Tag Archives: Ham Radio

Icom IC-705: Let’s see how long it’ll receive with supplied BP-272 Li-ion battery pack

The shortwave radio listener part of me might actually be more excited about the Icom IC-705 than the ham radio operator part of me.

The IC-705 has a number of features for ham radio operators who also enjoy broadcast listening. For example, it sports:

  • a general coverage receiver,
  • good performance specs,
  • notch filtering (both manual and automatic),
  • Icom twin passband filtering,
  • an AM bandwidth filter maximum width of 10 kHz
  • built-in digital recording of both received and transmitted audio,
  • audio treble/bass adjustments,
  • and battery power from Icom HT Li-ion battery packs

The Icom IC-705 ships with an BP-272 Li-ion battery pack and since the announcement last year about the IC-705, I’ve been curious how long the BP-272 could power the IC-705 in receive only.

A real-world RX test

Yesterday morning, I resisted the urge to hunt POTA and SOTA stations with the IC-705 and, instead, spent the day simply listening.

I started the experiment with a fully-charged BP-272 7.4V 1880 mAh battery pack (the pack supplied with the IC-705). At 9:00 in the morning, I unplugged the IC-705 from my 12V power supply and ran the receiver all day on just the battery pack.

I made some practical changes to maximize play time: I turned on the screen saver, turned off GPS, set the LCD backlight auto adjustment to 2%, and set the screen timer to turn off after 1 minute.

I ran the volume somewhere between low and moderate and only raised it to what I would consider very loud a few times to copy weak signals. I listened to AM, SSB, and FM signals across the spectrum, but primarily cruised the HF bands.

Of course, I never transmitted with the IC-705 during this period (saving that for the next test).

I probably could have done more to decrease current drain, but frankly I wanted this to be based on how I’d likely configure the rig for use on an SWL DXpedition.

Results

I unplugged the IC-705 from the 12V power supply at 9:00 local and the radio auto shut down at 16:39 local: a total of 7 hours, 39 minutes.

Honestly? I’m fairly impressed with this number mainly because it’s based on the smaller battery pack. The supplied BP-272 pack has 1880 mAh of capacity. The optional BP-307, on the other hand, has 3150 mAh of capacity.

If I decide to keep the IC-705, I will be very tempted to purchase a ($130 US) BP-307 pack as well.

Next test: How long can the IC-705 last on battery during a POTA activation?

As early as today, I will see just how long the BP-272 pack can operate the IC-705 during a POTA activation. This will be a true challenge on the smaller battery pack since POTA activations require a lot of transmitting (constant CQ calls and exchanges). There’ll be no lack of calling CQ on a day like today when propagation is so incredible poor.

Follow the tag IC-705 for more updates.

Spread the radio love

How to build an automatic remote antenna switch


Many thanks to SWLing Post contributor, Kostas (SV3ORA), for sharing the following guest post which originally appeared on his radio website:


How to build an automatic rig/antenna switching system

by Kostas (SV3ORA)

When I started collecting vintage rigs, I ended up in a line of rigs on my bench, that were sitting there, disconnected from any mains cables or the antenna. I wanted these rigs to be ready to fire at any time I wanted to, without having to connect/disconnect cables all the time. I also wanted to be able to compare different rigs performances at the flip of a switch, which is the only way this can be done on the HF quick fading conditions. For power cables, the solution was to leave them connected in the mains plugs all the time. My rigs that have an internal PSU, have mechanical switches, so they are isolated from the mains when they are switched off. The rigs that are powered by an external PSU, depend on the external PSU main switch for isolation (in case they haven’t mechanical switches on them), which in my case is mechanical and switches off the mains power, when the PSU is switched off.

However, for the RF cables, this was a different story. Having only one antenna and multiple rigs, means that you have to connect each rig to the antenna every time you want to operate each rig. This is not only boring and time consuming (you have to reach the back of the transceivers to connect/disconnect the connectors), but eventually causes the connectors of the coaxial cable and the rigs to wear out. I decided to make things better and make an RF rig selector for my rigs. This RF rig selector has been described in this link.

