Tag Archives: Solar Flares

Using Doppler Shift and Time Stations to Detect Solar Flares

A WWV Time Code Generator (photo taken at WWV in Fort Collins, Colorado)

Many thanks to SWLing Post contributors, Troy Riedel and Jock Elliott, for sharing the following post from Spaceweather.com:

A NEW WAY TO DETECT SOLAR FLARES: Around the world, ham radio operators are experimenting with a new way to detect solar flares–the Doppler Shift method. Brian Curtis of Sault Ste Marie, Michigan, demonstrated the technique on June 20th when the sun produced a powerful X1.1-class solar flare:

Image by Brian Curtis

“I monitor the frequency and field strength of Canada’s CHU time station transmitting at 7850 KHz,” explains Curtis. “During the X-class flare event, I was able to detect the Doppler shift of the station’s carrier frequency (green plot). It shifted by 5 Hz, which is a small change, but very obvious!”

When radiation from a solar flare hits Earth’s atmosphere, it ionizes the air, temporarily boosting the thickness of our planet’s ionosphere. Any radio station skipping off the ionosphere will suddenly find its frequency Doppler shifted (because its reflection point is moving). Shortwave stations such as WWVWWVH, and CHU transmit carriers with atomic-clock grade frequency stability, so they are perfect sources for Doppler monitoring.

Sudden changes in the ionosphere caused by flares or even sunrise/sunset can Doppler shift the frequency of stations like WWV. Image credit: Collins et al (2021) [Original image via HamSci and SpaceWeather.com]

“I have been monitoring radio stations for decades, noting sudden changes in signal strength as a means of monitoring space weather events,” says Curtis. “It is only fairly recently (~4 months) that I started to experiment with monitoring the Doppler shift of HF stations. The June 20th X-class flare event is by far the most dramatic that I have witnessed thus far.”

Would you like to detect solar flares this way? The HamSCI citizen science program has developed a Personal Space Weather Station specifically for Doppler shift measurements. This technique can also be used to study solar eclipsesearthquakes and tsunamis, and much more.

Click here to read the full story on Spaceweather.com, more on EOS.org and HamSCI.org

Spread the radio love

Radio Waves: G4 Solar Storm, AM for Car Safety, AI DJs Next Month, and NYC Pirate Fined $2 Million

Radio Waves:  Stories Making Waves in the World of Radio

Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Troy Riedel, Dennis Dura, and Richard Cuff for the following tips:


Strongest solar storm in nearly 6 years slams into Earth catching forecasters by surprise (Space.com)

The powerful solar storm supercharged auroras as far south as Colorado and New Mexico.

The most powerful solar storm in nearly six years slammed Earth today (March 24), but strangely, space weather forecasters didn’t see it coming.

The geomagnetic storm peaked as a severe G4 on the 5-grade scale used by the U.S. National Oceanic and Atmospheric Administration (NOAA) to assess the severity of space weather events. The storm’s unexpected ferocity not only made auroras visible as far south as New Mexico in the U.S., but it also forced spaceflight company Rocket Lab to delay a launch by 90 minutes.

Geomagnetic storms are disturbances to Earth’s magnetic field caused by solar material from coronal mass ejections (CME) — large expulsions of plasma and magnetic field from the sun’s atmosphere. It turns out that this particular geomagnetic storm was triggered by a “stealth” CME which — as the name suggests — is rather tricky to detect. [Continue reading…]

Congressman Says Make AM a Mandatory Car Safety Feature (Radio World)

Gottheimer also supports federal spending on AM infrastructure to assure continuity of service

A congressman from New Jersey wants the government to add AM radio to the list of safety equipment that carmakers must include in their vehicles.

Rep. Josh Gottheimer has called on the National Highway Traffic Safety Administration to “add AM radio to the Federal Motor Vehicle Safety Standards to require that all automakers, including EV manufacturers, include AM radio as a stock feature in their vehicles. Federal Motor Vehicle Safety Standards are the minimum safety standards that a manufacturer must meet when making a vehicle — including requirements related to airbags, brakes, seatbelts, tires, controls and displays.”

The National Association of Broadcasters welcomed his effort.

Gottheimer, a Democrat who represents a district along the state’s northern border, held a news event next to a Tesla dealership in Paramus, N.J., along with New Jersey Broadcasters Association Executive Director Jordan Walton. [Continue reading…]

AI-generated DJs are coming to radio stations in the US and Canada next month (Business Insider)

An AI-generated radio DJ could be coming to your local radio station.

