Radio Waves: Solar-Powered Broadcast Transmitters, Decommissioning Arecibo, and HWN in the path of an International Broadcaster

Arecibo Observatory’s 305-meter telescope in November of 2020 (Credit: University of Central Florida)

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Jerome van der Linden, Zack Schindler, and Wilbur Forcier and  for the following tips:


Powering communication networks using solar power (BAI Communications)

BAI Communications (BAI) is committed to reducing emissions and contributing to a more sustainable future.

Over the past four years, BAI has invested in a number of initiatives that reduce power consumption as well as the carbon released into the atmosphere.

This year, four solar-powered sites were introduced in BAI’s broadcast transmission network; Yatpool, Victoria; Mawson, Western Australia; Minding, Western Australia; and Brandon, Queensland.

The annual reduction in CO2 emissions from our recent solar investment is 698 tonnes, equivalent to reducing:

  • Greenhouse gas emissions from 2.7km driven by an average passenger vehicle
  • CO2 emissions from charging 89 million smartphones
  • Greenhouse emissions from 237 tonnes of waste sent to landfill

Find out how BAI implemented this solar power initiative as part of our commitment to managing our energy use and reducing consumption.

Click here to download case study (PDF).

The complexity of sending sounds to (and from) space (Mashable)

Communication with astronauts in space is vital, whether it’s during travel, when they’re doing experiments on the International Space Station, or just want to chat. It’s also pretty tricky.

That’s the topic of the latest episode of Twenty Thousand Hertz, where host Dallas Taylor speaks with International Space Station commander Peggy Whitson, NASA audio engineer Alexandria Perryman, and astrophysicist Paul Sutter to get an idea of how communication between astronauts and Earth works across the vacuum of space.[]

NSF to decommission Arecibo radio telescope (Space News)

WASHINGTON — The National Science Foundation announced Nov. 19 it will perform a “controlled decommissioning” of the giant radio telescope at the Arecibo Observatory in Puerto Rico, citing recent damage that made it unsafe to operate or even repair.

In a call with reporters, NSF officials said two broken cables used to support a 900-ton platform suspended over the telescope’s 305-meter main dish put the entire structure at risk of collapse. One cable slipped out of its socket in August, falling to the dish below and damaging it, while the second broke Nov. 6

Both cables are attached to the same tower, one of three surrounding the main dish. “The engineers have advised us that the break of one more cable will result in an uncontrolled collapse of the structure,” said Ralph Gaume, director of the NSF’s Division of Astronomical Sciences, referring to cables attached to that same tower. That would result in the platform crashing down to the main dish and potentially toppling one or more of the towers.

Engineers advising the NSF and the University of Central Florida (UCF), which operates Arecibo for the NSF, concluded that it was not possible to safely repair the structure because of the collapse risk. “After the recent failure, WSP does not recommend allowing personnel on the platform or the towers, or anywhere in their immediate physical vicinity in case of potential sudden structural failure,” stated WSP, one engineering firm involved in that analysis, in a Nov. 11 letter to UCF.

“NSF has concluded that this recent damage to the 305-meter telescope cannot be addressed without risking the lives and safety of work crews and staff, and NSF has decided to begin the process of planning for a controlled decommissioning of the 305-meter telescope,” said Sean Jones, assistant director of the NSF’s Mathematical and Physical Sciences Directorate.

Engineers are working on a plan to carry out that controlled decommissioning, which will take several weeks to complete.[]

International Broadcast Station Interference Overwhelms Hurricane Watch Net (ARRL News)

As Category 4 Hurricane Iota neared landfall in Central America on November 16, the Hurricane Watch Net (HWN) was forced to suspend operations at 0300 UTC because of what HWN Manager Bobby Graves, KB5HAV, described as “deafening interference from a foreign AM broadcast station that came out of nowhere at 0200 UTC.” At the time, the net had shifted to its 40-meter frequency of 7.268 kHz, collecting real-time weather and damage reports via amateur radio.

“This was heartbreaking for our team, as the eyewall of Iota was just barely offshore,” Graves said. “The storm had weakened slightly to a Category 4 hurricane with sustained winds of 155 MPH.” After activating at 1300 UTC, the net was able to collect and forward reports from various parts of Nicaragua and Honduras via WX4NHC throughout the day for relay to forecasters at the National Hurricane Center in Miami. Iota was the most powerful storm on record to make landfall this late in the hurricane season.

Graves said the very strong AM signal was on 7.265 MHz. “From my location, it was S-9,” he told ARRL. “You could not hear anything but the BC station.” The source of the signal was not clear, but as he noted, other foreign broadcast stations are to be heard from 7.265 to 7.300 MHz and splattering close by.

