Radio Taiwan International seeks your memorabilia


Many thanks to SWLing Post contributor, David Iurescia (LW4DAF), for sharing information about this initiative by Radio Taiwan International:

Radio Taiwan International began broadcasting in 1928. In an era when information did not travel as  quickly as today, RTI programs could be heard thousands of miles away by people like you.

If RTI has touched you in any way over the years, let us travel back in time together to look back at the voices, letters, and memorabilia of RTI’s history.

RTI invites you to take part in piecing together the history of RTI with any sounds and memorabilia you may have collected throughout the years. Your participation will help us commemorate RTI’s precious history.

[…]RTI is inviting listeners to lend/donate RTI memorabilia from 1928-1998, including QSL cards, sounds, and other items from the Central Broadcasting System, Voice of Free China, Voice of Asia, and the Broadcasting Corporation of China (BCC).

Items to be collected?

  • Sounds: Tapes of programs, news broadcasts, and records from the above stations can be sent or e-mailed to RTI.
  • Items: Station gifts to listeners, letters, QSL cards, pennants, and other souvenirs. Mailing the items is preferred. You can also send pictures of the items.
  • Historical pictures or videos related to RTI.

If material is received from the 1928-1982 period, and is perceived to have historical significance to the station, there will be the following feedback:

The official station site will list those who donated and the items donated.

  • RTI will send a thank you letter and souvenir.
  • If the item is from 1983 or later, RTI will send a nice souvenir to thank for the item.
  • If the donated item cannot be put in our archive, the station will send a thank you letter. (RTI reserves the right to make final decisions on the collection)

Full details about the archive initiative are available at Radio Taiwan International.

Posted in Broadcasters, International Broadcasting, News, Shortwave Radio | Tagged , , , | Leave a comment

In the US, radio audience continues an upward trend


(Source: CNN Money via Andrea Borgnino)

It turns out that radio still gets results.

Amid all the changes in television and digital media, a report from Nielsen released Tuesday found that radio’s nationwide audience reached an all-time high during the second quarter of 2015.

According to Nielsen, about 245 million Americans ages 12 and up used radio during the that span.

It was a continuation of an upward trend for radio, which has seen its national audience swell to record highs in each of the last two years. In the first quarter of this year, radio eclipsed television as the country’s top reaching medium.

Continue reading on…

Posted in AM, FM, News | Tagged , , , , , | 2 Comments

Special Grimeton broadcast on United Nations Day

450px-grimeton_vlf_mast_row1(Source: Southgate ARC)

Extra Grimeton Radio/SAQ transmission

There will be a transmission with the Alexanderson VLF alternator on 17.2 kHz on ‘United Nations Day’ October 24th, 2015 at 10:00 UTC (12:00 local time).

Start up and tuning from about 09:30 UTC.

This time we do not require any QSL-reports and will not verify.

There will be activity on amateur radio frequencies with the call SK6SAQ.

Any of following frequencies:
– 14.035 CW
– 7.035 CW
– 7.080 SSB
– 7.050 PSK31

QSL for SK6SAQ via SK6DK or SM-bureau.

The radio station is open to vistors 10:00-15:00 local time. No entrance fee.


Also read our web site:

Posted in News, Shortwave Radio, Specials | Tagged , | Leave a comment

Listening to international radio via Free-To-Air Satellite


Many thanks to SWLing Post contributor, Mario Filippi (N2HUN), for the following guest post:

International Radio Broadcasts via Satellite

by Mario Filippi

I find your SWLing Post blog a constant fountain of information on the world of shortwave listening. Having been a shortwave listener since the early 1960’s, I’ve depended mainly on shortwave radios to hear foreign broadcasts. I’ve owned more shortwave radios than shoes (hi hi)–! However, there is a not-so-well known way of receiving radio broadcasts from around the world, and this is by Free To Air Satellite (FTA).

Free To Air satellite reception requires using a minimum 30 inch Ku band satellite dish, an LNB (Low Noise Block) amplifier, a Free To Air satellite receiver, and skills to aim at a satellite carrying these broadcasts.

There are several Free To Air satellites in the Clarke Belt, and the reception is cost-free as these broadcasts are for expatriates living around the world who need to tune in to stations back home. One satellite in particular that carries many foreign radio broadcasts is Galaxy 19, located at a longitude of 97 degrees, and is readily accessible from the USA.

