

And finally, ELAD has also posted a photo of what appears to be a new amplifier:

Elad Duo art amplifier

I have no details about the SP1 speaker or DUO-ART amplifier–and few details about the FDM-S3–but I will meet with ELAD at the 2018 Hamvention in a few days and gather more details.

Follow the tag ELAD for updates.

Results: AirSpy HF+ vs Elad FDM-S2 Weak Signal Comparisions

Looking north toward Cape Lookout, Oregon, near the site of my SDR receiver recordings. Photo courtesy of Wikimedia Commons.
In my original article 10 days ago, I set up a SWLing Post reader poll to let you give your opinion on which shortwave recordings within four pairs of audio files provided the most intelligible result. The recordings were intentionally noisy, low-level signals to help us discover–through critical listening to the files–if there is a clear favorite between the AirSpy HF+ or the Elad FDM-S2 receivers. Of course, there were only four pairs of recordings…not a very large sample size.

However, 34 readers of the original article took the time to listen and respond, so let’s get to the numbers, shown in these graphs:

Interestingly, the responses above seem to point to:

  • Two recording pairs tied in the results (50% / 50%) or were very close (HF+ 52.9% / FDM-S2 47.1%)
  • The FDM-S2 led one recording pair by a large margin (67.6% / 32.4%)
  • The HF+ led another recording pair by an equally large margin (67.6% / 32.4%)

Taken as a whole, no obvious winner emerged, although one might conclude the HF+ has a slight edge due to its lead in the “very close” recording pair of 7.230 MHz.

One thing is clear–the AirSpy HF+ is a surprisingly good performer for its price of $199 USD! For many enthusiasts this will be all the SDR they need.

As a final note, I’ll mention that the AirSpy HF+ used for the tests was totally stock. I have not yet performed the “R3 Bypass” mod nor the firmware update to my HF+ units. The simple R3 Bypass, discussed at length on the AirSpy Groups.io forum, significantly boosts sensitivity of the HF+ from longwave up to about 15 MHz, without any noted overload issues. For more on this modification from a MW DXer’s perspective, read Bjarne Mjelde’s insightful article at his Arctic DX Blog.

Thank you to all the readers who took the time to listen to the SDR recordings in this comparision and register your opinions.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Digging in the Noise: Weak Signal Audio Recovery with the AirSpy HF+ and Elad FDM-S2

I’m currently spending the better part of a week at Cape Lookout State Park on the Oregon coast, with a great view of the ocean through tall evergreen trees. This is one of my favorite parks in the Pacific Northwest, especially when DXing during the blustery winters from one of the nice cabins at Cape Lookout.

The view from the beach near my cabin; the turbulent waves were a precursor to the gale force winds at the park during the night of the 23rd!

Although I’m at the park for trans-Pacific medium wave DXing, I’m also comparing receivers, both SDRs and portables. This morning I sought out a few weak shortwave signals, pitting the Elad FDM-S2 SDR ($529 USD) against the AirSpy HF+ ($199 USD). I have a pair of the HF+ receivers to cover all of medium wave (as the FDM-S2 easily does). Many SWLing Post readers already know that the upstart HF+ trades bandwidth to gain high performance in order to keep the price reasonable.

My antenna used for the following recordings was a small “Flag” antenna using a Wellbrook Communications FLG100LN module and a 2K ohm variable potentiometer for termination. The design uses crossed tent poles in an “X” formation to support the wire loop. This design travels easily in a compact package; I have Dave Aichelman of Grants Pass, Oregon to thank for this very useful “tent pole loop” implementation of the Wellbrook FLG100LN.

The Wellbrook-based antenna functions superbly, and its low-noise design helps hold down QRM from the nearby cabins (which unfortunately have been “upgraded” recently with noisy cold fluorescent [CFL] light bulbs). The area around the Cape Lookout cabins used to be superbly low noise and suitable for radio listening, but now it is more of a challenge than before. The Wellbrook FLG100LN is perfect for the situation though; Wellbrook ALA1530LN  Pro and ALA1530S+ 1-meter loop antennas work commendably at the park too.

The Wellbrook FLG100LN module with a home brew RFI choke in-line

A 2K ohm variable potentiometer is protected from the elements in a small plastic bag. The “pot” is adjusted for the best nulling of medium wave stations off the back side of the antenna’s reception pattern.

