Tag Archives: Elecraft

Portable tuner (ATU) options for the new Icom IC-705

Many thanks to SWLing Post contributor, Paul, who asks:

What are good choices for ATU and 100W amplifier for the IC-705? [Also] will the Icom AH-4 antenna tuner work well with the IC-705?

Great questions, Paul!

100 Watt Amplifiers

I’ve limited experience pairing the IC-705 with external 100 watt amplifiers. I own the Elecraft KXPA100 and it pairs well with the IC-705 via RF sensing. My hope is that SWLing Post readers may be able to chime in here and offer more suggestions as there are a number of inexpensive, basic, amplifiers on the market now but I’ve never personally used or tested them. I can say that the KXPA100 is a beautifully-engineered amplifier.

Antenna tuners

Icom AH-4

First off, regarding the Icom AH-4 ATU, I’m not certain if the IC-705 has the same control commands as the AH-4 (I’m guessing it does, but perhaps someone can confirm–?).

It would not be my first choice as a portable antenna tuner for field work. For one thing, it’s a pricey at $300. That, and I’ve always viewed the AH-4 as more of a remote antenna tuner for those who need a permanent matching box outside the shack near the antenna feed point. For that application, I’m sure it’s amazing.

According to the AH-4 specifications, it requires “10 W (5–15 W)” of tuning power. I’m not quite sure what the “5-15” watts means, but the IC-705’s max output power is 10 watts using an external 12-13.8V battery, and only 5 watts using the BP-272 Li-ion Battery. Not sure if that would be adequate to trigger the AH-4 to find a match without some sort of command cable connection.

For portable ATUs, let’s take a look:

IC-705 Portable ATU Options

The Icom IC-705 actually has a port on the side of the radio that allows one to connect the rig to an ATU for some level automatic ATU control. At time of posting, there are two ATUs in the works that are able to use this port: the Mat-Tuner mAT-705 and the Icom AH-705 (there could be more, but I’m not aware of them).

Mat-Tuner mAT-705 ($220 US)

I reviewed the mAT-705 on QRPer.com (click here to read). In short, it’s absolutely brilliant at matching antennas quickly and efficiently, but it has a few design shortcomings. The main issue is that you must use a mechanical switch to turn it on and off, else you deplete the internal 9V battery within a week. Most similar ATUs either have auto-off functionality, or at least an external power option. Since the mAT-705 can connect directly to the IC-705, it automatically knows when you need to tune to a frequency and will do this anytime you send a carrier, hit PTT, or initiate tuning via the menu option. It can also remember frequencies you’ve already matches to make the process quicker. The mAT-705 is also RF-sensing, thus can work with other radios. Vibroplex is the US distributor of the mAT-705. Note, too, that there are a number of portable Mat-Tuners that will work with the IC-705–the mAT-705 is the only one that uses the IC-705 control cable (which I feel is actually unnecessary).  Check out their full product line before ordering.

Icom AH-705 ($T.B.A.)

The Icom AH-705 is Icom’s own external ATU designed to work with the IC-705 and fit in the LC-192 backpack. Since the AH-705 will be able to connect directly to the IC-705, its functionality will be very similar to the mAT-705. I’m speaking in future tense here because, at time of posting (18 November 2020), the AH-705 is not yet in production and we’ve no retail price. With that said, Icom has a legacy of making fine ATUs, so I’ve no doubt it’ll function well. Like the mAT-705, it has a mechanical on/off button so you may have to be aware of turning it off when not in use to preserve the internal alkaline batteries. Unlike the mAT-705, it has an external 13.8 VDC power connection. Universal Radio will update their site with pricing and shipping information once available.

Elecraft T1 ($160-$190 US)

The Elecraft T1 ATU has been in production for many years now and is a fabulous portable ATU. Not only is it incredibly adept at finding matches, but it’s also efficient in terms of power usage. It will run for months on an internal 9V battery (that’s very easy to replace in the field). The T1 has no special connection for the IC-705, but it does have an optional T1-FT817 adapter for the Yaesu FT-817 series transceivers. In truth though? I find control cables unnecessary because tuning the T1 only requires pressing the tune button on the ATU, then keying the transceiver. Once it finds a match, it shuts down and locks it in. You can purchase the T1 directly from Elecraft ($160 kit/$190 assembled). The Elecraft T1 is my portable ATU of choice.