Now let’s start on what an FTA dish set-up looks like for this type of reception. Below is an installation of mine, consisting of a 30 inch WS International satellite dish and LNB. A 30 foot length of RG/6 coax is run into the shack and hooked to an AMIKO Mini HD SE FTA receiver. Typical cost for a dish, LNB, coax is under $200.


Below is my AMIKO Mini HD SE FTA receiver, also known as an STB (Set Top Box), which can be purchased from a number of FTA vendors. This allows one to receive international television and radio broadcasts. They run about $90.


As stated earlier, Galaxy 19 is one of the best satellites to use for international radio broadcasts–currently, it has about 90 radio channels available for listening. I did a scan today of what is available, and below are three screenshots of the stations available to the listener.


Duna World radio is from Hungary. IRIB stands for Islamic Republic of Iran Broadcasting. 3 ABN is Apostolic Bible Network. TGN is Thai Global Network.


Kuwait, Syria, and the Middle East are well represented by the radio stations above. Voice of Russia, and Congo radio are good ones.


Voice of Turkey, Polski Radio found above. Not too shabby!

[Y]ou’ll find a good how-to on FTA at the following link:

[T]his is just a little introduction to the world of international listening using satellite. I hope this is something you and SWLing Post readers might find interesting.

Indeed I do, Mario!  Thanks so much for taking the time to show us how to tune in a variety of international broadcasters via satellite. Each year at the Winter SWL Fest, we have demonstrations showing what can be done via FTA satellite. Perhaps I should bite the bullet and invest in one!

Posted in Articles, Guest Posts, How To, International Broadcasting, News | Tagged , , , , , , , | 6 Comments

A PARI DXpedition update

Mark Fahey, scanning the bands with his WinRadio Excalibur/Surface Pro 2 combo

Mark Fahey, scanning the bands with his WinRadio Excalibur/Surface Pro 2 combo

The SWLing Post DXpedition at PARI is going very well.  We started yesterday around noon with beautiful fall weather; late last night, it started raining but that hasn’t dampened our spirits today.


Despite the wet, chilly weather, Gary Donnelly (above) has been logging numerous shortwave stations during the day and mediumwave stations at night via his assortment of ultralight radios. Bill Boyd, another DXpeditioner, has been travelling the 200 acre PARI campus and listening via his Tecsun PL-880.


DXpeditioner, Mark Fahey, has traveled here from his home in Australia, thus he’s particularly enjoyed hearing South American stations which are somewhat rare in his corner of the world. Today alone, Mark snagged two other firsts: the time station CHU Canada, and a perfect two hour recording of the Voice of Nigeria in DRM. Mark says that his listening expectations are turned upside down, because day/night band openings are nearly opposite of what he’s used to. This is the great thing about SWLing during travels: exotic stations become much lower hanging fruit.

Screenshot of the Elad FDM-S2 on part of the 19 meter band

Screenshot of the Elad FDM-S2 on part of the 19 meter band

Mark and I have set up a table full of SDRs and have been actively recording spectrum while listening. We have a WinRadio Excalibur, Elad FDM-S2 and the SDRplay RSP.

We also have the CommRadio CR-1 hooked up: it has been a fantastic receiver for visitors to use and a brilliant auxiliary receiver while both SDRs have been recording spectrum simultaneously.

The SDRplay RSP via the HDSDR app

The SDRplay RSP via the HDSDR app

A few samples from the logs

Despite mediocre band conditions, we’ve managed to hear a lot of stations.

Here is our band scan at 1500 UTC on the 19 meter band:

  • 15140 Radio Sultanate Oman Arabic
  • 15255 Radio Free Europe Turkmen
  • 15265 Adventist World Radio Hindi
  • 15290 Adventist World Radio Punjabi (vy weak)
  • 15300 Radio Romania International Arabic
  • 15395 Athmeeya Yatra Radio Sindhi (vy weak)
  • 15410 Radio Liberty (faint)
  • 15420 BBC English
  • 15435 Radio Riyadh Arabic
  • 15460 Radio Free Europe Tajik
  • 15490 Radio Exterior de Espana Spanish
  • 15535 Radio Cairo Arabic
  • 15550 Radio Dabanga Sudanese Arabic
  • 15580 Voice of America English
  • 15595 Vatican Radio Arabic
  • 15610 EWTN (WEWN) English
  • 15620 Radio Veritas (?) Filipino (?)
  • 15670 Adventist World Radio English
  • 15700 China Radio International English
  • 15770 WRMI English