RadioGPT, a GPT-4-powered radio content generator from media company Futuri, is set to debut next month in radio stations in the US and Canada, Axios Cleveland reported.

Powered by the same tech that ChatGPT draws upon, RadioGPT aims to man radio airtime spots with AI-generated scripts and voices, as well as tailored local news content.

You can listen to a demo from the company that gives you a preview of what the AI-generated DJ voices sound like — which tell listeners that they are, in fact, fully AI — sprinkled between curated songs. The page includes snippets of RadioGPT-generated voices presenting news, weather, and traffic updates.

“Anything a radio human can do, I can do better,” one of the AI hosts can be heard saying in between songs. “Every voice you hear is 100% AI.” [Continue reading…]

FCC Fines 15 Year-Old Pirate Radio Station in NYC $2 Million (Vice)

The FCC is using its new powers to ask from the maximum fine from an Ecuadorian pirate radio station that’s run for more than 15 years.

The Federal Communications Commission (FCC) is using a new law to fine a pirate radio station operating in New York City for more than $2 million. For 15 years, Impacto 2, which has been operated by two brothers, has broadcast Ecuadorian news, culture, sports, and talk-radio on 105.5 FM in Queens. The feds have tried to shut it down repeatedly, but have never succeeded.

The FCC announced the fine in a press release last week. “The Commission proposed the maximum penalty allowable, $2,316,034, against brothers César Ayora and Luis Angel Ayora for pirate radio broadcasting in Queens, New York,” the release said. The FCC also said it was trying to seize $80,000 in equipment from a man broadcasting pirate radio in Eastern Oregon.

The Ayoras have been on the FCC’s radar since 2008 when they started broadcasting Impacto 2 for the Ecuadorian community in Queens: “The brothers César and [Luis] Angel Ayora in September 2008 founded the first Ecuadorian FM radio station in New York City. . . The station never sleeps, because a team of communication professionals are working for you 24 hours a day,” their website, which is currently down, said. The station is broadcast over the internet and has moved around the FM spectrum several times over the years. [Continue reading…]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: DRM Part of BBC Story, Antennas and Smith Charts, Shortwave “Hot Debate,” Carrington Event, and “Deep Freeze”

Radio Waves:  Stories Making Waves in the World of Radio

Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!


DRM Is Part of the BBC World Service Story (Radio World)

The iconic broadcaster has been supportive of the standard for over 20 years

The author is chairman of the DRM Consortium. Her commentaries appear regularly at radioworld.com.

Our old friend James Careless studiously ignores DRM once more in his well-researched, but to our minds incomplete article “BBC World Service Turns 90” in the March 30 issue.

As an ex-BBC senior manager, I would like to complete the story now that the hectic NAB Show is over.

Having lived through and experienced at close quarters the decision to reduce the BBC shortwave about 20 years ago, I can confirm that the BBC World Service decision to cut back on its shortwave footprint — especially in North America, where reliable, easy-to-receive daily broadcasts ceased — has generated much listener unhappiness over the years.

In hindsight, the decision was probably right, especially in view of the many rebroadcasting deals with public FM and medium-wave stations in the U.S. (and later other parts of the world like Africa and Europe) that would carry news and programs of interest to the wide public.

But BBC World Service in its long history never underestimated the great advantages of shortwave: wide coverage, excellent audio in some important and populous key BBC markets (like Nigeria) and the anonymity of shortwave, an essential attribute in countries with undemocratic regimes.

BBC World Service still enjoys today about 40 million listeners worldwide nowadays. [Continue reading…]

The Magic of Antennas (Nuts & Volts)

If you really want to know what makes any wireless application work, it is the antenna. Most people working with wireless — radio to those of you who prefer that term — tend to take antennas for granted. It is just something you have to add on to a wireless application at the last minute. Well, boy, do I have news for you. Without a good antenna, radio just doesn’t work too well. In this age of store/online-bought shortwave receivers, scanners, and amateur radio transceivers, your main job in getting your money’s worth out of these high-ticket purchases is to invest a little bit more and put up a really good antenna. In this article, I want to summarize some of the most common types and make you aware of what an antenna really is and how it works.

TRANSDUCER TO THE ETHER
In every wireless application, there is a transmitter and a receiver. They communicate via free space or what is often called the ether. At the transmitter, a radio signal is developed and then amplified to a specific power level. Then it is connected to an antenna. The antenna is the physical “thing” that converts the voltage from the transmitter into a radio signal. The radio signal is launched from the antenna toward the receiver.