LDG Z-100A ($180 US)

I’ve owned a number of LDG tuners over the years an absolutely love them. I find that they offer great bang-for-buck, perform amazingly well, and are built well. In fact, I designed an outdoor remote antenna tuning unit around their original Z-11 Pro auto tuner. It’s housed in a sealed waterproof enclosure, but is completely exposed to outdoor humidity and temperature changes (which can be dramatic here on the mountain). I’ve been powering the Z-11 Pro for 10 years off of a discarded sealed lead acid battery that’s being charged by a Micro M+ charge controller and 5 watt BP solar panel. I’ve never needed to maintenance it. One of LDG’s latest portable ATUs is the Z-100A. I’ve never used it, but I imagine it’ll perform well and I may very well reach out to LDG and ask for a loaner to review with the IC-705. It does have a command cable port that works with Icom radios, but I’m checking with LDG to see if it works with the IC-705 (I’ll update this post when I hear back). The LDG Z-100A retails for $180 via LDG’s website.

Emtech ZM-2

Shortwave radio listeners, especially, should take note of the Emtech ZM-2 balanced line tuner! Unlike the ATUs above, the ZM-2 is manual–meaning, you manually adjust the tuner’s L/C controls to achieve a match with your antenna. I’ve owned the ZM-2 for many years and have used it with a number of QRP transceivers. Since it’s not automatic, it might take a minute or so to find a match, but it’s worth the wait. The ZM-2 requires no batteries to operate, which makes it an invaluable and reliable little tool in the field. In addition, since the ZM-2 doesn’t require RF energy in order to find a match, it’s a brilliant choice for SWLs who want to tweak their wire antennas. I find it functions as well as if not better than other manual tuners designed specifically for receivers. The ZM-2 is also the most affordable of the bunch: you can purchase a pre-built unit for $87.50 from Emtech or $62.50 as a kit. I would advise purchasing one even if you also have an automatic antenna tuner–makes for a great back-up!

Other options?

This is by no means a comprehensive list of portable ATUs to pair with the IC-705, just a few suggestions. In fact, companies like MFJ Enterprises make a number of manual tuners that could easily be taken to the field and require no power source (much like the ZM-2 above).

Please comment if you have experience with other types of ATUs and please include links if possible!

Spread the radio love

A little QRP radio magic this weekend

SWLing Post readers: I originally posted the following article on QRPer.com where I publish most of my ham radio field reports. It was the first full Parks On The Air activation with my recently re-acquired Elecraft KX1 transceiver and it was very memorable. I hope you enjoy:

Yesterday [Saturday, November 14, 2020] my family decided to make an impromptu trip to one of our favorite spots on the Blue Ridge Parkway at Richland Balsam–the highest point on the BRP.

Of course, it was a good opportunity to fit in a Parks On The Air (POTA) activation, but I had also hoped to activate Richland Balsam for Summits On The Air (SOTA) simultaneously.

It being well beyond leaf-looking season, we had hoped the BRP would be relatively quiet, but we were wrong.

Trail heads were absolutely jam-packed and overflowing with visitors and hikers. We’ve noticed a sharp hiker uptick this year in western North Carolina due in no small part to the Covid-19 pandemic. People see hiking as a safe “social-distance” activity outdoors, but ironically, hiker density on our single-track trails is just through the roof.   One spends the bulk of a hike negotiating others on the trail.

The trail head to Richland Balsam was no exception. Typically, this time of year, we’d be the only people parked at the trail head but yesterday it was nearly parked full.

Being natives of western North Carolina, we know numerous side-trails and old logging/service roads along the parkway, so we picked one of our favorites very close to Richland Balsam.

We hiked to the summit of a nearby ridge line and I set up my POTA station with the “assistance” of Hazel who always seems to know how to get entangled in my antenna wires.

“I’m a helper dog!”

Taking a break from using the Icom IC-705, I brought my recently reacquired  KX1 field radio kit.

Gear:

I carried a minimal amount of gear on this outing knowing that there would be hiking involved. Everything easily fit in my GoRuck Bullet Ruck backpack (including the large arborist throw line) with room to spare.