1600 UTC on the 25 meter band:

  • 11435 HM01 Cuban Numbers Station Spanish
  • 11550 EWTN (WEWN) Spanish
  • 11600 Bible Voice BCN Persian (faint)
  • 11620 All India Radio Russian (faint)
  • 11715 Vatican Radio Russian (faint)
  • 11775 Caribbean Beacon English
  • 11825 WRMI (Overcomer) English
  • 11950 Radio Habana Cuba Spanish
  • 12050 EWTN (WEWN) Spanish (vy weak)
  • 12055 Voice of America Somali
  • 12160 WWCR English

2000 UTC on the 25 meter band:

  • 11600 Denge Kurdistan Kurdish
  • 11670 All India Radio Hindi
  • 11700 All India Radio GOS
  • 11735 Zanzibar Broadcasting Corporation Swahili
  • 11760 Radio Habana Cuba French
  • 11775 Caribbean Beacon English
  • 11810 BBC English
  • 11825 WRMI (Overcomer) English
  • 1900 Voice of America French
  • 11930 Radio Marti Spanish (being jammed by Cuba)
  • 11955 Adventist World Radio Dyula
  • 11995 Radio France International French
  • 12050 EWTN (WEWN) Spanish
  • 12060 Radio Algerienne Chaine 1 Arabic
  • 12095 BBC English
  • 12105 WTWW Portuguese
Posted in DXpeditions, News, Shortwave Radio, SWLers, What's On Shortwave | Tagged , , , | 6 Comments

Guest Post: London Shortwave’s guide to mitigating urban radio interference

London-Urban-CityMany thanks to SWLing Post contributor, London Shortwave, who is kindly sharing this guest post–a brilliant article he recently posted on his own website.

I’m very grateful: one of the most common questions I’m asked by readers is how to cope with the radio interference so many listeners and amateur radio operators experience in high-density, urban areas. If this is you, you’re in for a treat–just keep reading:

Dealing with Urban Radio Interference on Shortwave

by London Shortwave

Shortwave radio listening is an exciting hobby, but for many of us city dwellers who either got back into it recently or tried it out for the first time not long ago, the first experience was a disappointing one: we could barely hear anything! Station signals, even the supposedly stronger ones, were buried in many different types of static and humming sounds. Why does this happen? The levels of urban radio frequency interference, or RFI, have increased dramatically in the last two decades and the proliferation of poorly engineered electronic gadgets is largely to blame. Plasma televisions, WiFi routers, badly designed switching power adapters and Ethernet Over Powerlines (also known as powerline network technology, or PLT) all severely pollute the shortwave part of the radio spectrum.

Does this mean we should give up trying to enjoy this fascinating medium and revert to using the TuneIn app on our smartphones? Certainly not! There are many angles from which we can attack this problem, and I shall outline a few of them below.

Get a good radio

The old adage “you get what you pay for” certainly holds true even when it comes to such “vintage” technologies as shortwave radio. Believe it or not, a poorly designed receiver can itself be the biggest source of noise on the bands. That is because many modern radios use embedded microprocessors and microcontrollers, which, if poorly installed, can generate interference. If the receiver comes with a badly designed power supply, that too can generate a lot of noise.

So how does one go about choosing a good radio? and have fantastic radio review sections, which will help you choose a robust receiver that has withstood the test of time. My personal favourites in the portable category are Tecsun PL310-ET and Tecsun PL680. If you want a desktop radio, investigate the type of power supply it needs and find out whether you can get one that generates a minimal amount of noise.

It is also worth noting that indoor shortwave reception is usually best near windows with at least a partial view of the sky.

Tecsun PL310-ET and Tecsun PL680, my two favourite portable shortwave radios.

Tecsun PL310-ET and Tecsun PL680, my two favourite portable shortwave radios.

Identify and switch off noisy appliances

Many indoor electrical appliances generate significant RFI on the shortwave bands. Examples include:

  • Plasma televisions
  • Laptop, and other switching-type power supplies
  • Mobile phone chargers
  • Dimmer switches
  • Washing machines / dishwashers
  • Amplified television antennas
  • Halogen lighting
  • LED lighting
  • Badly constructed electrical heaters
  • Mains extension leads with LED lights

Identify as many of these as you can and switch them all off. Then turn them back on one by one and monitor the noise situation with your shortwave radio. You will most likely find at least a few offending devices within your home.

