Tag Archives: spaceweather

Might be a good idea to protect your gear: Scientists believe the Carrington Event “was not unique”

Many thanks to SWLing Post contributor, Eric McFadden (WD8RIF), who shares the following story from Spaceweather.com (my comments follow):

On Sept. 1st, 1859, the most ferocious solar storm in recorded history engulfed our planet. It was “the Carrington Event,” named after British scientist Richard Carrington, who witnessed the flare that started it. The storm rocked Earth’s magnetic field, sparked auroras over Cuba, the Bahamas and Hawaii, set fire to telegraph stations, and wrote itself into history books as the Biggest. Solar. Storm. Ever.

But, sometimes, what you read in history books is wrong.

“The Carrington Event was not unique,” says Hisashi Hayakawa of Japan’s Nagoya University, whose recent study of solar storms has uncovered other events of comparable intensity. “While the Carrington Event has long been considered a once-in-a-century catastrophe, historical observations warn us that this may be something that occurs much more frequently.”

To generations of space weather forecasters who learned in school that the Carrington Event was one of a kind, these are unsettling thoughts. Modern technology is far more vulnerable to solar storms than 19th-century telegraphs. Think about GPS, the internet, and transcontinental power grids that can carry geomagnetic storm surges from coast to coast in a matter of minutes. A modern-day Carrington Event could cause widespread power outages along with disruptions to navigation, air travel, banking, and all forms of digital communication.

Many previous studies of solar superstorms leaned heavily on Western Hemisphere accounts, omitting data from the Eastern Hemisphere. This skewed perceptions of the Carrington Event, highlighting its importance while causing other superstorms to be overlooked.

[…]Hayakawa’s team has delved into the history of other storms as well, examining Japanese diaries, Chinese and Korean government records, archives of the Russian Central Observatory, and log-books from ships at sea–all helping to form a more complete picture of events.

They found that superstorms in February 1872 and May 1921 were also comparable to the Carrington Event, with similar magnetic amplitudes and widespread auroras. Two more storms are nipping at Carrington’s heels: The Quebec Blackout of March 13, 1989, and an unnamed storm on Sept. 25, 1909, were only a factor of ~2 less intense. (Check Table 1 of Hayakawa et al’s 2019 paper for details.)

“This is likely happening much more often than previously thought,” says Hayakawa.

Are we overdue for another Carrington Event? Maybe. In fact, we might have just missed one.

In July 2012, NASA and European spacecraft watched an extreme solar storm erupt from the sun and narrowly miss Earth. “If it had hit, we would still be picking up the pieces,” announced Daniel Baker of the University of Colorado at a NOAA Space Weather Workshop 2 years later. “It might have been stronger than the Carrington Event itself.”

History books, let the re-write begin.

Click here to read at Spaceweather.com.

With the way 2020 has gone so far, it might be wise to take a look at our EMP Primer which goes into detail about how to protect your radio gear from an EMP event like this. It’s not an expensive process, but requires advance preparation.

Click here to check out our EMP primer.

Spread the radio love

A new sunspot emerges, breaking 40 day spotless streak

(Source: Spaceweather.com via Michael Bird)

A SUNSPOT FROM THE NEXT SOLAR CYCLE: Breaking a string of 40 spotless days, a new sunspot is emerging in the sun’s southern hemisphere. It comes from the next solar cycle. The unnumbered spot is inset in this map of solar magnetic fields from NASA’s Solar Dynamics Observatory:

How do we know this is a new-cycle sunspot? Its magnetic polarity tells us so. Southern sunspots from old Solar Cycle 24 have a -/+ polarity. This sunspot is the opposite: +/-. According to Hale’s Law, sunspots switch polarities from one solar cycle to the next. This sunspot is therefore a member of new Solar Cycle 25.

Recently we reported that Solar Minimum has reached a century-class low. This sunspot, plus a few others like it earlier this year, affirm that Solar Minimum won’t last forever. Solar Cycle 25 is showing signs of life. Forecasters expect the next solar cycle to slowly gain strength in the years ahead and reach a peak in July 2025.

www.spaceweather.com

Spread the radio love

1921 NY Railroad Storm could have surpassed intensity of 1859 Carrington Event

(Image: NASA)

(Source: Southgate ARC via Eric McFadden)

Scientific American magazine reports new data suggest the 1921 ‘New York Railroad Storm’ could have surpassed the intensity of the famous Carrington Event of 1859

In a paper published in the journal Space Weather, Jeffrey Love of the U.S. Geological Survey and his colleagues reexamined the intensity of the 1921 event, known as the New York Railroad Storm, in greater detail than ever before. Although different measures of intensity exist, geomagnetic storms are often rated on an index called disturbance storm time (Dst)—a way of gauging global magnetic activity by averaging out values for the strength of Earth’s magnetic field measured at multiple locations. Our planet’s baseline Dst level is about –20 nanoteslas (nT), with a “superstorm” condition defined as occurring when levels fall below –250 nT.

