Tag Archives: TomL

Loop-On-Ground Antenna Part 2: Tom upgrades his low profile, low noise, portable DXing antenna

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:

Loop on Ground Part 2

by TomL

My previous Loop on Ground (LoG) experiment was useful which entailed connecting my Wellbrook loop amplifier to a 100 foot loop of speaker wire in the field at my favorite local Forest Preserve. It really brought in stations I had never heard before or strong stations in a more powerful way that made the audio really pleasant to listen to.  This report will describe more experiments with smaller wire loops to see what the limitations are.  100 feet of wire is quite a lot of wire to mess around with especially in the cold weather or public places that do not have as much private space.

I don’t understand all the electrical interrelationships but a long posting at RadioReference.com had  a great discussion about creating a 160-20 meters LoG receive-only antenna. It is 11 pages long but is worth reading how “nanZor” experimented with various parameters for general use. Kudos to him for documenting the findings as the design changed over time. You can find it here:


nanZor basically boils it down to a few guidelines.

  1. Keep it on the ground. Lifting the wire more than an inch or two decreased the lower angle signal reception greatly.
  2. Calculate the optimal length for one full wavelength of wire at the highest target frequency, say for example, the top of the 20 meter band (14350 kHz). 936/14.350 MHz * 0.9 velocity factor of simple insulated wire = 58.7 feet.  You can round up to 60 feet, no big deal since this is broadband.  The antenna should have a predictable reception pattern from 1/10th wavelength up to 1 full wavelength. Outside that range, the pattern gets “squirrely”.
  3. Using a 9:1 balun seemed to be a little better than a 4:1 balun at the antenna feedpoint. This gets into things I cannot measure and has to do with rising impedance as a loop gets closer to ground level. I am not sure but I think my Wellbrook amp has a built in 4:1 balun and it seems to work just fine.
  4. Make sure to use an RF Choke at BOTH sides of the feedline coax cable. He was adamant that the loop can get easily unbalanced and allow noise into the antenna and/or feedline and so it must be isolated and the ground allowed to “float” in his words.

Personally, I also wanted to use less wire and happened to have a length of 42 feet of landscape wire which should work well below 5 MHz with the Wellbrook amp engaged.  Results were not bad even though on hard frozen ground. Signal levels were down a little compared to the 100 foot of wire.  Here are a couple of examples, first one in a fast food parking lot with a grass field next to it and second at the usual Forest Preserve parking lot on a grass field.  I made sure that my car blocked the view of the wire so people would not get nervous!

La Voz Missionaria, Brazil:

Voice of Welt from Issoudun France in Kurdish:

These are not necessarily “DX” but definitely good for SWLing. I like the signal strength with the amplifier inline at the antenna feedpoint and I did not have to use an RF Choke at the receiver side as was suggested.

I had a 75 foot long insulated wire and used that at the Forest Preserve parking lot on a couple of different days.  Lower frequency signal strength and signal/noise ratio improved a little bit to be noticeable.

US Air Force HFGCS “numbers” station. Remote controlled from Andrews or Grand Forks bases (https://en.wikipedia.org/wiki/High_Frequency_Global_Communications_System), there was no way for me to know which of the 6 transmitters it was coming from:

BBC from Tinang Philippines in Korean:

Then, as nanZor suggested in his postings, I purchased a 9:1 balun/RF choke (it has both a balun and an RF choke built-in) from Ham Radio Outlet and put that in place of the Wellbrook amplifier.

I have not worked with it, but it is reported that the Nooelec.com v2 model is cheaper and works just as well – https://swling.com/blog/2019/10/the-nooelec-balun-19-v2/

Examples below with the 42 foot loop and 9:1 balun/choke, no amplifier:

KSDA, Agat Guam in English

WB8U doing a POTA activation of Leavenworth State Fishing Lake

VOLMET weather, Shannon Ireland

HCJB Quito Ecuador, probably in Quechua

As a side note, there is a posting that mentions low-angle DX is better with regions that have better “ground conductivity”, salt water being the best. I have no way of verifying this.  See post# 126 by KK5JY Matt.

So, bottom line is that a Loop on Ground can be useful for pleasant SWLing and portable.  Best to use it on grass, not asphalt.  The loop amplifier is useful to get signal levels up if you have to use a smaller loop size but the signal/noise ratio will suffer due to its smaller aperture.  And, warning, the public will find a way to trip over the wire no matter where you set it up (I may try putting the wire around my car if I can park on a grass surface and/or use the gaudiest, brightest neon green or orange wire I can find – they can’t trip over THAT, can they?).


Thanks, Tom, for sharing your update. Obviously, the LoG is working brilliantly. It’s amazing that you got such clear reception from the parking lot of a fast food restaurant.  If you were using a vertical instead, I bet signals would have been buried in the noise. 