I took a bit of a risk on this activation: I put faith in the wire antenna lengths supplied with my new-to-me Elecraft KX1 travel kit. I did not cut these wires myself, rather, they are the lengths a previous owner cut, wound, and labeled for the kit.

With my previous KX1, I knew the ATU was pretty darn good at finding matches for 40, 30, and 20 meters on short lengths of wire, so I threw caution to the wind and didn’t pack an additional antenna option (although I could have hiked back to the car where I had the CHA MPAS Lite–but that would have cut too much time from the activation).

I didn’t use internal batteries in the KX1, rather, I opted for my Bioenno 6 aH LiFePo battery which could have easily powered the KX1 the entire day.

I deployed the antenna wire in a nearby (rather short) tree, laid the counterpoise on the ground, then tried tuning up on the 40 meter band.

No dice.

The ATU was able to achieve a 2.7:1 match, but I don’t like pushing QRP radios above a 2:1 match if I don’t have to. I felt the radiator wire was pretty short (although I’ve yet to measure it), so clipping it would only make it less resonant on 40 meters.

Instead, I moved up to the 20 meter band where I easily obtained a 1:1 match.

I started calling CQ POTA and within a couple of minutes snagged two stations–then things went quiet.

Since I was a bit pressed for time, I moved to the 30 meter band where, once again, I got a 1:1 match.

I quickly logged one more station (trusty N3XLS!) then nothing for 10 minutes.

Those minutes felt like an eternity since I really wanted to make this a quick activation. I knew, too, that propagation was fickle; my buddy Mike told me the Bz numbers had gone below negative two only an hour before the activation. I felt like being stuck on the higher bands would not be to my advantage.

Still, I moved back up to 20 meters and try calling again.

Then some radio magic happened…

Somehow, a propagation path to the north west opened up and the first op to answer my call was VE6CCA in Alberta. That was surprising! Then I worked K3KYR in New York immediately after.

It was the next operator’s call that almost made me fall off my rock: NL7V in North Pole, Alaska.

In all of my years doing QRP field activations, I’ve never had the fortune of putting a station from Alaska in the logs. Alaska is a tough catch on the best of days here in North Carolina–it’s much easier for me to work stations further away in Europe than in AK.

Of all days, I would have never anticipated it happening during this particular activation as I was using the most simple, cheap antenna possible: two thin random lengths of (likely discarded) wire.

People ask why I love radio? “Exhibit A”, friends!

After working NL7V I had a nice bunch of POTA hunters call me. I logged them as quickly as I could.

I eventually moved back to 30 meters to see if I could collect a couple more stations and easily added five more. I made one final CQ POTA call and when there was no answer, I quickly sent QRT de K4SWL and turned off the radio.

Here’s a map of my contacts from QSOmap.org:

I still can’t believe my three watts and a wire yielded a contact approximately 3,300 miles (5311 km) away as the crow flies.

This is what I love about field radio (and radio in general): although you do what you can to maximize the performance of your radio and your antenna, sometimes propagation gives you a boost when you least expect it. It’s this sense of wireless adventure and wonder that keeps me hooked!

Spread the radio love

Elecraft KX1: Back with my portable radio companion

The Elecraft KX1

Note: This article was first published on QRPer.com.

A few weeks ago, I published a post about radios I’ve regretted selling or giving away.

Number one on that list was the Elecraft KX1.

Within a couple hours of posting that article, I had already purchased a KX1 I found on the QTH.com classifieds. It was, by any definition, an impulse purchase.

The seller, who lives about 2 hours from my QTH, described his KX1 as the full package: a complete 3 band (40/30/20M) KX1 with all of the items needed to get on the air (save batteries) in a Pelican 1060 Micro Case.

The KX1 I owned in the past was a four bander (80/40/30/20M) and I already double checked to make sure Elecraft still had a few of their 80/30 module kits available (they do!).  I do operate 80M in the field on occasion, but I really wanted the 80/30 module to get full use of the expanded HF receiver range which allows me to zero-beat broadcast stations and do a little SWLing while in the field.

The seller shipped the radio that same afternoon and I purchased it for $300 (plus shipping) based purely on his good word.

