Category Archives: Software Defined Radio

Microtelecom introduces the Perseus 22 four channel wideband SDR

Microtelecom has just announced their latest SDR receiver: the Perseus22. 

INTRODUCING NEXT-GEN SDR RECEIVER

Perseus22 is a 4 channels, direct sampling receiver with a continuous frequency coverage from 10 KHz to 225 MHz and a typical image rejection larger than 70 dB.

All channels are synchronously sampled by an high SNR, 14 bits A/D converter and processed by a software defined digital down converter, implemented on an FPGA, which outputs are routed to the host PC by a USB 3.0 controller, allowing wide-bandwidth IF applications.
The frequency coverage is split-up in 2 groups of channels (two for VLF-HF frequency range, the others for VHF), each one capable of diversity, which can reduce noise in order of tens dB. All channels includes an analog RF frontend equipped with attenuators, preselection filters and amplifiers.

The receiver enclosure is machined from solid aluminium and finished with a fine, non reflecting, black surface treatment.

I’ve no other details at present, but I’m eager to learn about pricing and availability.

Spread the radio love

Frans uses SDR-Control with his IC-R8600

Many thanks to SWLing Post contributor, Frans Goddijn, who shares the following article and video originally posted on his blog:


SDR-Control for iCOM IC-R8600 (and bhi DSP demo)

The new SDR-Control app that lets you use certain iCOM radios as remote controlled SDR stations for Macbook or iPad does not yet (May 2022 now) officially support my iCOM IC-R8600 but Marcus Roskosch from https://roskosch.de/ told me that he recently purchased an IC-R8600 and the app already works on an experimental basis.

I immediately bought the app, installed it on my MacBook, connected a network cable between home router and radio and tried it out…

I also show how I use bhi DSP units to filter out noise to enhance speech at the radio and at the computer audio.

 

 

 

Spread the radio love

FT Video: “Ukraine’s battle of the airwaves”

Many thanks to a number of SWLing Post contributors who share a link to the following video via the Financial Times.

Description:

A look at three aspects of wartime radio in Ukraine: the interception of communications between Russian soldiers, how broadcasters are using radio to combat censorship online, and the mysterious silence of a radio transmitter known as ‘The Russian Lady’

Click here to view on YouTube or click here to view on the Financial Times website.

Spread the radio love

Airspy HF+ Discovery & Shortwave Portables: Having Fun with the Airspy YouLoop!

Many thanks to SWLing Post contributor, Bill Hemphill, who shares the following guest post:


YouLoop Antenna Fun

by Billy Hemphill WD9EQD

Like many listeners, I live in an antenna restricted community.  While I have strung up some hidden outdoor wire antennas, I have found that they didn’t really perform that much better than just using the telescoping antenna with maybe a length of wire attached.  The biggest problem (whether indoor or outdoor antenna) has been the high noise floor.

A few months ago I bought an AirSpy HF+ Discovery SDR receiver.  I had already owned a couple of SDRPlay SDR receivers, but the high noise floor limited their performance.  I had read good reviews about the AirSpy, especially its performance on the AM Broadcast band and the lower shortwave bands.

I have about 80 feet of speaker wire strung from the second floor and across the high windows in the living room.  This does perform fairly well, but the high noise floor still exists.

A couple of weeks ago, I bought the YouLoop Magnetic Loop antenna from AirSpy.  I gave it a try and am amazed at the lower noise floor compared to the indoor wire antenna.

Wire Antenna vs. YouLoop–some examples:

AirSpy with Wire Antenna

AirSpy with YouLoop

AirSpy with Wire Antenna

AirSpy with YouLoop

AirSpy with Wire Antenna

AirSpy with YouLoop

Dramatic reduction in the noise floor.  I’ve done a lot of playing around with it and find that the YouLoop picks up just about the same stations as the indoor wire antenna does.  But with the lower noise level, the YouLoop makes it more enjoyable to listen.  Overall, the YouLoop is now my main antenna.

YouLoop with a Portable Radio

It works so well with the AirSpy, I started wondering if I could use it with a portable radio, like the Tecsun PL-880.  But the AirSpy website has the following note:

Note: It is very likely your third party radio will not be sensitive enough to operate with the YouLoop properly. We have even seen self-documented failed attempts to build pre-amplifiers to compensate for the lack of sensitivity and/or the required dynamic range in third party radios. Use your brain, and eventually an Airspy HF+ Discovery.