Stations handling emergency traffic during the response to Category 5 Hurricane Iota had requested clear frequencies on November 16 to avoid interfering with the HWN and with WX4NHC, as well as with a Honduran emergency net operation on 7.180 MHz and a Nicaraguan emergency net operating on 7.098 MHz. It’s not known if those nets were also affected by interference from the numerous broadcasters on 40 meters. “Thank you to all who allowed us a clear frequency,” Graves said on behalf of the HWN.[]

[Personal note: I understand that this is very late in the season for the Hurricane Watch Net to activate. Normally, they operate on 20 meters, but moved to 40 meters for the evening. I don’t believe net control was aware that this portion of the 40 meter band is shared with international broadcasters. I don’t believe the international broadcaster could be called “interference”–they operate on a publicly available schedule–ham radio nets are actually the ones who are frequency agile. This seems to have just caught them off guard. I believe the HWN will be using frequencies below 7.2 MHz moving forward.]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Video: A virtual tour of the Aihkiniemi DXing base in Lapland, northern Finland

Many thanks to SWLing Post Contributor, Christoph Ratzer, who recently shared the following video tour by Mika Mäkeläinen. Mika desxribes this video on YouTube:

Join me on a virtual tour of the Aihkiniemi DXing base in Lapland, in northern Finland. This is a nonscripted five-cent tour looking at what the Aihkiniemi cabin can offer for visiting AM DXers. The video was shot in November 2020 during DXpedition AIH124 – meaning that during the first decade of its existence, Aihkiniemi has already hosted 124 successful expeditions. The antennas (a total of 14 Beverage-type wire antennas) are permanent, but participants bring their own receivers and laptops. There’s one essential activity missing from this video though: checking the antennas, which is a major job. Every DXer is expected to check – and if necessary, clean and repair – all the antennas, which run in the forests around the cabin. So there might be a part 2 in the future.

Wow! This little DXing cabin is on my bucket list. I will, someday, make my way to north Finland and spend time DXing from this unique reception spot. The quality of the equipment and antennas is truly amazing.

Thanks for the tip, Christoph!

Spread the radio love

April’s collection of Japanese language WebSDR recordings for October 2020

Many thanks to SWLing Post contributor, April TimeLady, who writes:

In this email is a link to recordings I made from Japanese SDRs over the course of October 2020 and have uploaded to archive.org. This is the link:

https://archive.org/details/JPSDROCT2020

The original files are in .wav, archive.org converts them to mp3 and flac. Files with sas in them are supposed to be in stereo. There are many shortwave recordings in it, as well as mediumwave.

For anyone who is hunting IDs, Japanese radio stations definitely announce their full ID at 5 AM Japan Standard Time each day. On the top of the hour commercial radio stations ID. On Mondays between 1 and 2 AM (commonly given as between 25:00 and 26:00 Sundays on Japanese radio schedules) many Japanese radio stations go off the air for transmitter maintenance and give a very full, 5 minute long ID. I believe I have included one that I clipped for 1008 AM in Osaka in this month’s collection; 1008 AM, JONR is definitely in full AM stereo.

A good reference for Japanese AM radio call signs is on MWList at http://www.mwlist.org/mwlist_quick_and_easy.php?area=2

Thank you for reading this, and please take care.

Thank you, April for uploading and sharing your recordings! I’ve enjoyed browsing these each month!

Click here for a link to this and all of April’s archived recordings.

Spread the radio love

HamEstate.com makes it easy for families of radio enthusiasts to sell gear

Many thanks to SWLing Post contributor, Mario Filippi (N2HUN), who shares a link to HamEstate.com: an online site that simplifies the process of selling radio gear from family estates.

I was not familiar with this site, but it appears they have good reviews. Possibly an option for families who’ve no one to help them sell a loved one’s gear. Of course, you might enjoy browsing their offerings as well!

Click here to check out HamEstate.com.

Thanks for the tip, Mario!

Spread the radio love

Portable tuner (ATU) options for the new Icom IC-705

Many thanks to SWLing Post contributor, Paul, who asks:

What are good choices for ATU and 100W amplifier for the IC-705? [Also] will the Icom AH-4 antenna tuner work well with the IC-705?

Great questions, Paul!

100 Watt Amplifiers

I’ve limited experience pairing the IC-705 with external 100 watt amplifiers. I own the Elecraft KXPA100 and it pairs well with the IC-705 via RF sensing. My hope is that SWLing Post readers may be able to chime in here and offer more suggestions as there are a number of inexpensive, basic, amplifiers on the market now but I’ve never personally used or tested them. I can say that the KXPA100 is a beautifully-engineered amplifier.

