Tag Archives: Steve Allen (KZ4TN)

Steve builds a simple SWL antenna tuner that pairs brilliantly with the Belka-DX

Many thanks to SWLing Post contributor, Steve Allen (KZ4TN), who shares the following guest post:

A Simple Antenna Tuner for SWL Radios

by Steve Allen, KZ4TN

After reading 13DKA’s excellent review of the Belka-DSP on SWLing.com a few weeks ago I knew I had to have one! The size, features, and performance of the Belka-DX (latest version of the Belka-DSP) is phenomenal. I won’t go into reviewing the radio as I couldn’t come close to 13DKA extensive review. If you are considering this SWL receiver his review is a must read.

I love bedtime SWLing and have been putting off setting up an outside antenna specifically to feed into the bedroom for too long. Given that the resonant frequency of the antenna would not be broad enough for the tuning range of the Belka-DX I decided to build a small antenna tuner just for SWLing.

After a couple of hours searching the internet for a simple tuner I found just what I was looking for on http://www.hard-core-dx.com/nordicdx/antenna/lab/tuner.html. It’s a simple L match using a single variable capacitor and coil.

For the coil I wound ~100 turns of 26 Ga wire on a one inch diameter wooden dowel. The wire size can be whatever you have on hand. I twisted a tap every 10 turns. I drilled a hole in each end and glued in a machine screw to mount the coil to the bottom of the enclosure. I’ve had this enclosure in my junk box for a long time and have been waiting for just the right project. The variable capacitor I used was one I found on EBay a few years ago that had two sections, 330 pF and 120 pF. I tied them together for 450 pF. For the rotary switch I had to scratch around on eBay for a while until I found a 12 position single pole.

The plans for the tuner suggested adding a fixed value capacitor with a toggle switch to increase the lower end of the tuning range. I found a 510 pF silver mica and wired it into the circuit.

The antenna I put up is a sloper about 30 feet long.The high end is up about 40 feet and the low end is at about 12 feet. I put the antenna and tuner to the test last evening and the reception on the Belka-DX was superb. With the tuner the strength of the signal would peak about 2-3 units when I found the sweet spot.

The tuner also does double duty as an attenuator for very strong signals.

One mod I made to the Belka-DX was the addition of some grip tape to the tuning knob. It makes fine tuning much easier.

I believe we will continue to see a number of innovative receivers coming to market in the near term utilizing SDR technology. The ratio of performance to size of the Belka-DX is truly amazing in my opinion.

Thank you, Steve, for sharing this brilliant weekend project! As always, brilliant craftsmanship!

Click here to read Steve’s other posts and projects.

Spread the radio love

Steve builds a DC30B QRP Transceiver

DC30B QRP Transceiver ProjectMany thanks to SWLing Post contributor, Steve (KZ4TN), who shared the following guest post originally on QRPer.com, but I’ve posted it here as well because I’m sure it’ll resonate with those of us who love building kits!:

DC30B QRP Transceiver Project

by Steve Allen, KZ4TN

I wanted to build a lightweight backpackable transceiver I could take hiking and camping. I chose the 30 meter band as it is specific to CW and the digital modes. I am also in the process of building Dave Benson’s (K1SWL) Phaser Digital Mode QRP Transceiver kit for the 30 meter band. Also, a 30 meter antenna is a bit smaller than one for 40 meters and the band is open most anytime of the day.

I sourced the DC30B transceiver kit, designed by Steve Weber KD1JV, from Pacific Antennas, http://www.qrpkits.com. It appears that they are now (10-11-20) only offering the kit for the 40 meter band. The following information can be used for the assembly of most any kit that lacks an enclosure.

Lately I have been finding extruded aluminum enclosures on Amazon.com and eBay.com. They come in many sizes and configurations. I like to use the versions with the split case which allows you to access the internal enclosure with the front and rear panels attached to the lower half of the enclosure. Most of these enclosures have a slot cut into the sides that allow a PCB to slide into the slots keeping it above the bottom of the enclosure without having to use standoffs. The one requirement for assembly is that the PCB needs to be attached to either the front or rear panel to hold it in place.