Doesn’t sound like it will work with portable radios.  BUT, I’m always one to try anyway.

Tecsun PL-880

Since the YouLoop has a SMA connector, I bought a SMA to 1/8” phone jack cable.  Plugged it into the PL-880 antenna jack and found I had almost a dead radio.  Very few stations heard.  But in playing around, I accidentally touched the phone plug to the telescoping antenna and instantly got strong signals.

I did some very unscientific tests.  I attached the YouLoop through the side antenna jack, did an ATS scan, then did the same with the YouLoop clipped to the telescoping antenna.  Also did a scan with just the telescoping antenna fully extended..  I got some very interesting results.  These were done one after the other, so there can be differences in signal fading, etc.

I have repeated the above test several times at different hours.  While the actual number of ATS stations varied, the ratio between them remained fairly consistent to the above numbers.

From the above, it appears that the telescoping antenna circuit is more sensitive than the 1/8” antenna jack circuit.  Maybe some attenuation is being added to the 1/8” jack since it’s more likely a higher gain antenna would be used there.  Can anyone confirm that the circuit indeed attenuates thru the antenna jack?

The YouLoop seems to be a decent performer when directly clipped to the telescoping antenna.  While not as good as a high gain outdoor antenna would be, it definitely is usable for indoor uses.

I also tested it clipped to the antennas of some other portable receivers. Tecsun S-8800, PL-330, Panasonic RF-2200 and Philco T-9 Trans-World receivers.  All showed an increase over just using the telescoping antenna.

Some interesting notes:

The Tecsun PL-330 saw the same reduction in signal when directly plugged into the antenna jack as opposed to clipping on the telescoping antenna.

The Tecsun S-8800 did not show that much of a drop.  I basically got the same number of stations when clipped to antenna as when I connected to the BNC jack:

In conclusion, I find that I can use the YouLoop with my portable radios to increase the signals on strong stations when used indoors.  And it is quite the performer when used with the AirSpy HF+ Discovery SDR receiver.  It easily portable and I find that I move it around the house as I need to.  I just hang it off a window curtain rod.  I may just order a second one so that my family room radio has one permanently attached to it.

Click here to check out the Youloop at Airspy.com.

Spread the radio love

Airspy Black Friday 2021 Sale

Many thanks to the folks at Airspy who shares the following announcement:

It’s that time of the year again! This year we offer a generous 25% Black Friday discount on all our Airspy products though our network of distributors.

Check: https://airspy.com/purchase

Click here to view their announcement on Twitter.

If you’ve been considering the Airspy HF+ Discovery–which is one of my choice HF SDRs–I would suggest you bite the bullet during this sale. The price via Airspy.us, for example, is $126.75; a proper bargain for a benchmark budget SDR! Of course, all international Airspy distributors are offering equivalent discounts.

Spread the radio love

The new Winradio WR-G69DDCe ‘Artemis’ wide bandwidth SDR

Image: WinRadio

WinRadio has just added a new SDR to their line-up: the Winradio WR-G69DDCe ‘Artemis’.

In the spirit of WinRadio’s approach to iterative design, the Artemis appears to be their new flagship SDR. The specs and features (see below) are impressive.

The WR-G69DDCe has two (selectable, I assume) frequency ranges. In “Range 1” it operates as a direct sampling SDR from 8 kHz to 80 MHz. In “Range 2” it operates as a superheterodyne receiver from 43 MHz to 8 GHz.

It appears the WR-G69DDCe’s recording and processing bandwidth is an impressive 32 MHz. I imagine it would take some proper CPU horsepower and a large, speedy SSD to make those 32 MHz recordings!

At time of posting, I haven’t seen details about pricing and availability, but I’m 99% certain this will not be a budget model. WinRadio’s higher performance SDR models have historically retailed in excess of $2,000 US.

The following details were taken directly from the Winradio WR-G69DDCe product page:


Overview

The WiNRADiO WR-G69DDC ‘Artemis’ is a top performance, software-defined, wide-band, ultra-fast search speed 3 GHz/s, HF/VHF/UHF/SHF receiver. Two independent and mutually exclusive inputs are provided, one for each range: 8 kHz to 80 MHz and 43 MHz to 8 GHz. A real-time 80/34 MHz-wide spectrum analyzer is included with a 32 MHz wide instantaneous bandwidth available for recording, demodulation and further digital processing over the whole frequency range.