A radio signal is the combination of a magnetic field and an electric field. Recall that a magnetic field is generated any time a current flows in a conductor. It is that invisible force field that can attract metal objects and cause compass needles to move. An electric field is another type of invisible force field that appears between conductors across which a voltage is applied. You have experienced an electric field if you have ever built up a charge by shuffling your feet across a carpet then touching something metal … zaaapp. A charged capacitor encloses an electric field between its plates.

Anyway, a radio wave is just a combination of the electric and magnetic fields at a right angle to one another. We call this an electromagnetic wave. This is what the antenna produces. It translates the voltage of the signal to be transmitted into these fields. The pair of fields are launched into space by the antenna, at which time they propagate at the speed of light through space (300,000,000 meters per second or about 186,000 miles per second). The two fields hang together and in effect, support and regenerate one another along the way. [Continue reading…]

Smith Chart Fundamentals (Nuts & Volts)

The Smith Chart is one of the most useful tools in radio communications, but it is often misunderstood. The purpose of this article is to introduce you to the basics of the Smith Chart. After reading this, you will have a better understanding of impedance matching and VSWR — common parameters in a radio station.

THE INVENTOR
The Smith Chart was invented by Phillip Smith, who was born in Lexington, MA on April 29, 1905. Smith attended Tufts College and was an active amateur radio operator with the callsign 1ANB. In 1928, he joined Bell Labs, where he became involved in the design of antennas for commercial AM broadcasting. Although Smith did a great deal of work with antennas, his expertise and passion focused on transmission lines. He relished the problem of matching the transmission line to the antenna; a component he considered matched the line to space. Continue reading

Spread the radio love

Radio Waves: RNZ & TVNZ Merging, Tech Keeping Ukrainians in Touch, Solar Storms Documentary, and Aspidistra

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!


RNZ and TVNZ to merge (RadioInfo)

New Zealand’s Minister for Broadcasting and Media Kris Faafoi has announced the government’s decision to create a new public media entity by merging RNZ and TVNZ.

According to Faafoi, ensuring New Zealanders continue to have access to reliable, trusted, independent information and local content sits at the heart of the decision.

“The public media sector is extremely important to New Zealanders in providing them with high quality, independent, timely and relevant media content,” Faafoi said.

“But we know the media landscape is changing and the sector is having to adapt to increased competition, changing audience demands and ways of accessing media, falling revenue, and new and emerging digital platforms. We need public media which is responsive to these changes and can flourish.

“RNZ and TVNZ are each trying to adjust to the challenges, but our current public media system, and the legislation it’s based on, is focused on radio and television.

“New Zealanders are among some of the most adaptive audiences when it comes to accessing content in different ways; like their phones rather than television and radio, and from internet-based platforms. We must be sure our public media can adapt to those audience changes, as well as other challenges that media will face in the future.”

“The new public media entity will be built on the best of both RNZ and TVNZ, which will initially become subsidiaries of the new organisation. It will continue to provide what existing audiences value, such as RNZ Concert, as well as better reaching those groups who aren’t currently well served; such as our various ethnic communities and cultures,” Faafoi said[…]

Read more at: https://radioinfo.com.au/news/rnz-and-tvnz-to-merge/ © RadioInfo Australia

Technologies old and new keep Ukrainians in touch with the world (The Economist)

Battery radios and satellite internet both have jobs to do

In communist Eastern Europe a shortwave radio was a vital piece of equipment for anyone wanting to stay ahead of the censors. Stations such as the bbc World Service, Radio Free Europe and Voice of America broadcast news, entertainment and rock-and-roll across the Iron Curtain.

After the cold war ended, shortwave radios gave way to television and the internet, and the broadcasts were wound down. But on March 3rd, in the aftermath of Russia’s invasion of Ukraine, the bbc announced their return. The World Service has begun nightly news broadcasts into Ukraine and parts of Russia (see map). Continue reading

Spread the radio love

Topic of Solar Flares and Electricity Grid Reliance in the House of Commons

(Image: NASA)

Many thanks to SWLing Post contributor, David Shannon, who shares a link to a transcript on the UK Parliament website and notes that “it’s not often” the topic of CMEs comes up in the House of Commons. (We have discussed them here, of course.)

Here’s the transcript taken from the UK Parliament website:

Paul Maynard (Blackpool North and Cleveleys) (Con)

It is a pleasure to rise for my first Adjournment debate in many years—once a decade perhaps.