Install an outdoor antenna

If you have searched your home for everything you can possibly turn off to make reception less noisy but aren’t satisfied with the results, you might want to look into installing and outdoor antenna. That will be particularly effective if you live in a detached or a semi-detached property and have a garden of some sort. Of course, you will need a radio that has an external antenna input, but as for the antenna itself, a simple copper wire of several metres will do. An important trick is making sure that the noise from inside your home doesn’t travel along your antenna, thus negating the advantage of having the latter installed outside. There are many ways of achieving this, but I will suggest a configuration that has worked well for me in the past.

Fig.1 Schematic for an outdoor dipole antenna.

Fig.1 Schematic for an outdoor dipole antenna.

I have used a three-terminal balun (positioned outdoors), and connected two 6 metre copper wires to its antenna terminals to create a dipole. I then connected the balun to the radio indoors through the feed line terminal using a 50? coaxial cable. In the most general terms, the current that is generated in the antenna wires by the radio waves flows from one end of the dipole into the other, and a portion of this current flows down the feed line into your radio. The balun I have used (Wellbrook UMB130) is engineered in a way that prevents the radio noise current from inside your house flowing into the receiving part of the antenna.

Wellbrook UMB130 balun with the feed line terminal disconnected

Wellbrook UMB130 balun with the feed line terminal disconnected

Antenna preselectors

There is a catch with using an outdoor antenna described above — the signals coming into your radio will be a lot stronger than what would be picked up by the radio’s built-in “whip” antenna. This can overload the receiver and you will then hear many signals from different parts of the shortwave spectrum “mixing in” with the station you are trying to listen to. An antenna preselector solves this problem by allowing signals from a small yet adjustable part of the spectrum to reach your radio, while blocking the others. You can think of it as an additional tuner that helps your radio reject unwanted frequencies.

Fig.2 Schematic of a preselector inserted between the outdoor antenna and the receiver

Fig.2 Schematic of a preselector inserted between the outdoor antenna and the receiver

There are many antenna preselectors available on the market but I can particularly recommend Global AT-2000. Although no longer manufactured, many used units can be found on eBay.

Global AT-2000 antenna coupler and preselector

Global AT-2000 antenna coupler and preselector

Risk of lightning


Any outdoor antenna presents the risk of a lightning strike reaching inside your home with devastating and potentially lethal consequences. Always disconnect the antenna from the receiver and leave the feed line cable outside when not listening to the radio or when there is a chance of a thunderstorm in your area.

Get a magnetic loop antenna

A broadband loop antenna (image courtesy of

A broadband loop antenna (image courtesy of

The outdoor long wire antenna worked well for me when I stayed at a suburban property with access to the garden, but when I moved into an apartment well above the ground floor and without a balcony, I realised that I needed a different solution. Having googled around I found several amateur radio websites talking about the indoor use of magnetic loop receive-only active antennas (in this case, “active” means that the antenna requires an input voltage to work). The claim was that such antennas respond “primarily to the magnetic field and reject locally radiated electric field noise”[*] resulting in lower noise reception than other compact antenna designs suitable for indoor use.

Interlude: signal to noise ratio

In radio reception, the important thing is not the signal strength by itself but the signal to noise ratio, or SNR. A larger antenna (such as a longer copper wire) will pick up more of the desired signal but, if close to RFI sources, will also pick up disproportionately more of the local noise. This will reduce the SNR and make the overall signal reading poorer, which is why it is not advisable to use large antennas indoors.

The other advantage of a loop antenna is that it is directional. By rotating the loop about its vertical axis one can maximise the reception strength of one particular signal over the others, once the antenna is aligned with the direction from which the signal is coming (this is termed “peaking” the signal). Similarly, it is possible to reduce the strength of a particular local noise source, since the loop is minimally sensitive to a given signal once it is perpendicular the latter’s direction (also known as “nulling” the signal).

It is further possible to lower the effect of local noise sources by moving the antenna around. Because of the antenna’s design, the effect of radio signals is mostly confined to the loop itself as opposed to its feed line. Most local noise sources have irregular radiation patterns indoors, meaning that it is possible find a spot inside your property where their effects are minimised.