The current antenna I use is fine for transmitting, but in the noisy neighbourhood where I live, it picks up a lot of noise. I have tried many solutions, without significant effect in the noise level. This is why I decided to use a separate antenna for receiving, from that used for transmitting. This antenna will be some kind of loop probably, so as to be immune to noise or insensitive to the direction of the noise. It will be placed in a different location than the transmitting antenna, a location which will be less noisy. Unfortunately, the space I have for the TX antenna lies in a very noisy location in my property. So a separate RX antenna, in another physical location is a must. This means that a separate coaxial for the RX antenna must be used. Thankfully, the RX coaxial can be very small in diameter, passing easily through the sides of the windows, without extra holes.

To satisfy all of my requirements, I developed the circuit shown above. The circuit is able to switch a common antenna to four different rigs. Why four? Because this was the capacity of my switch and the number of connectors I had available. If you have a greater capacity switch and more connectors, expand the circuit to your needs.

The circuit of the shack switch, allows for 4 separate rigs to be selected, and two antennas, one for RX and one for TX. TX/RX antenna selection is being done automatically (split antenna operation) and controlled by the PTT of any of the rigs connected. This feature can be bypassed by the switch, so that the TX antenna can be used for both RX and TX. The same switch allows also RX operation with passive RX antennas of active ones. When in the active RX antenna position, power is passed to the remote RX preamplifier through the RX coaxial cable, using a bias-T circuit. The values of the bias-T circuit have been chosen very large, so as active RX antennas that operate at LF and lower could still be used. The RF relay defaults in the TX antenna, so that if there is a power failure, or if the circuit is not supplied with power, you can still receive (and transmit) with the TX antenna. The other way around, would be fatal for both the transceiver and the RX antenna (If you transmitted accidentally into it).

The PTT circuits are based on my transceivers. Unfortunately, there is no “standard” for the PTT circuits, each rig has its own way, so the PTT circuits must be thought for each of them. I followed an “inhibit” approach for the PTTs. That is, all the PTT switches are connected in series and DC is passed through them. If any of the rigs transmits, the PTT switch is opened and the circuit switches to the TX antenna. For the rigs that do not have an internal relay but output DC on TX instead, an additional small relay is used (for greater isolation and lossless switching). The only drawback of this “inhibit” topology is that the PTTs of all the rigs must be connected to the circuit simultaneously. If you want to exclude a rig of course, you may short circuit it’s PTT connector in the circuit. The PTT circuits as I said, are non-standard, so you might want to change the circuit to your needs, but anyway you got the idea.

Notice the connections in the circuit. One section of the RF switch (on the left) is used for the positive wire (central conductor of the coaxial) and another for the negative (braid of the coaxial). Why is that? This is because I canted to add a special feature to the switch. That is, the ability to disconnect the antenna from any rig when the rigs are not used. Previously, I used to disconnect the antenna coaxial from the transceiver when I was away, so as to protect the transceiver from antenna static discharges and possibly destroy it’s front end circuits. Now, with a single flip of the switch, I am able to do so. Because I wanted the switch to operate on different types of antennas (balanced or not) I decided to short circuit both poles of the antenna at this position, to equalize their charges.

But equalizing their charges was not enough. I had to find a way to let these charges go to the ground, so that the antenna is discharged. Directly grounding the short circuit, did not seem a good thing to do, because the whole TX wire antenna on the roof would be grounded. Whether this is a good idea to avoid lightings or not, I do not know. So I decided to keep the short circuited antenna floating and instantly discharge it only when adequate static charge is built upon it. For this purpose, I used a neon tube, permanently connected to the switch NC (not-connected) position. When the switch is in the non-connected position, the tube lights up and discharges the antenna (both poles) if an appropriate amount of static charges has been built upon it. When the switch is in any of the selected rigs connections, the tube is disconnected, preventing it from lighting up when you transmit into the antenna. Note that this configuration, requires that the output (antennas) coaxial connectors must be isolated from the metal chassis of the RF switch!