I am a little concerned that people might think that I am trying to be the new Lembit Öpik of this Parliament, in that he was famously obsessed with asteroid impacts that never occurred. Equally, people might think I have been spending far too much time during lockdown watching boxsets, such as “Cobra” on Sky Atlantic, which I was wholly unaware of until I watched an episode this weekend. I assure the House that it had no impact at all on me picking this particular topic.

People might wonder what on earth I am on about. What is a solar flare? A solar flare, also known as space weather or coronal mass ejection, is an event that has the potential to knock out our electricity grid by causing voltage instability, power transmission network instabilities and transformer burnouts. A modest one in Quebec in 1989 did just that for a few hours to the Hydro Québec grid.

A bigger solar flare is likely to be around the corner, even if we do not know when. The last so-called biggie was in 1859, called the Carrington event. That was a very different era, with fewer consequences. Events with limited impacts have occurred throughout the past 100 years, but as we become more reliant on technology, they have an impact on navigation systems, aviation and satellites, increasingly. As with Los Angeles atop the San Andreas fault, another episode is both expected and unavoidable.

It is important to prepare, and with the knowledge that we will have very little warning that such a solar flare is occurring before we suffer the consequences. Government say that we are the best prepared in the world but, without being unkind to them at the moment, those are the precise words used of our pandemic preparations. It is therefore worth exploring in greater detail whether we are truly prepared for any solar flare, let alone the right sort of solar flare. The concern in the UK is that, while there was some pandemic preparation, it was for the wrong sort of virus.

The Civil Contingencies Unit might be able to maintain the national strategic stockpile of body bags. The NHS might well have tried to foresee every strain of virus, and ensure that vaccines were available, but the collision of plans with reality is always the point at which flaws are revealed. I do not mean that we should be looking at websites for survivalists and preppers, or stocking up on tinned food—we have had enough panic buying this year. However, we should consider those risks that the scientific community believes to be worth mitigating.

It is fair to ask how far the Government have progressed since the 2015 space weather preparedness strategy. As good as it is to know that solar flares are on someone’s radar somewhere in Whitehall, some of its relaxed conclusions may need re-testing. For example, the document rather blithely states:

“Some of this resilience is not the result of planning for this risk but good fortune.”

It gives me slight pause for thought that we are relying on good fortune to see us through future space weather. ?
To me, the golden thread stretches from the Met Office alerting the Government to the imminence of a solar flare, to the National Grid then having a limited period of time—if any—to implement mitigating measures.

Jim Shannon (Strangford) (DUP)

The hon. Gentleman’s coastal region has the potential to suffer the same problems from solar flares as my coastal region, and I am pleased that he has brought this forward for the House’s consideration. Is he aware that coastal and more rural areas like both of ours would be worst hit? We need to ensure that we are not left languishing, waiting for replacement transformers. Does he further agree that planning should include specifics for coastal areas in particular?

Paul Maynard

I was fascinated to see how the hon. Gentleman would respond to the challenge of this topic in an Adjournment debate and he has surpassed my expectations. I urge him to speak to EirGrid, which is the grid that covers Ireland. I am sure it will be interested in explaining to him what actions it is taking. But there are issues we have to consider. The 2015 space weather preparedness strategy indicates that the nearest radiation monitor to the UK is in Belgium. Can the Minister confirm whether that remains the case, and whether our decision to pull out of all EU agencies in any way jeopardises our access? Either way, what steps have been taken to develop sovereign capability in that regard? When was the last Met Office review of warning systems for space weather, and what role would he anticipate for the UK Space Agency?

The British Geological Survey has three operational magnetic observatories. Can the Minister confirm that that remains the case, and explain how resilient they are in and of themselves to space weather? The 2015 review described a number of priorities for future investment. Can the Minister update the House on what publicly funded research has now commenced on space weather, as per the strategy? Can he update me further on what progress has been made in working with international partners?

The Government’s 2015 report stated

“the GB power grid network is highly meshed and has a great deal of built in redundancy. This potentially makes it less susceptible to space weather effects than power grids in some other countries. Over recent years a more resilient design for new transformers has been used to provide further mitigation.”

That is all very positive, you might think, but a 2013 report by the Royal Academy of Engineering painted a slightly different picture:

“Since the last peak of the solar cycle, the Great Britain transmission system has developed to become more meshed and more heavily loaded. It now has a greater dependence on reactive compensation equipment such as static variable compensators and mechanically switched capacitors for ensuring robust voltage control. Thus there is increased probability of severe geomagnetic storms affecting transmission equipment critical to robust operation of the system.”

That is a little less positive.