The KX1 package

I’ll admit, I was a bit nervous: I hadn’t asked all of the typical questions about dents/dings, if it smelled of cigarette smoke, and hadn’t even asked for photos. I just had a feeling it would all be good (but please, never follow my example here–I was drunk with excitement).

Here’s the photo I took after removing the Pelican case from the shipping box and opening it for the first time:

My jaw dropped.

The seller was right: everything I needed (and more!) was in the Pelican case with the KX1. Not only that, everything was labeled. An indication that the previous owner took pride in this little radio.

I don’t think the seller actually put this kit together. He bought it this way two years ago and I don’t think he ever even put it on the air based on his note to me. He sold the KX1 because he wasn’t using it.

I don’t know who the original owner was, but they did a fabulous job not only putting this field kit together, but also soldering/building the KX1. I hope the original owner reads this article sometime and steps forward.

You might note in the photo that there’s even a quick reference sheet, Morse Code reference sheet and QRP calling frequencies list attached to the Pelican’s lid inside. How clever!

I plan to replace the Morse Code sheet with a list of POTA and SOTA park/summit references and re-print the QRP calling frequencies sheet. But other than that, I’m leaving it all as-is. This might be the only time I’ve ever purchased a “package” transceiver and not modified it in some significant way.

Speaking of modifying: that 80/30 meter module? Glad I didn’t purchase one.

After putting the KX1 on a dummy load, I checked each band for output power. Band changes are made on the KX1 by pressing the “Band” button which cycles through the bands one-way. It started on 40 meters, then on to 30 meters, and 20 meters. All tested fine. Then I pressed the band button to return to 40 meters and the KX1 dived down to the 80 meter band!

Turns out, this is a four band KX1! Woo hoo! That saved me from having to purchase the $90 30/80M kit (although admittedly, I was looking forward to building it).

Photos

The only issue with the KX1 was that its paddles would only send “dit dah” from either side. I was able to fix this, though, by disassembling the paddles and fixing a short.

Although I’m currently in the process of testing the Icom IC-705, I’ve taken the KX1 along on a number of my park adventures and switched it out during band changes.

Indeed, my first two contacts were made using some nearly-depleted AA rechargeables on 30 meters: I worked a station in Iowa and one in Kansas with perhaps 1.5 watts of output power–not bad from North Carolina!

I’m super pleased to have the KX1 back in my field radio arsenal.

I name radios I plan to keep for the long-haul, so I dubbed this little KX1 “Ruby” after one of my favorite actresses, Barbara Stanwyck.

Look for Ruby and me on the air at a park or summit near you!

Spread the radio love

Icom IC-705 blind audio tests: Let’s take a look at your choices!

Before I had even taken delivery of the new Icom IC-705 transceiver, a number of SWLing Post readers asked me to do a series of blind audio comparison tests like I’ve done in the past (click here for an example).

Last week, I published a series of five audio tests/surveys and asked for your vote and comments. The survey response far exceeded anything I would have anticipated.

We received a total of 931 survey entries/votes which only highlights how much you enjoy this sort of receiver test.

In this challenge, I didn’t even give you the luxury of knowing the other radios I used in each comparison, so let’s take a look…

The competition

Since the Icom IC-705 is essentially a tabletop SDR, I compared it with a couple dedicated PC-connected SDRs.

WinRadio Excalibur SDR

The WinRadio Excalibur

I consider the WinRadio Excalibur to be a benchmark sub $1000 HF, mediumwave, and longwave SDR.

It is still my staple receiver for making off-air audio and spectrum recordings, and is always hooked up to an antenna and ready to record.

In the tests where I employed the WinRadio Excalibur, I used its proprietary SDR application to directly make recordings. I used none of its advanced filters, AGC control, or synchronous detection.

Click here to read my original 2012 review of the WinRadio Excalibur.

Airspy HF+ SDR

The Airspy HF+ SDR

I also consider the Airspy HF+ SDR to be one of the finest sub-$200 HF SDRs on the market.

The HF+ is a choice SDR for DXing. Mine has not been modified in any way to increase its performance or sensitivity.

In the test where I employed the HF+ I used Airspy’s own SDR application, SDR#, to directly make recordings. I used none of its advanced filters, AGC control, noise reduction, or synchronous detection.