Antenna tuners

Icom AH-4

First off, regarding the Icom AH-4 ATU, I’m not certain if the IC-705 has the same control commands as the AH-4 (I’m guessing it does, but perhaps someone can confirm–?).

It would not be my first choice as a portable antenna tuner for field work. For one thing, it’s a pricey at $300. That, and I’ve always viewed the AH-4 as more of a remote antenna tuner for those who need a permanent matching box outside the shack near the antenna feed point. For that application, I’m sure it’s amazing.

According to the AH-4 specifications, it requires “10 W (5–15 W)” of tuning power. I’m not quite sure what the “5-15” watts means, but the IC-705’s max output power is 10 watts using an external 12-13.8V battery, and only 5 watts using the BP-272 Li-ion Battery. Not sure if that would be adequate to trigger the AH-4 to find a match without some sort of command cable connection.

For portable ATUs, let’s take a look:

IC-705 Portable ATU Options

The Icom IC-705 actually has a port on the side of the radio that allows one to connect the rig to an ATU for some level automatic ATU control. At time of posting, there are two ATUs in the works that are able to use this port: the Mat-Tuner mAT-705 and the Icom AH-705 (there could be more, but I’m not aware of them).

Mat-Tuner mAT-705 ($220 US)

I reviewed the mAT-705 on QRPer.com (click here to read). In short, it’s absolutely brilliant at matching antennas quickly and efficiently, but it has a few design shortcomings. The main issue is that you must use a mechanical switch to turn it on and off, else you deplete the internal 9V battery within a week. Most similar ATUs either have auto-off functionality, or at least an external power option. Since the mAT-705 can connect directly to the IC-705, it automatically knows when you need to tune to a frequency and will do this anytime you send a carrier, hit PTT, or initiate tuning via the menu option. It can also remember frequencies you’ve already matches to make the process quicker. The mAT-705 is also RF-sensing, thus can work with other radios. Vibroplex is the US distributor of the mAT-705. Note, too, that there are a number of portable Mat-Tuners that will work with the IC-705–the mAT-705 is the only one that uses the IC-705 control cable (which I feel is actually unnecessary).  Check out their full product line before ordering.

Icom AH-705 ($T.B.A.)

The Icom AH-705 is Icom’s own external ATU designed to work with the IC-705 and fit in the LC-192 backpack. Since the AH-705 will be able to connect directly to the IC-705, its functionality will be very similar to the mAT-705. I’m speaking in future tense here because, at time of posting (18 November 2020), the AH-705 is not yet in production and we’ve no retail price. With that said, Icom has a legacy of making fine ATUs, so I’ve no doubt it’ll function well. Like the mAT-705, it has a mechanical on/off button so you may have to be aware of turning it off when not in use to preserve the internal alkaline batteries. Unlike the mAT-705, it has an external 13.8 VDC power connection. Universal Radio will update their site with pricing and shipping information once available.

Elecraft T1 ($160-$190 US)

The Elecraft T1 ATU has been in production for many years now and is a fabulous portable ATU. Not only is it incredibly adept at finding matches, but it’s also efficient in terms of power usage. It will run for months on an internal 9V battery (that’s very easy to replace in the field). The T1 has no special connection for the IC-705, but it does have an optional T1-FT817 adapter for the Yaesu FT-817 series transceivers. In truth though? I find control cables unnecessary because tuning the T1 only requires pressing the tune button on the ATU, then keying the transceiver. Once it finds a match, it shuts down and locks it in. You can purchase the T1 directly from Elecraft ($160 kit/$190 assembled). The Elecraft T1 is my portable ATU of choice.

LDG Z-100 Plus ($150) / Z-100A ($180 US)

I’ve owned a number of LDG tuners over the years an absolutely love them. I find that they offer great bang-for-buck, perform amazingly well, and are built well. In fact, I designed an outdoor remote antenna tuning unit around their original Z-11 Pro auto tuner. It’s housed in a sealed waterproof enclosure, but is completely exposed to outdoor humidity and temperature changes (which can be dramatic here on the mountain). I’ve been powering the Z-11 Pro for 10 years off of a discarded sealed lead acid battery that’s being charged by a Micro M+ charge controller and 5 watt BP solar panel. I’ve never needed to maintenance it. One of LDG’s latest portable ATUs is the Z-100A. I’ve never used it, but I imagine it’ll perform well and I may very well reach out to LDG and ask for a loaner to review with the IC-705. It does have a command cable port that works with Icom radios, but I’m checking with LDG to see if it works with the IC-705 (I’ll update this post when I hear back). The LDG Z-100A retails for $180 via LDG’s website.