Isolation of the output antenna connectors has been done with a PVC sheet and isolated screw rings. Also note the usage of BNC connectors on TX and SMA on RX. I used BNC connectors for various reasons. They are excellent connectors with quick lock/unlock features. You do not need to screw them (and wear them out) and once fit in place they are not unscrewed. Once fitted in place, they allow for rotating the connection without unscrewing the cable or bending it. They can handle 100W easily. Despite all these features, they are much smaller in size and lighter. Their reduced size fits easily to reduced diameter cables like the RG-58 and similar. In an RF switch where there are lots of cables connected, this does make a difference. They are also very common and very cheap. There are even types that do not require soldering at all to fit a coaxial to them. I use BNC connectors even at my antenna side, as they have been proven to be quite waterproof. The types of BNC connectors I choose are not silver plated. Despite silver plated connectors are better, in the long term they are corroded by humidity and become much worst than the nickel plated connectors. The connectors I used are nickel plated with gold plated central conductors. I have found these types to be much more durable over the years, despite being cheaper. The same goes for the RX SMA connector, but I used an SMA connector there so as to accommodate thinner coaxial cables for RX.

The BNC connectors used, are the square flange types. I used this type of connectors because when they are fitted onto the chassis, they cannot be unscrewed, unlike the single-hole types. For the RX though, I used an SMA connector because it is even smaller and it can accommodate smaller diameter cables. The coaxial cable used for the internal switch connections on TX, is the RG-223. This cable is silver-plated (both the central conductor and the braid), it has double braid for increased shielding, it is of the same diameter as the RG-58 and it has a bit lower loss. The cable loss is negligible though for such small pieces of cable. The same type of cable has been used for the internal switch-relay connections as well as for the connections of the selector to the rigs. Appropriate lengths of RG-223 cables were cut and fitted with BNC connectors at one side and the appropriate rig connectors at their other side. For the RX antenna, you may use the thinner diameter cable you can find. I used a small piece of very thin coaxial (taken out of the WiFi card of an old laptop) and passed this piece through the side of the windows of the shack and through the mosquito net of the windows. No extra holes are required that way! For the rest of the RX cable, you can use whatever cable diameter you want, but I tried to use the smallest diameter I could find, so that the cable is as much phantom as possible.

All the coaxial rig cables are grounded at the connectors side. I used a piece of coaxial braid and fitted it to the connectors screws. Then I soldered the braids of the coaxial cables onto this piece. Notice the black ring screw isolators at the antenna connector, to isolate it from the chassis. Speaking about the chassis, do not use a plastic chassis for the RF switch, use only a metal one! The picture below, as well as all the next pictures, show the RF cables arrangement, but note that the circuit in these pictures is not complete yet.

The coaxial cables are soldered onto the switch contacts. Where a ground connection is required, a piece of braid accomplishes this. Do not use thin wires, the device has to allow for at least 100W of HF RF power to pass through it. I have tested the switch with 200W of power and there were no problems at all. The neon tube directly connects to the appropriate switch contact and to the chassis.

The most important part of an RF switch is of course the switch itself. For 100W of HF RF power, I would suggest you to use a porcelain switch. I had a 5-positions 4-sections small porcelain switch, which I used. I connected two sections at each side in parallel (adjacent pins connected together). That is, two sections in parallel for the positive wire and two sections in parallel for the braid. I did that for various reasons. First, by using two contacts for each connection instead of one, you increase the power handling capability of the switch. Then, you ensure a sure-contact throughout the years. Any corrosion or wearing on the switch contacts would cause contact problems eventually. By using two contacts for each connection instead of one, you double the probability for a good contact. After all, I had a switch with more sections, so why not make a good use of them?

The completed selector is shown above. The relay was been taken out of an old CB radio. Use the best quality relay you can afford, as this will be switched quite often and it must handle at least 100W of RF power.

The results from the RF switch operation are quite satisfying. The overall construction is kept small and low profile. The switch makes a good contact despite being small. The automatic discharger seems to work well. On receive, there is some RF leakage, as I expected, in the near by cables, which is noticed in the higher HF bands or in very strong signals. The very sensitive receivers we use, are able to detect that. This RF leakage occurs even when the switch is in the NC position, where the antenna is disconnected and floating. So, to be honest I have not figured out if the leakage is from the switch or from the external cables in the shack. On TX, there is of course severe leakage from the transmitting coaxial to the rest of the ports. This IS expected. There is leakage even without using any selector at all, in the nearby receivers, when a transmitter operates at such high powers. There is nothing you can do about it really, unless your receiver has a mute capability, which I did not bother to take care of.

