Tag Archives: synchronous detector

Guest Post: A synchronous detector crash course!

Many thanks to SWLing Post contributor, 13dka, who shares the following guest post:


Revisiting the Belka’s “pseudo-sync detector”: A sync detector crash course!

by 13dka

“It’s usually hard to assess whether or not a sync detector helped with a particular dip in the signal or not, unless you have 2 samples of the same radio to record their output simultaneously and compare.”*

That’s what I wrote about the “pseudo sync detector” in my review of the Belka DSP last year.

Since I was recently upgrading to the Belka DX in order to pass on the Belka DSP to a friend, I had briefly two examples of almost the same radio on the table at the dike. I tuned them to the same stations and recorded some audio clips with one radio on sync detector, the other in regular AM mode, to answer the question whether or not sync has “helped with a particular dip in the signal”. Then I thought that demonstration would be an opportunity to try an explanation on what exactly (I think) sync detectors are all about anyway, hoping to find a middle ground between “technical” and “dumbed down beyond recognition”.

The trouble with sync detectors

Perhaps no component of a shortwave receiver is surrounded by so much misconception and confusion as sync detectors. Full disclosure: Until quite recently, I had an, at best, vague concept on what they do myself. It seems it’s not so much that people don’t know how they work, what they actually do when they work is where the ideas often diverge. Continue reading

Spread the radio love

Videos: Nick explores synchronous detection and the Racal 6217

Many thanks to SWLing Post contributor, Nick Boras, who shares the following:

I was motivated by one of Tom Styles videos (hamrad88) about Sync detection to make one of my own. It is no secret that Tecsun offers Sync on several of their radios but only the 660 and 680 really work. My take on Sync is that the results are not consistent even on some of the highest rated Sync radios. While my video is not scientific or nearly complete, I think it gives a good representation of what we can expect from Sync for SWL.

[In addition] today was Radio Day, so I made another video on a very interesting radio:

Thought your readers might be interested.

We are indeed! Thank you for sharing these videos, Nick! That Racal, by the way, is a beautiful beast of a rig!

Spread the radio love

Is AM synchronous detection a crucial portable radio feature?

Many thanks to SWLing Post contributor, Mike, who writes with the following question:

How important is AM Sync for a portable radio? Is it essential or a deal breaker?

That’s a great question, Mike, and one I don’t think I’ve directly addressed it here on the SWLing Post oddly enough.

Synchronous detection is actually a fairly deep topic to explore–and everyone has their own opinion–but I get the impression that you’d like a simple answer, so I’ll try to keep this as brief as possible. You might follow the comments section of this post as I’m sure some SWLing Post readers will share their thoughts on synchronous detection and how important it is for them.

So what is Synchronous Detection?

I like this concise Wikipedia answer:

In electronics, a synchronous detector is a device that recovers information from a modulated signal by mixing the signal with a replica of the un-modulated carrier. This can be locally generated at the receiver using a phase-locked loop or other techniques. Synchronous detection preserves any phase information originally present in the modulating signal. Synchronous detection is a necessary component of any analog color television receiver, where it allows recovery of the phase information that conveys hue. Synchronous detectors are also found in some shortwave radio receivers used for audio signals, where they provide better performance on signals that may be affected by fading. To recover baseband signal the synchronous detection technique is used.

How does synchronous detection help shortwave, mediumwave, and longwave listeners?

As the Wikipedia article notes above, sync detection can help “provide better performance on signals that may be affected by fading.”

In short: a solid synchronous detector can help stabilize an AM signal which then can help with overall signal intelligibility.

In some modern portable radios, at least, this could come at the expense of audio fidelity (see caveat below).

I use sync detection when the bands are rough, noisy, and QSB (fading) is affecting signals.

A good sync detector will help clean-up and stabilize the signal so that you can hear voice information with less listener fatigue. Sync detectors are also great tools for grabbing station IDs when propagation is less stable. If you have a receiver with selectable sideband synchronous detection, it can also be used as a tool for eliminating adjacent signal interference.

Caveat? Sync detectors vary in terms of quality.

The PL-880 has a synchronous detection “hidden” function. I’m sure it’s hidden because it’s so ineffective. The PL-880 is a fantastic portable, but don’t bother using the sync detector.

Many modern DSP portables sport synchronous detection, but they’re not terribly stable and the audio fidelity can take a big hit as well. Poor sync detectors can make audio sound “tinny” and narrow.

If a sync detector isn’t effective a providing a stable lock on a signal, then it’s pretty much useless. Why? If it can’t maintain a stable lock, it’ll produce very unstable shifting audio, often with the occasional heterodyne sound popping in as well. In those cases, it’s better to turn off synchronous detection.

Benchmark legacy tabletop receivers and modern Software Defined Radios (SDRs) typically have solid, effective sync detectors. Indeed, I rarely have the AM synchronous detector disengaged on my WinRadio Excalibur–that particular SDR and application enhance audio fidelity through sync detection.

I find that I use sync detection less with my Airspy HF+ Discovery and SDRplay RSPdx, for example, because the OEM applications natively does a brilliant job managing unstable signals.

In terms of portables, I’ve always considered the sync detector of the Sony ICF-2010, Sony ICF-SW7600GR, and PL-660/PL-680 to be pretty solid. I’m sure readers can suggest even more models.

Is sync detection an essential feature on a portable radio?

Not for me. But I do admit that I value the radios I own that sport a good sync detector.

For some SWLs and DXers, however? It might very well be a deal-breaker if a radio doesn’t have a sync detector, or if its sync detector doesn’t function well.

What do you think?

Is the lack of sync detection a deal-breaker for you? When do you employ sync? Please comment!

Spread the radio love

AM sync lessens noise in this The Voice of Greece broadcast

TheParthenonAthensSometimes, the Voice of Greece plays very little Greek music; October 10th was one of those occasions.  Nonetheless, I recorded that evening’s broadcast.

Using AM sync for sideband noise

In the first hour of the 10/10 VOG broadcast, you’ll hear a pulsating noise from an unknown origin (possibly a jammer?). The noise was centered about 20 kHz above VOG.

Fortunately, most of the noise was in the upper side band of the VOG signal, so I was able to mitigate it by using an AM sync lock on the lower side band. Without AM sync, this VOG broadcast––and its music mix––was almost inaudible.

If you have a synchronous detector on your receiver and tune in a station with interference, always try turning on sync lock and locking it on either the upper or lower sideband. If most of the noise resides in one of the sidebands, the lock can help tremendously. I often use this method while listening to AM pirate radio stations in noisy conditions.

A confession…

I have no idea what she’s talking about–it could be something absolutely mundane–but I love this radio host’s voice as she speaks and Pink Floyd’s Comfortably Numb begins(Start listening around 26:00)

Click here to download more than two hours of the Voice of Greece, recorded on October 10, 2013, starting around 03:15 UTC on 9,420 kHz, or simply listen via the embedded player below. Most of the noise disappears around 00:21:

Spread the radio love