UPDATE (August 20, 2021): I’ve been using an LDG-Z100 Plus for several months now and have been incredibly pleased with it. I find that its matching range is very wide and it’s more power efficient than the mAT-705 Plus if left connected to my radio (the mAT-705 Plus has no “sleep” mode and will drain the internal battery within hours if left plugged into the IC-705).  The price is incredibly competitive as well; at $150, this ATU is a bargain. The only con is that it’s a bit larger and heavier than other options on this list, but I wouldn’t hesitate to use it for POTA and even SOTA. Here’s a field activation report and video from earlier this year using the Z-100 Plus.

Emtech ZM-2

Shortwave radio listeners, especially, should take note of the Emtech ZM-2 balanced line tuner! Unlike the ATUs above, the ZM-2 is manual–meaning, you manually adjust the tuner’s L/C controls to achieve a match with your antenna. I’ve owned the ZM-2 for many years and have used it with a number of QRP transceivers. Since it’s not automatic, it might take a minute or so to find a match, but it’s worth the wait. The ZM-2 requires no batteries to operate, which makes it an invaluable and reliable little tool in the field. In addition, since the ZM-2 doesn’t require RF energy in order to find a match, it’s a brilliant choice for SWLs who want to tweak their wire antennas. I find it functions as well as if not better than other manual tuners designed specifically for receivers. The ZM-2 is also the most affordable of the bunch: you can purchase a pre-built unit for $87.50 from Emtech or $62.50 as a kit. I would advise purchasing one even if you also have an automatic antenna tuner–makes for a great back-up!

Other options?

This is by no means a comprehensive list of portable ATUs to pair with the IC-705, just a few suggestions. In fact, companies like MFJ Enterprises make a number of manual tuners that could easily be taken to the field and require no power source (much like the ZM-2 above).

Please comment if you have experience with other types of ATUs and please include links if possible!

Spread the radio love

FTIOM & UMBP, November 22-28


From the Isle of Music, November 22-28:
This week, we dive into a couple of recordings from our vinyl collection.
The broadcasts take place:
1. For Eastern Europe but audible well beyond the target area in most of the Eastern Hemisphere (including parts of East Asia and Oceania) with 100Kw, Sunday 1500-1600 UTC on SpaceLine, 9400 KHz, from Sofia, Bulgaria (1800-1900 MSK)
2. For the Americas and parts of Europe, Tuesday 0100-0200 on WBCQ, 7490 kHz from Monticello, ME, USA (Monday 8-9PM EST in the US).
3 & 4. For Europe and sometimes beyond, Tuesday 1900-2000 UTC and Saturday 1300-1400 UTC on Channel 292, 6070 kHz from Rohrbach, Germany.
Our Facebook page is https://www.facebook.com/fromtheisleofmusic/
Our V-Kontakte page is https://vk.com/fromtheisleofmusic
Our Patreon page is https://www.patreon.com/tilford

Uncle Bill’s Melting Pot, November 22, 24 and 28:
This week we enjoy some musical comedy.
The transmissions take place:
1.Sunday 2300-0000 (6:00PM -7:00PM EST) on WBCQ The Planet 7490 kHz from the US to the Americas and parts of Europe
2. Tuesday 2000-2100 UTC on Channel 292, 6070 kHz from Rohrbach, Germany for Europe.
3. Saturday 0800-0900 UTC on Channel 292, 9670 kHz from Rohrbach, Germany for Europe with an augmented directional beam towards eastern Europe.
Our Facebook page is https://www.facebook.com/UncleBillsMeltingPot/
Our V-Kontakte page is https://vk.com/fromtheisleofmusic
Our Patreon page is https://www.patreon.com/tilford

Spread the radio love

Comparing the Icom IC-705 and Icom IC-7300 with the Xiegu GSOC G90 combo

I was recently asked to make a table comparing the basic features and specifications of the new Xiegu GSOC/G90 combo,  and comparing it with the Icom IC-7300 and IC-705.

This is by no means a comprehensive list, and I plan to add to it as I test the GSOC. It doesn’t include some of the digital mode encoding/decoding features yet. I’m currently waiting for the next GSOC firmware upgrade (scheduled for November 20, 2020) before I proceed as it should add mode decoding, audio recording, fix CW mode latency, and add/fix a number of other items/issues.