I can also relate to people tripping over antenna wires. I remember one POTA activation recently (the first activation in this three park run) where I intentionally laid my counterpoise on the ground, off a foot path, in the brush and where I couldn’t imagine anyone ever stepping. Ten minutes into the activation and for no reason, someone walked off the path, into the brush, and it snagged them. Maybe I’m just a Ninja level trapper and never realized it!?

Thanks again for sharing the results of your LoG, Tom. Inspiring! 

Spread the radio love

Video: Physicist reminisces about Arecibo Radio Telescope

Arecibo Observatory’s 305-meter telescope in November 2020 (Credit: University of Central Florida)

Many thanks to SWLing Post contributor, TomL, who shares the following:

I came across this youtube video about a physicist who worked there in his early years and gives this tribute to his time there. Maybe some others would like to see it too:

Amazing! Thank you, Tom!

Spread the radio love

Tom builds a portable Loop-On-Ground antenna

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:

My First Loop-On-Ground antenna

A number of people have mentioned the Loop On Ground (LOG) antenna in the past as a good receive-only antenna.  I did some research but could only find a few examples by amateur radio operators.

Matt Roberts (KK5JY) has a good article including some antenna theory and measurements, you can find it here:


Someone named Tom (KG3V) has a write up on it but it is a little short on details:


Stana Horzepa (WA1LOU) has something similar:


I also read somewhere that for transmitting, a LOG antenna is useless as it radiates much of the energy right into the ground!  But I didn’t care about that.  I needed something for receive I can deploy easily without supports and take down just as easily.  As you may recall, my home condo is literally saturated with noise and I cannot null it out.  So a wire looped on the ground is supposed to work?  You bet it does!

Of course, there are some conditions to meet.  There has to be enough flat ground away from people or pets (or lawn mowers!) who would get tangled in the wire on the ground.  The wire should be as close to the ground as possible (although I had good results laying the wire on top of cut grass).  The loop of wire can vary in circumference from about 20 feet to 150 feet (the shorter length will stay in an omnidirectional pattern higher in frequency but lower in signal pickup and vice-versa for the longer length).  The wire needs to be insulated.  That’s about it!

So, off to the hardware store to buy a cheap spool of 100 foot 18 gauge speaker wire.  But, the articles mention using a balun and they all made their own.  I did not feel like doing that (I am not that good at making things from scratch) and I did not want to spend money ordering one. More reading somewhere informed me that my existing Wellbrook Medium Aperture loop amplifier has a built-in balun at the antenna side of the device.  Hallelujah!

I bundled together the wire, Wellbrook parts and battery supply, small laptop and Airspy HF+ to my favorite Lake Nelson Forest Preserve.  The shelter there is little used and is adjacent to the prairie with cut grass.  It did take a good 15 minutes to lay out the 100 feet of wire on the ground while trying to keep it as flat as possible. And I did not have enough space for a circle, so I ended up with an oblong shape.  The long sides are facing directly north-south, so in theory (I think) this gives me an oblong shaped reception pattern east-west.  The photo shows half of the wire laying on the grass.

I ended up with this setup on a picnic table at the rear end of the shelter.  The coax wire goes from the Wellbrook amp into its power module, then to a Cross Country Wireless preselector, then to the Apirspy HF+ and laptop.

I was really impressed by the signal strength of the usual suspects like Radio Nacional da Amazonia.  I could see that the Wellbrook amp was boosting signals across the board with only a little extra noise.

I use the preselector to try to keep the Airspy radio from overloading, especially mediumwave broadcast signals which can sound like a small amount of extra “hash” type noise in the background.  I have since added into the accessory chain an old Kiwa Electronics BCB filter that does a great job of knocking down the frequencies below 2 MHz.

I have also since added a water resistant box to enclose the Wellbrook amp to keep it safe from getting stepped on or too wet.

Also, a couple of weeks later I was able to go to a campgound and try out 60 feet of wire but the result was noisier since I was surrounded by RV vehicles in a crowded campsite.  It was not horrible and I was able to listen to some good radio stations but location can matter with any antenna.

I hope you like the recordings below.  Because of some serious health issues this summer, these May 31 2020 recordings & report are just being published now (I am recovering slowly but surely!).  My small laptop is under-powered, so I was only able to record MP3 files one at a time.  It kept me busy as I went from one frequency to the next and kept recording anything I heard.  I was able to hear a couple of stations I never heard before and that is a success in my book.