Belka-DSP portable receiver

The Belka-DSP

I recently acquired a Belka-DSP portable after reading 13dka’s superb review.

I thought it might be fun to include it in a comparison although, in truth, it’s hardly fair to compare a $160 receiver with a $1300 SDR transceiver.

The Belka, to me, is like a Lowe HF-150 in a tiny, pocket package.

Elecraft KX3 QRP transceiver

The Elecraft KX3

The KX3 is one of the best transceivers I’ve ever owned. Mine has the CW roofing filter installed (only recently) and is, without a doubt, a benchmark performer.

Click here to read my full review.

If you check out Rob Sherwood’s receiver test data table which is sorted by third-order dynamic range narrow spaced, you’ll see that the KX3 is one of the top performers on the list even when compared with radios many times its price. Due to my recording limitations (see below) the KX3 was the only other transceiver used in this comparison.

Herein lies a HUGE caveat:

The WinRadio application

As I’ve stated in SDR reviews in the past, it is incredibly difficult comparing anything with PC-connected SDRs because they can be configured on such a granular level.

When making a blind audio test with a stand-alone SDR radio like the IC-705–which has less configurability–you’re forced to take one of at least two paths:

  • Tweak the PC-connected SDR until you believe you’ve found the best possible reception audio scenario and use that configuration as a point of comparison, or
  • Attempt to keep the configuration as basic as possible, setting filters widths, AGC to be comparable and turning off all other optional enhancements (like synchronous detection, noise reduction, and advanced audio filtering to name a few).

I chose the latter path in this comparison which essentially undermines our PC-connected SDRs. Although flawed, I chose this approach to keep the comparison as simple as possible.

While the IC-705 has way more filter and audio adjustments than legacy transceivers, it only has a tiny fraction of those available to PC-connected SDRs. Indeed, the HF+ SDR, for example, can actually be used by multiple SDR applications, all with their own DSP and feature sets.

In short: don’t be fooled into thinking this is an apples-to-apples comparison. It is, at best, a decent attempt at giving future IC-705 owners a chance to hear how it compares in real-word live signals.

Recordings

The Zoom H2N connected to my Elecraft KX2.

Another limiting factor is that I only have one stand-alone digital audio recorder: the Zoom H2N. [Although inspired by Matt’s multi-track comparison reviews, I plan to upgrade my gear soon.]

The IC-705 has built-in digital audio recording and this is what I used in each test.

The WinRadio Excalibur and Airspy HF+ also have native audio recording via their PC-based applications.

With only one stand-alone recorder, I wasn’t able to simultaneously compare the IC-705 with more than one other stand-alone receiver/transceiver at a time.

As I mentioned in each test, the audio levels were not consistent and required the listener to adjust their volume control. Since the IC-705, Excalibur, and HF+ all have native recording features, the audio levels were set by their software. I didn’t post-process them.

Blind Audio Survey Results

With all of those caveats and disclaimers out of the way, let’s take a look at the survey results.

Blind audio test #1: 40 meters SSB

In this first test we listened to the IC-705, WinRadio Excalibur, and Belka-DSP tuned to a weak 40 meter station in lower sideband (LSB) mode. Specifically, this was ham radio operator W3JPH activating Shikellamy State Park in Pennsylvania for the Parks On The Air program. I chose this test because it included a weak station calling CQ and both weak and strong stations replying. There are also adjacent signals which (in some recordings) bleed over into the audio.

Radio A: The Belka-DSP

Radio B: The WinRadio Excalibur

Radio C: The Icom IC-705

Survey Results

The Icom IC-705 was the clear choice here.

Based on your comments, those who chose the IC-705 felt that the weak signal audio was more intelligible and that signals “popped out” a bit more. Many noted, however, that the audio sounded “tinny.”

A number of you felt it was a toss-up between The IC-705 and the Belka-DSP. And those who chose the WinRadio Excalibur were adamant that is was the best choice.

The WinRadio audio was popping in the recording, but it was how the application recorded it natively, so I didn’t attempt to change it.

Test #2: 40 meters CW

Icom IC-705In this second test we listened to the Icom IC-705 and the Elecraft KX3 tuned to a 40 meter CW station.