The receiver’s superior performance results from its innovative, combination of direct-sampling and superheterodyne, digital down-conversion architecture along with the use of leading-edge components and design concepts. These all result in excellent sensitivity, phase noise and dynamic range, highly accurate and stable tuning, high scanning speed and perfect demodulation. These key features create a receiver in a class of its own, making it capable of filling not only the role of a monitoring receiver but also that of a fast search receiver and measuring receiver, with many operational and instrumentation features not usually found on receivers of any price category.

The entire 32 MHz DDC (digitally down-converted) bandwidth is available for recording and demodulation, and ideal for hopping frequencies analysis. Three demodulators allow the simultaneous reception and decoding of radio signals within the entire band.

The WR-G69DDCe also features optional external reference frequency inputs and outputs as well as 1PPS pulse input. In addition, stereo analog output is also possible, as well as wide audio (10 Hz-150 kHz). The special data port offers numerous possibilities which include GPIO (general purpose I/O), HSP (high speed data output), or traditional RS232 interface.

Features

    • 8 kHz to 8 GHz frequency range
    • Direct sampling & superheterodyne
    • Digital down-conversion
    • 16-bit 200 MSPS A/D converter
    • 80/34 MHz-wide, real-time spectrum analyzer
    • 32 MHz recording and processing bandwidth
    • Continuously adjustable filter bandwidth down to 1 Hz
    • Waterfall display functions and audio spectrum analyzer
    • Audio and IF recording and playback
    • Recording with pre-buffering
    • Ultra-fast search speed 3 GHz/s
    • High sensitivity
    • Excellent dynamic range
    • Excellent frequency stability (0.1 ppm)
    • Test and measurement functions
    • Networking version of application software available
    • USB 3.0 and 1 Gb Ethernet (with PoE) data interfaces
    • Numerous data and signal hw options
    • Self-diagnostics with BIT and thermal management
    • The receiver interfaces to a Windows-compatible PC via USB 3.0, or 1 Gb Ethernet LAN port with PoE (Power over Ethernet functionality according to the IEEE 802.3at standard).

For the highest bandwidth use, connection is best via USB3 for short distances (up to 3m). As the G69DDCe is equipped with an Ethernet socket, semi-remote connection to a computer is possible via a long Ethernet cable (up to 100m in length). For longer distances or when located in a busy or remote network, the Networking CSO option is recommended.

The receiver is very well shielded against interference, making it possible to operate in a noisy computer environment. Its modest power requirements are less than 20 watts. While connected via a LAN interface, thanks to PoE built-in functionality, the receiver can be operated and powered via a long Ethernet cable connection.


I’ll post information about pricing and availability once it’s available. Stay tuned!

Spread the radio love

Ham Radio Workbench episode explores Diversity Reception

The SDRplay RSPduo

I just finished listening to the most recent episode of the Ham Radio Workbench with John Fallows (VE6EY) as a guest.

John is an SWL and Ham Radio operator and speaks at length about how he uses diversity reception to mitigate persistent local RFI (radio frequency interference).

If you have persistent issues with radio interference or if you’ve been curious about using diversity reception for mediumwave and shortwave DXing, I highly recommend listening to this episode. John has been known to frequent the SWLing Post and actually comes into the discussion primarily from an SWL’s perspective.

If you’ve tried diversity reception or a noise-cancelling system like the Timewave ANC-4+ in the past with mixed results, you’ll definitely benefit from listening to John’s best practices.

In addition, John points out that the excellent SDRplay RSPduo is a very affordable way to explore proper diversity reception.

How effectively can you mitigate RFI with diversity reception? Check out this video on YouTube queued up to the point where John does a live demo with his Anan SDR and loop antennas: https://youtu.be/vu8D87aVUTQ?t=2011 (I also recommend watching to full video presentation for even more detail.)

I’ve embedded the audio for the Ham Radio Workbench podcast below, but you can also find it along with show notes on the Ham Radio Workbench website.

Ham Radio Workbench is one of my favorite podcasts; if you like exploring a wide variety of technical topics, I highly recommend checking it out. It’s available on all podcasting platforms.

Also, check out John VE6EY’s YouTube channel and web site/blog.

Spread the radio love