Right now, National Grid seems to be focusing on hanging on to its role as the electricity system operator, as well as balancing expanding offshore wind farms and building interconnectors to them. Does it have the bandwidth that it needs to keep checking whether its network of transformers can withstand an event of space weather? Back in 2015, it calculated that some ?13 transformers were at risk, and the likes of the US are stockpiling back-up transformers. National Grid is supposed to have spare transformers, but it is not clear how many. If we were to need more, do we even have the industrial capacity to build them, notwithstanding the eight to 12-week lead-in time, and the need to transport them by road to their destination? What more can Government do to assist increasingly commercially oriented companies such as National Grid in this regard, and what progress has been made on developing transportable recovery transformers, as was suggested as far back as 2013? What progress does the Minister believe National Grid is making on installing such mitigating inventions as series capacitors and neutral current blocking devices? Interconnectors are a good thing in themselves. They are also direct current equipment, and as such are not affected. However, during a solar flare, they may be affected, because the convertors to alternating current at either end will come under risk. As we develop ever more interconnectors, what steps is the Department for Business, Energy and Industrial Strategy taking to ensure that those new interconnectors are made as resilient as they can be? Crucially, can I ask when the last national risk assessment update was conducted by the Government?

Some dangers never come to pass—Y2K passed without incident—but just occasionally, I believe it is worth posing the question “What if?” and not just trusting that it will all be fine, because that is the answer we want to hear and the alternative is perhaps far too unpalatable. Covid-19 teaches us many lessons about preparing for worst-case scenarios, and making sure that we assess all possible outcomes must surely be one of the key lessons that we learn. I look forward to learning what the Minister has to say.

The Minister for Business, Energy and Clean Growth (Kwasi Kwarteng)

I was very interested to hear the speech by my hon. Friend the Member for Blackpool North and Cleveleys (Paul Maynard). He mentioned solar flares, and the fact that in the 19th century, people were very conscious of those solar flares. I would like to remind him, as I am sure he knows, that a whole economic theory about the business cycle relating to solar activity was presented in the 19th century, and there are British economists who are very interested in this subject. As a country generally, we have been very interested in solar activity, so I thank him for raising a subject that is very important. It is not as abstruse or obscure as people might think: the question we are considering is a very serious one.

Those severe space weather events are rare, but when they do occur, they can have a big impact on national infrastructure, as my hon. Friend has suggested. As such, it is—I am sure he will be pleased to hear this—a risk that we take very seriously. Severe space weather was first recognised as a risk in our 2011 national security risk assessment, and the 2017 national risk register of civil emergencies provided the most recent assessment of the likelihood and potential impacts of that risk. This assessment is kept under constant review: it is not something that we simply put away in a drawer once it was written up.

Of course, predicting when severe space weather events can happen is crucial to minimising their impact. I am pleased to reassure my hon. Friend that the UK is a ?world leader in this area, as I suggested in my earlier remarks. The Met Office’s Space Weather Operations Centre is one of only three 24/7 forecasting facilities in the entire world. Its systems are kept under constant review, and we are constantly looking to improve how we can maximise our capacity in this area. In recognition of the importance of these forecasts and the ability to conduct forecasting, in 2019 the Prime Minister announced a £20 million boost for research in this area, which represented a near quadrupling of the amount that we were spending. This funding means that the Met Office will be able to improve both the accuracy of forecasts and its warnings.

I have to say that when my hon. Friend mentioned the three operational magnetic observatories, I was very interested. I did actually do some preparation on that topic, and I am very pleased to say that all three magnetic observatories are operational. They are situated in Shetland, on the Scottish borders and in north Devon, and they greatly enhance our capabilities in this area. They are also extremely resilient to space weather.

My hon. Friend mentioned National Grid. The whole issue of National Grid ESO and National Grid’s relationship to it is something that again is under constant review. It is the subject of some debate in the industry. However that question is answered, I can reassure him that we have a resilient energy system. I was struck by the fact that he mentioned a report from 2013. He and I have been in the House of Commons since 2010, I think, and I hope he does not take it amiss if I say that 2013—certainly in the context of energy—is a very long time ago. We have had a huge increase in the deployment of offshore wind and we have more interconnector capacity. I suggest to him that the capacity and resilience of the system is considerably greater than was the case in 2013. Having said all that, I accept that the risk is serious, and he rightly draws it to my attention. I will take the matter up directly with National Grid and the ESO.