The “tent pole loop” antenna is strapped to a fence railing with ultra-strong Gorilla Tape to keep the 7-ft. square loop vertical.

On with the recordings…

For the FDM-S2 and HF+ comparisons I used the SDR-Console V3 software. Every parameter was identical for the receivers–sampling bandwidth, filter bandwidth, AGC, mode and so on.

Take a critical listen to the weak signals recorded with the SDR receivers, identified as only “Radio A” and “Radio B”. A link to a poll is at the end of this article; please indicate which recording of each pair has the most intelligible audio in your opinion, and submit your choices when you’ve made up your mind on each audio clip. After a week or so I’ll post the results of the voting, and identify the receivers.

9.615 MHz, LSB, Radio A


9.615 MHz, LSB, 
Radio B (note: the same male announcer heard in clip “A” begins at 00:14 in this “B” clip)

 

9.730 MHz, USB, Radio A


9.730 MHz, USB, 
Radio B

 

7.230 MHz, S-AM, Radio A


7.230 MHz, S-AM, 
Radio B

 

9.860 MHz, S-AM, Radio A


9.860 MHz, S-AM, 
Radio  B

 

Note on 7.230 MHz recording: this was an interesting frequency, as the signal was tightly surrounded by a very strong local 40m ham radio LSB station as well as a strong China Radio International signal. There were other strong amateur and broadcast stations within 30-50 kHz of 7.230 MHz, also. This A-B test more than the others may indicate receiver performance in a strong RF environment on a crowded band.

Ready for the poll? Register your votes at the Google Docs form below:

https://tinyurl.com/ya38wj69

In a week to 10 days I’ll post the results in another article. NOTE: I haven’t provided a “both sound the same” choice in the poll to encourage you to ‘dig deep’ into the audio and listen critically–to find something that stands out in one clip versus the other.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Addendum: More Notes on the HF+ SDR on Medium Wave & Long Wave

In my recent post on the AirSpy HF+ vs Elad FDM-S2, I commented on medium wave reception only.

This past weekend I swapped out the Wellbrook ALA1530S+ for another Wellbrook loop, the ALA1530LN Pro. This LN Pro model is less likely to overload receivers at my suburban Tacoma, WA location. Both AirSpy and Elad radios performed admirably with the LN Pro and it was nearly impossible to find any reception differences on medium wave.

Before the antenna swap though I experimented with inline attenuation modules (“bullets”), typically used in cable TV installations. I used the same sample rates on the SDRs as described in the previous article. After some tests with different attenuation levels, I came to the following conclusions during daytime comparisons:

FDM-S2 with ALA1530S+ loop, medium wave: needs a minimum of 6 dB attenuation to avoid overloading. Anything less causes saturation of the spectrum & waterfall, “crunching” overload noises, and minimal or no received signal.

HF+ with ALA1530S+ loop, medium wave: I had to search diligently to find any signs of false signals or overloading, but finally noticed a weak image or spur of a S-9+60 dB (-13.5 dBm) local station on 1560 that was appearing very weakly on 1270 kHz, mixing with the station on that frequency. Sometimes it was there, other times the spur or image would drop down and disappear, leaving the 1270 signal alone. If I added just 3 dB of attenuation in the antenna’s feed line, the interference from the 1560 station was gone for good. The S-9+60 dB station is a very strong signal; it’s impressive that the AirSpy HF+ deals with this and similar powerhouse signals so well.

Long wave: Below are two screen captures from my local long wave reception in the evening, made moments apart with each receiver.

FDM-S2

HF+

As you can tell, there are a half dozen or so additional signals seen on the HF+ below 200 kHz that do not appear on the FDM-S2. These extra spikes are images or spurs from medium wave signals that were missing from the FDM-S2’s reception–bravo Elad! However, the remaining spikes on both radios below 200 kHz seemed to be noise or interference.

Each receiver had roughly equal performance in the bulk of the long wave spectrum, when I did A-B comparisons on the same beacon signals. I’m not a LW or NDB DXer however, so I can’t claim any expertise on these frequencies. In short, though, both radios seem neck-and-neck from about 200 to 500 kHz.

The DXer of LW frequencies may want to look elsewhere for a better performing radio than either the FDM-S2 or HF+. SWLing Post reader Tudor Vedeanu has commented that the SDRPlay RSP1A  and the Eton E1 work very well at long wave.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.