The TX/RX switching is taken care automatically and this is very useful and relaxing for the operator as he does not have to worry about anything. The active or passive RX antenna selector and the feature to disable the auxiliary RX antenna are really useful and you can do many antenna and rigs comparisons on-the-fly with it, by the flip of a switch. Depended on the noise level and the sensitivity you want to achieve, the switch will provide you the most optimal RX conditions instantly!

The most important thing though, is that the goal of this project was achieved. I am able to switch the antenna to whatever rig I want at the flip of a switch. And before I go away, at the flip of a switch I can isolate and automatically discharge the antenna when needed. This is so much more convenient than having to connect and disconnect cables all the time. I can also now use a separate antenna for RX, which greatly improves reception in my case. This antenna is automatically switched by any rig I have and I do not have to worry about anything. I can also do comparisons between different antennas on RX, which is crucial in deciding which antenna is better for receiving. All these features make this little simple to build circuit, so useful and an integral part of the shack.


Thank you for sharing this practical and affordable project with us, Kostas!

Post Readers: Check out this project and numerous others on Kostas’ excellent website.

Spread the radio love

Proud Papa

Apologies in advance, but I need to brag a bit…

This weekend, both of my middle school-aged daughters passed their amateur radio exams with colors flying. Volunteers with the WCARS VEC were kind enough to meet us at a local park to conduct the test in a covered picnic area.

At the test site I was more nervous than my girls were, but I really had nothing to fear. Both were hitting a 95% pass rate on practice exams in advance.

Even though the girls have obviously learned a bit about radio through osmosis in this household, they did all of the exam prep on their own. Funny story: I remember allowing them both to send CW to my buddies K8RAT and WD8RIF on my lap when they were maybe 2 years old? Of course, they had no idea what they were sending, but they loved playing with the “clicky thing” (my paddles). I think WD8RIF actually copied their code to paper. 🙂 

I purchased both of them an FT-60R handheld radio from Universal Radio. I think these HTs should serve them well for many years to come!

I know one of my daughters is already chomping at the bit to pass her General now.

Anyway, thanks for letting me brag a bit here. I’m certainly a proud papa!

Spread the radio love

Radio Waves: A Cryptologic Mystery, RSGB Opens Doors to Full Online License Exams, Secret War, and September Issue of RadCom Basics Availabe

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Ron, John (K5MO) and the Southgate ARC for the following tips:


A Cryptologic Mystery (Matt Blaze)

Did a broken random number generator in Cuba help expose a Russian espionage network?
I picked up the new book Compromised last week and was intrigued to discover that it may have shed some light on a small (and rather esoteric) cryptologic and espionage mystery that I’ve been puzzling over for about 15 years. Compromised is primarily a memoir of former FBI counterintelligence agent Peter Strzok’s investigation into Russian operations in the lead up to the 2016 presidential election, but this post is not a review of the book or concerned with that aspect of it.

Early in the book, as an almost throwaway bit of background color, Strzok discusses his work in Boston investigating the famous Russian “illegals” espionage network from 2000 until their arrest (and subsequent exchange with Russia) in 2010. “Illegals” are foreign agents operating abroad under false identities and without official or diplomatic cover. In this case, ten Russian illegals were living and working in the US under false Canadian and American identities. (The case inspired the recent TV series The Americans.)

Strzok was the case agent responsible for two of the suspects, Andrey Bezrukov and Elena Vavilova (posing as a Canadian couple under the aliases Donald Heathfield and Tracey Lee Ann Foley). The author recounts watching from the street on Thursday evenings as Vavilova received encrypted shortwave “numbers” transmissions in their Cambridge, MA apartment.