Radio A: Icom IC-705

Radio B: Elecraft KX3

Survey Results

The Elecraft KX3 was preferred by more than half of you.

Based on your comments, those who chose the KX3 felt the audio was clearer and signals had more “punch.” They felt the audio was easier on the ears as well, thus ideal for long contests.

Those who chose the IC-705, though, preferred the narrower sounding audio and felt the KX3 was too bass heavy.

Test #3: Shannon Volmet SSB

In this third test we listened to the Icom IC-705 and WinRadio Excalibur, tuned to Shannon Volmet on 8,957 kHz.

Radio A: WinRadio Excalibur

Radio B: Icom IC-705

Survey

The Icom-705 audio was preferred by a healthy margin. I believe, again, this was influenced by the audio pops heard in the WinRadio recording (based on your comments).

The IC-705 audio was very pleasant and smooth according to respondents and they felt the signal-to-noise ratio was better.

However, a number of comments noted that the female voice in the recording was actually stronger on the WinRadio Excalibur and more intelligible during moments of fading.

Test #4: Voice of Greece 9,420 kHz

In this fourth test we listen to the Icom IC-705, and the WinRadio Excalibur again, tuned to the Voice of Greece on 9,420 kHz.

Radio A: Icom IC-705

Radio B: WinRadio Excalibur

Survey

While the preference was for the IC-705’s audio (Radio A), this test was very interesting because those who chose the Excalibur had quite a strong preference for it, saying that it would be the best for DXing and had a more stable AGC response. In the end, 62.6% of 131 people felt the IC-705’s audio had slightly less background noise.

Test #5: Radio Exterior de España 9,690 kHz

In this fifth test we listened to the Icom IC-705, and AirSpy HF+, tuned to Radio Exterior de España on 9,690 kHz. I picked REE, in this case, because it is a blowtorch station and I could take advantage of the IC-705’s maximum AM filter width of 10 kHz.

Radio A: Icom IC-705

Radio B: Airspy HF+

Survey

The IC-705 was preferred by 79% of you in this test.

Again, very interesting comments, though. Those who preferred the IC-705 felt the audio simply sounded better and had “punch.” Those who preferred B felt it was more sensitive and could hear more nuances in the broadcaster voices.

So what’s the point of these blind audio tests?

Notice I never called any radio a “winner.”

The test here is flawed in that audio levels and EQ aren’t the same, the settings aren’t identical, and even the filters have slightly different shapes and characteristics.

In other words, these aren’t lab conditions.

I felt the most accurate comparison, in terms of performance, was the 40M CW test with the KX3 because both employed similar narrow filters and both, being QRP transceivers, are truly designed to perform well here.

I essentially crippled the WinRadio Excalibur and Airspy HF+ by turning off all all but the most basic filter and AGC settings. If I tweaked both of those SDRs for optimal performance and signal intelligibility, I’m positive they would have been the preferred choices (indeed, I might just do another blind audio test to prove my point here).

With that said, I think we can agree that the IC-705 has brilliant audio characteristics.

I’ve noticed this in the field as well. I’m incredibly pleased with the IC-705’s performance and versatility. I’ll be very interested to see how it soon rates among the other transceivers in Rob Sherwood’s test data.

The IC-705 can actually be tailored much further by adjusting filter shapes/skirts, employing twin passband tuning and even using its noise reduction feature.

If anything, my hope is that these blind audio tests give those who are considering the Icom IC-705 a good idea of how its audio and receiver performs in real-word listening conditions.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

The perils of radio self-enabling…

So the SWLing Post has been online now for twelve years and during that time I’ve been accused of being a “radio enabler.” Of course, I’ve never counted just how many, but I’m guessing somewhere in the region of 115,900 times.

Truth is, radio love is infectious.

In the past, I’ve read reviews and articles about radios that have lead me down the path to making a purchase. Countless times.

Yesterday, though, I quite literally enabled myself.

It all started with the Elecraft KX1

I posted this article on QRPer.com where I listed four ham radio transceivers I regretted selling. The number one pick was the Elecraft KX1 QRP CW transceiver.