Many compact shortwave loop antennas require an additional tuning unit to be attached to the loop base (much like the preselector described above) but broadband loops do not. Wellbrook ALA1530S+ is one such antenna that is only 1m in diameter, and it was the one I chose for my current apartment. I was rather impressed with its performance, although I found that I need to use a preselector with it as the loop occasionally overloads some of my receivers when used on its own. Below is a demo video comparing using my Tecsun PL680’s built-in antenna to using the radio with the Wellbrook loop.

As you can hear, there is a significant improvement in the signal’s readability when the loop is used.

Experiment with a phaser

Although the loop antenna dramatically reduces the levels of ambient RFI getting into the radio,  I also have one particular local noise source which is way too strong for the loop’s nulling capability. Ethernet Over Powerlines (PLT) transmits data across domestic electrical circuits using wall socket adapters, as an alternative to wireless networking. It uses the same frequencies as shortwave, which turns the circuits into powerful transmitting antennas, causing massive interference. One of my neighbours has PLT adapters installed at his property, which intermittently become active and transmit data. When this happens,  it is not merely noise that is generated, but a very intense data signal that spreads across the entire shortwave spectrum, obliterating everything but the strongest stations underneath. Fortunately, a mature piece of radio technology called antenna phasing is available to deal with this problem.

Fig.3 The principle of antenna phaser operation (adapted from an original illustration in Timewave ANC-4's manual)

Fig.3 The principle of antenna phaser operation (adapted from an original illustration in Timewave ANC-4’s manual)

Signal cancellation using phase difference

A phaser unit has two separate antenna inputs and provides one output to be connected to the radio’s external antenna input. The theory of phase-based signal cancellation goes roughly as follows:

  • The same radio signal will arrive at two different, locally separated antennas at essentially the same time.
  • The phase of the signal received at the first antenna will be different to the phase of the same signal received at the second antenna.
  • This phase difference depends on the direction from which the signal is coming, relative to the two antennas.
  • The phaser unit can shift the phases of all signals received at one antenna by the same variable amount.
  • To get rid of a particular (noise) signal using the phaser unit:
    • the signal’s phase at the first antenna has to be shifted by 180° relative to the signal’s phase at the second antenna (thus producing a “mirror image” of the signal received at the second antenna)
    • its amplitude at the first antenna has to be adjusted so that it is the same as the signal’s amplitude at the second antenna
    • the currents from the two antennas are then combined by the unit, and the signal and its mirror image cancel each other out at the unit’s output, while the other signals are preserved.

Noise sampling antenna considerations

To prevent the possibility of the desired signal being cancelled out together with the noise signal — which can happen if they both come from the same direction relative to the antennas — one can use the set-up illustrated in Figure 3, where one antenna is dedicated to picking up the specific noise signal, while the other is geared towards receiving the desired broadcast. That way, even if the phases of both the noise and the desired signals are offset by the same amount, their relative amplitude differences will not be the same, and thus removing the noise signal will not completely cancel out the desired signal (though it will reduce the latter’s strength to some extent).

It is possible to use any antenna combination for phase-based noise signal cancellation. However, one has to be careful that, in the pursuit of removing a specific noise source, one does not introduce more ambient RFI into the radio system by using a poorly designed noise-sampling antenna. After all, the phaser can only cancel out one signal at a time and will pass through everything else picked up by both antennas. This is particularly relevant in urban settings.

For this reason, I chose my noise sampling antenna to also be a Wellbrook ALA1530S+. The additional advantages of this set-up are:

  • It is possible to move both loops around to minimise the amount of ambient RFI.
  • By utilising the loops’ directionality property, one can rotate the noise sampling loop to maximise the strength of the noise signal relative to the desired signal picked up by the main antenna loop.
Two Wellbrook ALA1530S+ antennas combined through a phaser

Two Wellbrook ALA1530S+ antennas combined through a phaser

And now onto the phaser units themselves.

Phaser units


DX Engineering NCC-1 (image courtesy of

I have experimented at length with two phaser units: the MFJ 1026 (manual) and DX Engineering NCC-1 (manual). Both solve the problem of the PLT noise very well, but the NCC-1 offers amplitude and phase tuning controls that are much more precise, making it a lot easier to identify the right parameter settings. Unfortunately this comes at a price, as the NCC-1 is a lot more expensive than the MFJ unit. As before, a preselector is needed between the phaser and the radio to prevent overloading.