Given that Bezrukov and Vaviloa were indeed, as the FBI suspected, Russian spies, it’s not surprising that they were sent messages from headquarters using this method; numbers stations are part of time-honored espionage tradecraft for communicating with covert agents. But their capture may have illustrated how subtle errors can cause these systems to fail badly in practice, even when the cryptography itself is sound.[]

Online Full ham radio exams now available (Southgate ARC)

From today, Thursday, Sept 24, the RSGB are allowing Full amateur radio online exams to be booked. All 3 levels of exam required to get a HAREC certificate can now be done completely online

Potentially this could mean amateurs in other countries could take the RSGB online exams, get their HAREC certificate and then apply for an amateur licence in their own country. This would be beneficial in those countries where provision of local exams is virtually non-existent.

Currently there is a 4-5 week backlog for amateur radio exams, the next available exam slots that can be booked are at the end of October.

You can book online UK amateur radio exams at
http://www.rsgb.org/exampay

Details of onlne amateur radio training courses are at
https://rsgb.org/main/clubs-training/for-students/online-training-resources-for-students/

The Secret War (BBC)

The wartime BBC was involved in a range of top secret activities, working closely with the intelligence agencies and military.

by Professor David Hendy

As well as making programmes for the public, the wartime BBC was involved in a range of top secret activity, working with closely with the intelligence agencies and military. Here, newly-released archives lift the veil on the broadcaster’s role in this clandestine world of signals, codes, and special operations.

It’s always been known that just before the war began in September 1939, the BBC’s fledgling television service was unceremoniously shut down for the entire period of the conflict.

What’s less well-known is that, far from being mothballed, the television facilities of Alexandra Palace were carefully kept ticking-over by a small team of engineers – and that the transmitter which had supposedly been silenced for reasons of national security was soon sending out its signals again.

From May 1940, Alexandra Palace’s ‘vision’ transmitter was being tested for its ability to jam any messages passing between tanks in an invading German force. The following year, its sound transmitter was being deployed for something called ‘bending the beam’. One of the BBC’s engineers who remained on site was Tony Bridgewater:[]

September RadCom Basics available (Southgate ARC)

Issue 18 September 2020 of the RSGB newcomers publication RadCom Basics is now available online for members

RadCom Basics is a bi-monthly digital publication for RSGB Members that explores key aspects of amateur radio in a straightforward and accessible way.

In this issue:
• Magnetic loop antennas
• Metal bashing
• Station maintenance

Read the latest issue at
https://rsgb.org/main/publications-archives/radcom-basics/


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: A “Calm” Solar Cycle 25, WWJ History, Czech Radio’s Digital-Only Future, and UK Ham Radio Exam Stats

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Ron, Mike, and the Southgate ARC for the following tips:


As Disasters Roil Earth, A New Sun Cycle Promises Calmer Weather — In Space (NPR)

Giant flares and eruptions from the sun can cause space weather, and stormy space weather can interfere with everything from satellites to the electrical grid to airplane communications. Now, though, there’s good news for people who monitor the phenomenon — the sun has passed from one of its 11-year activity cycles into another, and scientists predict that the new cycle should be just about as calm as the last.

That doesn’t mean, however, zero risk of extreme weather events. Even during the last, relatively weak solar cycle, drama on the sun triggered occasional weirdness on Earth like radio blackouts, disruptions in air traffic control, power outages — and even beautiful aurorae seen as far south as Alabama.

Over each solar cycle, the roiling sun moves from a relatively quiet period through a much more active one. Researchers monitor all this activity by keeping an eye on the number of sunspots, temporary dark patches on the sun’s surface. These spots are associated with solar activity like giant explosions that send light, energy, and solar material into space.

Counting of sunspots goes back centuries, and the list of numbered solar cycles tracked by scientists starts with one that began in 1755 and ended in 1766. On average, cycles last about 11 years.

Based on recent sunspot data, researchers can now say that so-called “Solar Cycle 24” came to an end in December of 2019. Solar Cycle 25 has officially begun, with the number of sun spots slowly but steadily increasing.[]

WWJ in Detroit: A 2020 Centennial Station (Radio World)

Iconic AM station just celebrated the 100th anniversary of its first broadcast

It was shortly after World War I that Clarence Thompson, a partner of Lee de Forest, formed a new company Radio News & Music Inc. in New York. His goal was to encourage newspapers to broadcast their news reports by wireless, using de Forest transmitters.