DC30B QRP Transceiver Project

As the enclosure is anodized, I didn’t want to rely on the enclosure for common ground. I used a piece of copper clad board that I cut to fit the slot width of the enclosure and attached it to the back panel. I was then able to mount the transceiver PCB to the copper clad board with standoffs. This basic platform of the enclosure with the copper clad PCB provides a good foundation for any number of projects. All you have to do is mount the wired PCB on the board, install the components on the front and rear panel, then wire it up.

DC30B QRP Transceiver Project

I wanted to have the choice of a few frequencies to operate on so I searched eBay for 30 meter crystals and found a source for 4 different popular frequencies. I installed a rotary switch on the front panel and added a small auxiliary PCB with two, 4 pin machined IC sockets. This allowed me to plug the crystals into the sockets. I wired the bottom of the socket PCB first using wire pairs stripped from computer ribbon cable leaving extra length. I marked the wires with dots to indicate which sockets each wire pair went to so I could solder them onto the rotary switch in the correct order. It was tight but I always work with optical magnification so I can see exactly what I’m doing. I have used this crystal switching method in the past with good success.

DC30B QRP Transceiver Project

DC30B QRP Transceiver ProjectThe rest of the assembly was straight forward. I find that most kits are well designed and documented, and if you take your time and follow the directions carefully all should go well. The two most common speed bumps seem to be soldering in the wrong component or bad soldering technique. I double check all component values and placements prior to soldering, and I always use optical magnification while working. I inspect each solder joint and look for good flow through in the plated through holes, and make sure there are no solder bridges.

DC30B QRP Transceiver Project

DC30B QRP Transceiver ProjectThe finished product. I bought a Dymo label maker and it works very well for projects like this. I love using these enclosures and they are a leap forward from the old folded aluminum clam shells I used in the past. I could stand on this without causing any damage. Power out is 1-3 watts depending on the DC power in. The receiver is sensitive and the ability to choose from four frequencies is a real plus.

73 de KZ4TN

Steve Allen
Elizabethton, TN

Gorgeous work there, Steve! Thank you for sharing!

Spread the radio love

Steve tracks down the source of persistent radio interference and gets it addressed

Photo via Unsplash

Many thanks to SWLing Post contributor, Steve Allen (KZ4TN), who shares the following guest post:

Tracking Down Radio Frequency Interference

by Steve Allen, KZ4TN

I first noticed the RFI in late November 2019 as a steady buzz at around S9. It was present over most of the high frequency spectrum. I waited until the second week of December to see if you would end on its own, no such luck. I put an HF rig in my truck and started driving around the area to see if I could find a potential source. About a quarter mile from my home is a 161 KVA substation operated jointly by the Tennessee Valley Authority and my local electrical utility. When I parked in the driveway outside of the gated substation the sound of the interference was very strong and blanked the HF spectrum. I called the phone number on the gate and after an explanation of why I was calling I was connected to a fellow radio operator. I explained the situation and he said he would bring the issue to someone’s attention and get back to me.

A week went by and I didn’t hear back from the TVA. I called the person I spoke with previously and he said that the individuals that he spoke with questioned the validity of my findings. He was very helpful but said he didn’t have much clout with the TVA, RFI investigations were not his area of responsibility. I told him I would be happy to meet with someone from the TVA and show them what I had found. I also said I would contact my local electric utility and see if they had an RFI detector so we could eliminate their equipment. My initial contact at the TVA said he would keep trying to get someone to take this issue on and work with me to investigate. I said I would call him back next week.