Comparison table

Click to enlarge

Quick summary of comparison

At the end of the day, these radios are quite different from each other. Here’s a quick list of obvious pros and cons with this comparison in mind:

Xiegu GSOC G90 combo ($975 US)

Pros:

  • The GSOC’s 7″ capacitive touch screen is the biggest of the bunch
  • The GSOC can be paired with the G90 or X5101 transceivers (see cons)
  • The GSOC controller is connected to the transceiver body via a cable, thus giving more options to mount/display in the shack
  • The G90 transceiver (read review) is a good value and solid basic transceiver
  • Upgradability over time (pro) though incomplete at time of posting (con)
  • GSOC can be detached, left at home, and G90 control head replaced on G90 body to keep field kit more simple (see con)

Cons:

  • The GSCO is not stand-alone and must be paired with a Xiegu transceiver like the Xiegu G90 or X5105. The X5105 currently has has limited functionality with the GSOC but I understand this is being addressed. (see pro)
  • I don’t believe the GSOC can act as a sound card interface if directly connected with a computer (I will correct this if I discover otherwise). This means, for digital modes, you may still require an external sound card interface
  • No six meter coverage like the IC-7300 and IC-705
  • Quite a lot of needed cables and connections if operating multiple modes; both GSOC and G90 require separate power connections
  • At time of posting, a number of announced features missing in early units, but this should be addressed with a Nov 20, 2020 firmware upgrade
  • Replacing and removing G90 control head requires replacing four screws to hold in side panels and secure head to transceiver body (see pro)

Icom IC-7300 ($1040 US)

Pros:

  • Built-in sound card interface for for easy digital mode operation
  • Excellent receiver specifications (click here to view via Rob Sherwood’s table)
  • Possibly the most popular transceiver Icom has ever made (thus a massive user base)
  • Well thought-through ergonomics
  • Includes six meter operation and expanded RX frequencies (compared with G90/GSOC); high frequency stability

Cons: 

  • The heaviest of this group (con), but it is a 100 watt transceiver (pro)
  • Smaller display than the GSOC
  • Touch sensitive display (not capacitive like the GSOC)
  • Faceplate not detachable like the G90

Icom IC-705 ($1300 US)

Pros:

  • Built-in sound card interface for for easy digital mode operation
  • Excellent receiver specifications (click here to view via Rob Sherwood’s table)
  • Can use swappable Icom HT battery packs
  • Well thought-through ergonomics, but on that of the IC-7300
  • Includes six meters and VHF/UHF multi-mode operation with high frequency stability
  • Includes D-Star mode
  • Includes wireless LAN, Bluetooth, and built-in GPS
  • Weighs 2.4 lbs/1.1 kg (lightest and most portable of the bunch)

Cons:

  • No internal ATU option
  • Maximum of 10 watts of output power
  • The priciest of this bunch at $1300 US

In short, I’d advise those looking for a 100 watt radio, to grab the Icom IC-7300 without hesitation. It’s a solid choice.

If you’re looking for the most portable of these options, are okay with 10 watts of maximum output power, and don’t mind dropping $1300 on a transceiver, the Icom IC-705 is for you. You might also consider the Elecraft KX3, Elecraft KX2, and lab599 Discovery TX-500 as field-portable radios. None of them, however, sport the IC-705 display, nor do they have native VHF/UHF multimode operation (although there is a limited KX3 2M option). The IC-705 is the only HF QRP radio at present that also has LAN, Bluetooth, and built-in GPS. And, oh yes, even D-star.

If you’re a fan of the Xiegu G90 or already own one, give the GSOC controller some consideration. It offers a more “modular” package than any of the transceivers mentioned above in that the controller and G90 faceplace can be swapped on the G90 body. The GSOC screen is also a pleasure since there are two USB ports that can connect a mouse and keyboard (driver for mine were instantly recognized by the OS).  The GSOC/G90 combo is a bit “awkward” in that a number of cables and connections are needed when configured to operate both SSB and CW: a CW key cable, Microphone cable, I/Q cable, serial control cable, power cable for the GSOC, and a power cable for the G90.  This doesn’t include the cables that might be needed for digital operation. I dislike the fact that the CW cable can only be plugged into the transceiver body instead of the GSOC controller like the microphone. Still: this controller adds functionality to the G90 (including FM mode eventually) that may be worth the investment for some.

Did I miss something?

I’ll update this list with any obvious pros/cons I may have missed–please feel free to comment if you see a glaring omission! Again, these notes are made with a comparison of these three models in mind, not a comprehensive review of each. I hope this might help others make a purchase decision.

Spread the radio love