Studies of the very limited magnetic data from the Carrington Event peg its intensity at anywhere from –850 to –1,050 nT. According to Love’s study, the 1921 storm, however, came in at about –907 nT. “The 1921 storm could have been more intense than the 1859 storm,” Love says. “Prior to our paper, [the 1921 storm] was understood to be intense, but how intense wasn’t really clear.”

Read the full story at
https://www.scientificamerican
.com/article/new-studies-warn-of-cataclysmic-solar-superstorms/

Spread the radio love

Parker Solar Probe gathering data from our local star

(Source: NASA)

Many thanks to SWLing Post contributor, Paul Evans (W4/VP9KF), who writes:

Parker Solar Probe supposedly going to yield some interesting data [see below].

Hopefully it’ll bring forth some interesting new findings for Short Wave users!

(Source: Engaget)

Over the past months, NASA’s Parker Solar Probe flew closer to the sun than any other spacecraft before it — not once, but twice on two flybys. The probe obviously collected as much data as it could so that we can understand the sun better. Now its mission team at Johns Hopkins Applied Physics Laboratory in Maryland has just received the final transmission for the 22 gigabytes of science data collected during those two encounters. That’s 50 percent more than it expected to receive by now, all thanks to the spacecraft’s telecommunications system performing better than expected.

Parker’s ground team found out soon after launch that the probe is capable of a higher downlink rate. In fact, they’re taking advantage of that ability by instructing the probe to send back even more data from the second encounter in April. During that event, the spacecraft’s four suites of science instruments kept busy collecting information. That’s why the mission team is expecting to receive an additional 25GB of science data between July 24th and August 15th.

The mission team will release the data from the first two encounters to the public later this year. Before that happens, the spacecraft will conduct its third flyby, which will start on August 27th and reach closest approach on September 1st. Researchers are hoping that over the net few years the mission can gather the information we need to unravel some of the sun’s biggest mysteries, including why the sun’s corona (its aura of plasma) is far hotter than its visible surface.

Click here to read the full article at Engaget.

Spread the radio love

Planetary orbits may influence 11-year solar cycle

(Image: NASA)

Many thanks to SWLing Post contributor, Dan Van Hoy, who shares this interesting article via Space.com:

The orbits of Venus, Earth and Jupiter may explain the sun’s regular 11-year cycle, a new study suggests.

A team of researchers from Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a research institute in Dresden, Germany, showed that the magnetic fields of those three planets influence the cycle of solar activity, resolving one of the bigger questions in solar physics.

“Everything points to a clocked process,” Frank Stefani, a researcher at HZDR and lead author of the new study, said in a statement. “What we see is complete parallelism with the planets over the course of 90 cycles.”

The researchers compared observations of solar activity — like sunspots, solar flares and coronal mass ejections — from the last thousand years with planetary alignments in order to show that there was in fact a correlation, according to the statement.[…]

Click here to read the full article at Space.com.

Spread the radio love

Intense Solar Bursts on 20 & 25 MHz

 

Credit: Thomas Ashcraft & Spaceweather.com

Yet another Space Weather note and how Space Weather and radio are intersecting yet again – yesterday & today!  Yesterday Thomas Ashcraft – mentioned recently in this postrecorded the outbursts.

From http://spaceweather.com

INTENSE SOLAR RADIO BURSTS: Big sunspot AR2740 is turning toward Earth and emitting loud bursts of shortwave radio static. A remarkable outburst yesterday was rare in both its form and intensity, exceeding even what observers have detected during Solar Maximum …

UPDATE: Rob Stammes of Lofoten, Norway, has detected even more bursts on May 7th. The sun continues to be “radio-active.”

For the complete story, go to spaceweather.com.

Guest post by Troy Riedel

Spread the radio love

Active sunspot returns

(Source: Spaceweather via Troy Riedel)

This weekend, old sunspot AR2738 is returning from a two-week trip around the farside of the sun. After re-appearing late yesterday, the sunspot quickly produced two CMEs (coronal mass ejections), signalling that it may be even more active than before. Last month when it crossed the face of the sun, AR2738 crackled with low-level flares and strafed Earth with loud shortwave radio bursts.[…]

Click here to follow this story at Spaceweather.com.

Spread the radio love