I then called the local utility company and talked to someone there who was familiar with these kinds of issues. The local utility company owns the output side of the equipment at the substation. He told me he was going to perform an infrared (heat) inspection of their equipment at the substation mid January as part of their annual maintenance and will also check the low voltage utility lines near the substation. I told him that I didn’t notice this RFI until after they had a power outage nearby. He said he would try and get over earlier and check the power lines that run along the streets and look into the power outage history for this area.

All during this time I kept a daily log of the RFI including time of day, frequency effected and S unit level. I also logged the weather conditions. To eliminate the electronics in my house as a possible source I connected my transceiver to a 12 VDC battery and shut off the mains circuit breaker, the RFI did not change at all. I also visited the ARRL webpage that provide information on RFI including recordings of known RFI:


The ARRL is the best source I have found in finding and fixing RFI.

By December 27th,  no word back from anyone. I assumed that they were off for Christmas but decided to write a letter to the TVA as a follow up to what had happened so far. In early January I received and email from one of the TVA engineers who said he would contact a field engineer who would contact me. The next day I received an email from the field engineer who said he was going to be in the area on another job but would meet me at the substation.

So, of course as soon as I am making headway with finding the problem the RFI diminished to the point of not being a problem. By this time here in Northeast Tennessee the winter temps are in the 40s and the humidity is lower. For whatever reason, the RFI ended. I met with the field engineer and we agreed that if there is no RFI there is nothing to search for.

Fast forward to August, 2020. In June and July I had been operating digital, mostly FT8. I usually had the volume control at zero and as it was summer I was doing no shortwave listening. One day I decided to tune around the bands and found that the RFI was back as strong as it was during December at S4-S9 from 2-30 MHz. I emailed the principal engineer I had previously been in contact with at the TVA and he told me he would contact another field engineer and that he would come to my house with an RFI locator and start a thorough investigation. The next day I received an email from the field engineer and we scheduled a time for him come over.

Upon his arrival he connected his RFI locator to my vertical antenna and tuned across the spectrum. The locator immediately displayed the signal. He captured an electronic image and said that he could now drive around the area and try and find a match. A hour and a half later he called and said he was unsuccessful and wanted to come back  and make sure the signal was still present. Sure enough, it still displayed on his locator and he was puzzled why he could not find a similar signal while driving the area. He said he would send a copy of the recording to the TVA engineer and get back to me.

A few days later I heard back from him and he wanted to come over again and make another recording. I believe after discussing this issue with his supervisor he was going to use a different method of searching the area. After a couple of hours I received a phone call from the field engineer telling me that he thought he had found the source of interference. Using a parabolic antenna he had found two different utility poles that appeared to have defective lightening arrestors on them. Both are within a quarter mile of my QTH. These poles are the responsibility of the local electrical utility not the TVA. He said he would contact them and follow up with me in a few days.

In a couple of days the interference was very low to nonexistent. Shortly thereafter the engineer contacted me saying the local utility company had completed the repairs and wanted to know if the interference was still present. I said I hadn’t hear it in a couple of days and I would get back to him if it returned. A couple of weeks later I received an email from the field engineer detailing the incident, what he had done to locate the interference, and what was done to repair it. In his email he stated the service was provided at no cost by the TVA Right of Way and Elizabethton Electric Department through TVA’s Comprehensive Services Program (CSP). I am so appreciative of the Tennessee Valley Authority. The airwaves are now free of manmade interference and I am looking forward to another winter of operating and listening to shortwave radio. Here in the 21st century there are so many electronic devices that are capable of causing RFI. I am very thankful that my station is RFI free (for the time being).

Steve Allen, KZ4TN
Elizabethton, TN

Thank you so much for sharing your story, Steve. Only recently, we posted Emilio’s article about tracing interference to poorly made switching power supplies. Thank you for sharing how you approached your local utility company, in your case, to resolve your RFI!

Very encouraging! Readers note that you don’t always have to live with persistent RFI. If you know the source isn’t coming from within your home, sometimes it’s simply a matter of getting your local utilities company to investigate.

Spread the radio love