I owned the KX1 for years. It was my first CW-only transceiver and my fist backpack-friendly radio for proper lightweight, low-impact, field radio fun. I sold it in 2016 to help fund the purchase of my Elecraft KX2.

Besides simply admiring a radio that embraced the philosophy of “form following function,” the KX1 had features you wouldn’t expect in a radio so compact and so lightweight. For example…

SWL Band RX

Wayne Burdick (N6KR)–co-founder and engineer/designer at Elecraft–is a shortwave radio enthusiast.

The KX1 was designed so that while you’re camping, hiking, or activating a SOTA site, you can also do a little SWLing!

Even though the KX1 is a CW-only rig in transmit, they added both LSB and USB out-of-band reception. Depending on the KX1 band configuration, you can zero-beat broadcasters, widen the adjustable filter, and enjoy shortwave listening in the field.

When I owned the KX1, I did this quite often. Don’t get wrong: it couldn’t compete with, say, a dedicated shortwave receiver like the Tecsun PL-680, but it worked well enough that listening to even weaker stations was very doable. When one-bag travelling or camping, it was great to have one radio that could serve two functions.

LED Log Book Lamp

Photo: Eric (WD8RIF)

To my knowledge, the KX1 is the only portable transceiver I know of that includes a built-in logging lamp.

I remember once operating the KX1 on the beach at Jekyll Island, GA one evening and using the lamp to illuminate my logging sheet. Good times…

Perfect ergonomics for winter field operating

Elecraft KX2 (top) and KX1 (bottom)

Even though the KX1 is a small radio, it was one of the first field rigs to have top-mounted controls. All of the buttons, knobs, and pots are well-spaced and easy to access. I especially love the pots used for the RF Gain, Filter, and AF Gain–raised, thin, tactile stems, essentially, that could be easily adjusted even while wearing thick winter gloves.

In fact, the KX1 is the only portable radio I’ve ever operated that didn’t require me, at some point, to remove my gloves.

Insane amount of features

In true Elecraft fashion, the KX1 packs a ton of features specifically designed around field operation. Check out the features from their quick reference sheet above.

Here’s what happened

I published my article on QRPer.com and decided, on a whim, to see if there were any listings for the KX1 on QTH.com’s classifieds list via my QRP Transceiver shopping list.

One ham had a KX1 listed. It was nearly identical to the one I owned and even included the same Pelican case. The only difference was my KX1 sported 4 bands (80, 40, 30, and 20m)–this one only had three bands (40, 30, and 20). Not a big deal because typically when I’m hiking I do little operating on 80 meters. If I decide to add 80 meters, I may still be able to snag the appropriate kit module.

The listing had no price.

I called the seller–who turned out to be fairly local–and within an hour he came back with his offer: $300 for the entire kit plus true shipping costs. I thought that was a fair price, so I purchased it and he even shipped it same day.

Moral of the story?

Next time I make a post about radios I’ve regretted selling, trading, or giving away, I need to publish it, then slowly back away from the computer.

I’m not going to be too hard on myself this time, though: I’m truly looking forward to putting the KX1 back in rotation here at SWLing Post HQ.

If you feel inclined, I would encourage you to comment on this post about radios you’ve regretted selling (click here to read the full QRPer post). I love hearing why specific radios have strong appeal for certain enthusiasts.

Just take my advice and stay away from the classifieds!

Spread the radio love

Elecraft posts photos of the new K4 transceiver in production

Elecraft had hoped to start shipping the new K4 flagship transceiver this week and I’m sure it’s been a real challenge realizing this goal in the day and age of the Covid-19 pandemic.

This morning, Elecraft posted the following photo on their Twitter account with the caption, “New K4s in production 🙂“:

I’m sure this is a welcome sight for those who have pre-ordered the K4.

Many thanks to Paul Evans for the tip!

Click here to check out the K4 product page at Elecraft.

Spread the radio love

Elecraft KX2 3D model tour with Wayne Burdick (N6KR)

Wayne Burdick (N6KR) was one of the QSO Today Expo presenters this year and he took his audience on a very deep dive into the design philosophy behind the Elecraft KX2 (click here to read our KX2 review). The presentation is absolutely fascinating!  If you want geek-out on radio design, I highly recommend you take a look:

Spread the radio love