The franchise offer — available to only one newspaper in each city — offered the rental of a de Forest 50-watt transmitter and accessories for $750. Just one newspaper signed up for the deal; it was the Detroit News, led by publisher William E. Scripps.

He had been interested in wireless since investing in Detroit experimenter Thomas E. Clark’s wireless company in 1904. Scripp’s son, William J. “Little Bill,” was an active ham radio operator, operating a station in the Scripps home.

People Might Laugh

Scripp proposed accepting the Radio News & Music offer and building a Detroit News radio station in 1919, but he met resistance from his board of directors. It was not until March of 1920 that he was given the go-ahead to sign a contract.

The de Forest transmitter was shipped to Detroit on May 28, 1920, but was lost in transit; a second transmitter was constructed and sent on July 15. This delayed the installation of the station until August.[]

Czech Radio has expanded DAB + coverage to 95 percent of the population and announced the switch-off of medium waves (Digitalni Radio)

NOTE: This is a machine translation of the original post in Czech.

Czech Radio has entered another, important phase of radio digitization. To date, the ?Ro DAB + multiplex signal has reached 95% population coverage. Ten new transmitters were launched in Bohemia and Moravia. You can find a detailed description of them below.

DAB + technology is becoming a common distribution channel for Czech Radio, which will be placed on the same level as analogue FM / FM broadcasting. All marketing activities will already include the “DAB + More Radio” logo. ?eské Radiokomunikace is planning to start certification of receivers next year in order to protect customers and facilitate orientation in the range for them and retailers.

According to the CEO of Czech Radio, René Zavoral, the public service media is proceeding in accordance with a long-term strategic plan. The head of communication and press spokesman Ji?í Hošna describes the step as a turning point that can affect the direction of the entire radio market.[]

UK amateur radio exam report released (Southgate ARC)

The RSGB Examinations Standards Committee (ESC) report covering 2019 is now available for anyone to download

The report contains statistics for the both the RSGB amateur radio exams and the Air Cadets Organisation (ACO) exam which Ofcom considers to be equivalent to the RSGB Foundation.

Ofcom has been concerned about the participation of women in amateur radio and STEM disciplines. They requested the ESC to publish figures for the number of women taking the exams. Unfortunately the results are disappointing with only 9.9% of all exams being taken by women.

Download the ESC report from
https://rsgb.org/main/blog/examination-standards-committee-reports/2020/09/18/examinations-standards-committee-report-2020-for-activities-during-2019/


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: BBC radio reporters axed, Ham Radio on BBC Surrey, K6UDA on IC-705 features, and VLF balloon launched with request for detailed reception report

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Mark Hist, Kris Partridge, John Palmer, and the Southgate ARC for the following tips:


Radio reporters to be axed by BBC and told to reapply for new roles (The Guardian)

Radio reporters to be axed by BBC and told to reapply for new roles
Critics fear end of an era because of plans to make audio journalists work across media platforms

BBC radio voices have described and defined modern British history. Live reports from inside a British bomber over Germany during the second world war, or with the British troops invading Iraq in 2003, or more recently from the frontline of the parent boycott of a Birmingham school over LGBT lessons have also shaped the news agenda.

But now the BBC plans to axe all its national radio reporters and ask them to reapply for a smaller number of jobs as television, radio and digital reporters, rather than as dedicated audio journalists. Many fear it is not just the end of their careers but the premature end of an era for the BBC.

“Radio reporting is a different job. Of course, you can do both, but a report designed for television starts from a completely different place. Radio is also more agile and also a lot less expensive,” said one experienced broadcast journalist. “I am pretty sure most of us will not be given new TV roles. It seems sad to lose all that specific radio expertise.”