Below is a demo of DX Engineering NCC-1 at work on my neighbour’s PLT noise. I have chosen to use my SDR’s waterfall display to illustrate the nefarious effect of this type of radio interference and to show how well the NCC-1 copes with the challenge.

Cost considerations

Fig.4 Final urban noise mitigation schematic

Fig.4 Final urban noise mitigation schematic

It would be fair to say that my final urban noise mitigation set-up, shown in Figure 4, is quite expensive: the total cost of two Wellbrook antennas ($288.38 each), a DX Engineering phaser ($599.95) and a Global AT2000 preselector ($80) comes to $1257. That seems like an astronomical price to pay for enjoying shortwave radio in the inner city! However, at this point another old saying comes to mind, “your radio is only as good as your antenna”. There are many high-end shortwave receivers that cost at least this much (e.g. AOR AR7030), but on their own they won’t be of any use in such a noisy environment. Meanwhile, technological progress has brought about many much cheaper radios that rival the older benchmark rigs in terms of performance, with Software Defined Radios (SDRs) being a particularly good example. It seems fair, then, to invest these cost savings into what makes shortwave listening possible. You may also find that your RFI situation is not as dire as mine and you only need some of the above equipment to solve your noise problems.

Filter audio with DSP

If you have implemented the above noise reduction steps but would still like a less noisy listening experience, consider using a Digital Signal Processing (DSP) solution. There are a number of different approaches and products available on the market, and I shall be reviewing some of them in my next post. Meanwhile, below are two demo videos of using DSP while listening to shortwave. The first clip shows the BHI Compact In-Line Noise Elimination Module at work together with a vintage shortwave receiver (Lowe HF-150). The second video compares using a Tecsun PL-660 portable radio indoors on its own and using the entire RFI mitigation set-up shown in Figure 4 together with a DSP noise reduction feature available in the SDR# software package, while using it with a FunCube Dongle Pro+ SDR. As a side note, it is worth remembering that while DSP approaches can make your listening experience more pleasant, they can’t recover what has been lost due to interfering signals or inadequate antenna design.

Set up a wireless audio relay from your radio shack

The above RFI mitigation techniques can result in a rather clunky set-up that is not particularly portable, confining the listener to a specific location within their home. One way to get around this is by creating a wireless audio relay from your radio shack to the other parts of your house. I did this by combining the Nikkai AV sender/receiver pair and the TaoTronics BA01 portable Bluetooth transmitter:

Head for the outdoors!

So you have tried all of the above and none of it helps? As a last resort (for some, but personally I prefer it!), you can go outside to your nearest park with your portable radio. After all, if shortwave listening is causing you more frustration than joy it’s hardly worth it. On the other hand, you might be surprised by what you’ll be able to hear with a good receiver in a noise-free zone.


Many of the above tricks and techniques were taught to me by my Twitter contacts. I am particularly grateful to @marcabbiss@SWLingDotCom, @K7al_L3afta and@sdrsharp for their advice and assistance over the years.

Thank you–!

What I love about my buddy, London Shortwave, is that he didn’t give up SWLing just because his home is inundated with radio interference–rather, he saw it as a challenge. As you can see, over the years, he has designed a system that effectively defeats radio interference.

I also love the fact that he uses an even more simple approach to defeating RFI: he takes his radio outdoors. A kindred spirit, indeed.

I encourage all SWLing Post readers to bookmark and search London Shortwave’s website. It’s a treasure trove for the urban SWL. We thank him for allow us to post this article in its entirety.

Posted in Articles, Guest Posts, Ham Radio, How To, News, Shortwave Radio, Software Defined Radio, Tutorials | Tagged , , , , , , , , , , , , , | 2 Comments

Radio Romania International: New frequencies as of October 25

RomaniaMapMany thanks to SWLing Post contributor, David Iurescia (LW4DAF), for sharing the following additional update from Radio Romania International:

Dear friends,

As of October 25th 2015 RRI broadcasts on new SW frequencies. Please check them out:


Posted in Broadcasters, International Broadcasting, News, Schedules, Schedules and Frequencies, Shortwave Radio | Tagged , | Leave a comment