As far as National Grid and the ESO are concerned, they feel that they have instigated a few mitigating measures, including increasing the number of spare transformers so that damaged equipment can be replaced quickly. We have been assured—I can revert to my hon. Friend on this—that there are sufficient spare parts to deal with the reasonable worst-case scenario, and there are plans to deploy this spare capacity. Also, critically, we have to introduce—and they are introducing—a new design of transformers, which will be far more resistant to the effects of space weather that he described.

With respect to interconnectors, my hon. Friend will know that it is a direct current but the transformers transform it to alternating current, and that is an area again where we think we can get added protection from the risks he outlined. We will publish a new space weather strategy next year, which will set out a five-year road map—a five-year vision—for how we intend to boost resilience and build on existing UK strength and capacity in this area. It will also provide what he has asked for: an update on the progress that we have achieved since the 2015 strategy was published.

The long history of close working among the energy industry, thinkers and leaders of thought in the sector and the Government means that we have a good understanding of the risk posed by solar flares to ?the electricity network. We think we have put in place proportionate measures that will mitigate those risks, and I am firmly of the view that the system is highly resilient, but, once again, I am extremely open to ideas from my hon. Friend and from Members across the House—from all quarters—as to how we can improve our resilience and our ability to forecast potential danger in this area.?
I once again thank my hon. Friend for raising this issue. Far from being a flippant or trivial subject for an Adjournment debate, it is my pleasure to respond on a very serious problem. I hope we can assure him that the problem is well scoped and that we have decent mitigations in place.

Question put and agreed to.

–House adjourned.–

Thanks for the tip, David. It’s my impression that many power grids across the planet are being upgraded to better handle potential destructive EMPs. Of course, this is an investment into upgrades we hope we never need, thus local/national governments don’t always take the threat seriously.

Spread the radio love

NASA’s SDO produces a 10 year time-lapse video of the sun

Many thanks to SWLing Post contributor, Ahmet (KD2AQU), who shares the following item from NASA:

As of June 2020, NASA’s Solar Dynamics Observatory – SDO – has now been watching the Sun non-stop for over a full decade. From its orbit in space around Earth, SDO has gathered 425 million high-resolution images of the Sun, amassing 20 million gigabytes of data over the past 10 years. This information has enabled countless new discoveries about the workings of our closest star and how it influences the solar system.

With a triad of instruments, SDO captures an image of the Sun every 0.75 seconds. The Atmospheric Imaging Assembly (AIA) instrument alone captures images every 12 seconds at 10 different wavelengths of light. This 10-year time lapse showcases photos taken at a wavelength of 17.1 nanometers, which is an extreme ultraviolet wavelength that shows the Sun’s outermost atmospheric layer – the corona. Compiling one photo every hour, the movie condenses a decade of the Sun into 61 minutes. The video shows the rise and fall in activity that occurs as part of the Sun’s 11-year solar cycle and notable events, like transiting planets and eruptions. The custom music, titled “Solar Observer,” was composed by musician Lars Leonhard.

Spread the radio love

HF Radio blackouts in wake of solar flares

(Image Source: NASA)

(Source: ARRL via Mike Terry)

NOAA’s Space Weather Prediction Center (SWPC) has issued a strong (G3) geomagnetic storm watch for September 7 through September 9. The SWPC said the watch for September 7 remains in effect due to the arrival of a coronal mass ejection (CME) and the effects of a CME on September 4.

“Additionally, a G3 watch is now in effect for the 8 and 9 September UTC days in anticipation of the arrival of another CME associated with the X9.3 flare (R3 — strong radio blackout) on 6 September at 1202 UTC (0802 ET),” the SWPC said early on September 7. “Analysis indicates likely CME arrival late on 8 September into early 9 September.” The September 6 flare is being called the strongest in more than a decade.

Its effect on HF radio propagation has adversely affected the Hurricane Watch Net (HWN), currently operating on 20 and 40 meters as Hurricane Irma sweeps through the Caribbean.
As of September 7 at 1400 UTC, the solar flux index stood at 127, the sunspot number at 27, the A index at 11, and the K index at 4. All HF conditions are being deemed as no better than fair. The possibility of extended auroral displays could work to the benefit of VHF and UHF operators who aim their antennas north to take advantage of “buzz” mode. SWPC posts a 30-minute forecast of visible aurora.[…]

Click here to read the full article at the ARRL.

Also, check out Tamitha Skov’s forecast on YouTube:

Last night, I tested a couple of HF radios and all but the strongest shortwave broadcasters (WRMI, RHC) were wiped out. Even the strong stations sounded like weak DX. This is truly an HF blackout.

Spread the radio love