Among the well-known voices likely to be affected are Hugh Sykes, Andrew Bomford – who has just completed a long feature on the child protection process for Radio 4’s PM show – and the award-winning and idiosyncratic Becky Milligan, as well as a wider team of expert correspondents.[]

Amateur radio on BBC Radio Surrey (Southgate ARC)

RSGB report Board Director Stewart Bryant G3YSX and SOTA organiser Tim Price G4YBU were interviewed on BBC Radio Surrey on Friday, September 11

The interview starts just before 1:43:00 into the recording at
https://www.bbc.co.uk/sounds/play/p08pkykw

RSGB https://twitter.com/theRSGB

What is Amateur Radio?
http://www.essexham.co.uk/what-is-amateur-radio

Free UK amateur radio Online Training course
https://essexham.co.uk/train/foundation-online/

10 Things That Make The Icom IC 705 A Revolution in Ham Radio (K6UDA YouTube)

 

VLF Balloon with 210m long antenna launches Sept 12 (Southgate ARC)

A high-altitude balloon experiment, launched by Warsaw University of Technology, is planned to lift off September 12, carrying a VLF 210-m-long fully-airborne antenna system, transmitting on 14.2 kHz

14.2 kHz is the former frequency of the Babice Radio Station in Poland.

The project is delivering very important data for a doctoral dissertation – any and all feedback on the reception of the signal (reception location, SNR, bandwidth etc.) is extremely important; your help with the listening to the transmission would be invaluable!

The balloon will also be transmitting APRS on 144.800 MHz FM, callsign SP5AXL.

Full details at
https://alexander.n.se/grimetons-sister-station-shall-reappear-in-the-stratosphere/?lang=en


Kris also points out this article which provides more detail about the station and request for reception reports:

Invented for the first time in 2014, in 2020 it will finally be implemented – the idea of „restoring” the TRCN, but in the stratosphere, where there are no mechanical limitations at the height of the antennas, and the achieved range can be gigantic.

The launch of a stratospheric balloon from the Przasnysz-Sierakowo airport of the Warsaw University of Technology is planned for September 12, 2020, in order to perform atmospheric tests – measuring UV radiation, recording the cloudy surroundings with a high-speed camera and conducting an inductive experiment at 14.2 kHz using a special antenna system.

The inductive system uses a modified long-wave transmitter (A1 emission, unkeyed) from the GLACiER project of the Warsaw University of Technology, implemented as part of the IGLUNA – a Habitat in Ice programme (ESA_Lab / Swiss Space Center). The power of the transmitter, due to the emission limits for this type of inductive devices, shall not exceed a few watts. The antenna system is a centrally fed (35: 1) dipole with capacitive (Hertzian) elements and a vertical axial coil. The electrical length is between 400 and 500 m, with a total system length of 210 m. The antenna is equipped with metalized radar reflectors.

The entire balloon mission will use 144.8 MHz (as SP5AXL) and 868 MHz (as part of the LoVo system) for navigation. Flight information will be available in advance in NOTAM (EPWW).
Planned balloon launch (even if the sky is full of ‘lead’ clouds) at 12.00 UTC (14.00 CEST, local time). The 14.2kHz experiment will be switched on on the ground, with the antenna initially folded in harmony. The predicted total flight time is 3 hours – around 13.30-14.00 UTC / 15.30-16.00 CEST it is planned to reach the maximum altitude of 30 km above sea level.

Source: https://trcn.pl/do-stratosfery-to-the-stratosphere/

How can you help with the experiment? By recording as much as possible! Every parameter is valuable – from the spectrum / screenshot with the spectrum, to the EM field strengths, SNR and bandwidth, to the change of the EM field strength over time. The collected data can be sent to our e-mail address: [email protected]. On the day of launch, we plan to post updates on the launch, flight and the experiment itself via our Facebook page: facebook.com/radiostacjababice.
Stay tuned!


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

RSGB and RAC 2020 conferences online with free registration

Both the Radio Amateurs of Canada (RAC) and Radio Society of Great Britain (RSGB) will hold their 2020 annual conferences online and open to the public.

Check out press releases for both evens below:


RAC Canada 2020 Conference and Annual General Meeting

Radio Amateurs of Canada is pleased to welcome all Amateurs to the RAC Canada 2020 Conference which will be held on  Sunday, September 20 before the RAC Annual General Meeting.

There is no registration fee for this event and registration is now underway.

Canada 2020 Conference Overview:

The  RAC Canada 2020 Conference  is an interactive mini-conference that will feature interesting presentations on a wide range of topics as shown below. Whether you are a new Amateur or have been enjoying Amateur Radio for many years there will be something of interest for you to discover.

Given the great response we have received, we have now decided to extend the schedule to include a keynote presentation followed by three sessions.

Each session will have multiple presentations so that participants can choose those presentations that are of most interest to them. In addition, all sessions will be recorded for viewing later so you won’t miss out if two of your favourites take place at the same time.

  • Keynote presentation: 12 noon to 12:50 pm ET
  • First session (4 presentations): 1 pm to 1:50 ET
  • Second session (4 presentations): 2 pm to 2:50 ET
  • Third session (3 presentations): 3 pm to 3:50 ET

The Annual General Meeting will then begin after the Conference at 4 pm ET.

Conference Presentations and Schedule:

The following is a list of presentations and the schedule of events.

Keynote Presentation: 12 noon to 12:50 pm ET

“A Fireside Chat”: “Amateur Radio during the Global Pandemic and other topics”

An informal discussion featuring the following distinguished guests:

  • Glenn MacDonell, VE3XRA: President, Radio Amateurs of Canada (RAC  –  Moderator)
  • Tim Ellam, VE6SH: President, International Amateur Radio Union (IARU)
  • Rick Roderick, K5UR: President, American Radio Relay League (ARRL)
  • Steve Thomas, M1ACB: General Manager, Radio Society of Great Britain (RSGB)

In these unprecedented times, this is an excellent  –  and possibly historic opportunity  –  to engage in a discussion on the challenges we face today and the future of Amateur Radio.

First session: 1 pm to 1:50 pm ET

  • Getting Started with Amateur Radio Satellites  –  Tom Schuessler, N5HYP
  • Amateur Radio and Youth  –  Brian Jackson, VE6JBJ
  • Amateur Radio Challenges in Canada’s North  –  Ron Thompson, VE8RT and Angela Gerbrandt, VY0YL
  • CY9C St. Paul Island DXpedition  –  Phil McBride, VA3QR

Second session: 2 pm to 12:50 pm ET

  • 6m FT8 DXing  –  Ron Scwhartz, VE3VN
  • Contesting: Remote Operating  –  Cary Rubenfeld, VE4EA and Tom Haavisto, VE3CX
  • VO2AC: Contest DXpedition to Labrador (CQ Zone 2)  –  Chris Allingham, VE3FU/VO2AC
  • Amateur Radio Hotspots: A Quick Overview  –  Allan Boyd, VE3AJB

Third session: 3 pm to 3:50 pm ET

  • La proposition d’une classe d’entrée pour les radioamateurs (en français)  –  Guy Richard, VE2QG/VE2XTD
  • Amateur Radio: Yesterday, Today and Tomorrow  –  Allen Wootton, VY1KX
  • High Altitude Balloons: The Elevation Education  –  Kelly Shulman, VE3KLX

Instructions for Presentations:

Our volunteers are now hard at work preparing the instructions for all of the presenters and we will be sending them to you in the coming days. We thank you for your patience.

Please stay tuned to the RAC Canada 2020 Conference webpage for more information. We hope to see you at the event!

Jason Tremblay, VE3JXT
Conference Organizer
RAC Community Services Officer
[email protected]


RSGB 2020 Convention – Online

In response to the UK’s continuing social distancing regulations, the RSGB Convention Committee has changed the arrangements for this year’s event and is holding an online Convention on Saturday, 10 October 2020

The programme will be split into two streams and whether you’re a new licensee or have been enjoying amateur radio for many years there will be a range of topics from expert speakers that you can enjoy free throughout the day.

RSGB Construction Competition

The RSGB Construction Competition will again be sponsored by Martin Lynch & Sons.

Find out more, including how to enter, on the Construction Competition web page.

The RSGB Convention is proudly sponsored by Martin Lynch & Sons

Click here for more details.

Spread the radio love