It remains to be seen if this antenna is as good as my 19 foot vertical antenna attached to the top of the car roof, especially low-angle DX signals.  Maybe you will have the chance to experiment as well and share your experience, too.  Now, will a small loop-on-ground antenna around my car parked late at night at a far corner of the grocery store work OK???  I will have to try it!

Recordings (crank up the volume if it is too weak):

22:00 UTC, Radio Saudi (Arabic) 11915 kHz

22:04 UTC, KDSA Adventist Radio (Indonesian) 11955 kHz

22:14 UTC, KDSA Adventist Radio (English) 12040 kHz

22:20 UTC, Voice of Korea (Japanese) 11865 kHz

22:23 UTC, Yemen Radio (heavily jammed) 11860 kHz

22:35 UTC, Radio Brazil Central (Portuguese) 11815 kHz

22:50 UTC, WWV booming in 10000 kHz

23:11 UTC, UnKnown (might be FEBC) 9795 kHz

23:15 UTC, China Radio Int’l (Spanish teaching Chinese, from Kashi) 9800 kHz

23:17 UTC, China Radio Int’l Business Radio (from Xianyang) 9820 kHz

23:19 UTC, China Radio Int’l (Chinese from Urumqi) 9865 kHz

23:21 UTC, Voice of Korea (Korean) 9875 kHz

23:23 UTC, Maybe Radio Taiwan without jamming from CNR 9900 kHz

23:34 UTC, China Radio Int’l (Chinese from Bamako Mali) 7295 kHz

23:43 UTC, Radio Nacional da Amazonia 6180 kHz (& 11780 kHz around 40 seconds)

23:50 UTC, MAYBE China PBS from Xinjiang in Kazakh (nothing else listed on schedules) 6015 kHz

23:56 UTC, Radio Mali (French announcer humming to music and acting crazy) 5995 kHz

00:07 UTC, Radio Rebelde (Spanish w/clear signal, Bauta, Cuba) 5025 kHz

00:15 UTC, 75 meter Amateur Radio 3913 kHz (LSB)

00:27 UTC, CHU Ottawa 3330 kHz

00:30 UTC, XEPPM Radio Educacion (Spanish Mexico City) 6185 kHz

This is brilliant Tom! Thank you for sharing. 

Our antenna guru contributor, Grayhat, has been encouraging me (understatement!) to build a Loop-On-Ground antenna but I haven’t done this yet because, at home, our driveway would interfere with its deployment. That and I have no RFI to speak of in my rural/remote home so my skyloop antenna is tough to beat. But having one available for portable use would make a lot of sense.  I’m going to put this on my 2021 project list!

Post Readers: Do you use a LoG antenna at home or in the field? Please comment!

Spread the radio love

Guest Post: Tom takes the AirSpy HF+ and YouLoop to the field!

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:

YouLoop Picnic Table Report

by TomL

So, I finally got around to testing my Airspy YouLoop after the long shipping delay from China.  It is simple in concept and will not repeat what others have written about it in previous articles.  I find it a useful loop antenna for portable operations and sometimes for noisy home use.  This report is focused on my usual field location from a Northern Illinois county park picnic table.


As you can see from the setup photo, it all fits into a backpack except for the two PVC pipes and crossbar which are easy carried.  I modified my YouLoop to use the 2 meter transmission line as one half of the loop.  The other half consists of the two shorter wires connected with a simple female-to-female SMA connector.  This doubles the circumference of the loop and gives it a bigger capture area.


Because my setup is bigger than usual, I had to find a lightweight cross member to aid the solid conductor wire from sagging. I found just the thing in a larger-than-normal 6 foot fiberglass driveway snow marking stick sold at the local hardware store.  I cut the tip off to make it 5 feet (Because, the loop as I configured it is 4 meters circumference, so, 4*39.37/Pi = Diameter in inches). I then drilled a 5/16th’s inch hole through the middle of the ¾ inch PVC threaded pipe I had from a previous project and fit the fiberglass stick through it as the crossbar. This is a special PVC 4 foot nipple pipe I had special ordered a long time ago when mounting a previous (heavy) Ferrite-Sleeve loop antenna.

Loop Mounting

Screwed onto both ends of the 4 foot nipple are threaded-to-coupler adapters also found at the hardware store.  The adapter allows me to attach easily to the ¾ inch 5 foot long PVC pipe held by my trusty carbon fiber tripod below.  This 5 foot pipe is held loosely by the tripod so I can grab the pipe and turn the whole loop mounted above.  The result is not perfectly circular and there is room for improvement.  I find it to be highly directional nonetheless and easy to turn. The phasing connector of the YouLoop mounts at the top and for now I am just using two medium sized cable ties to a long screw near the top for tension.  I do not want to glue the connector to the top since this YouLoop may get used in other configurations in the future.

The Bottom connector for the radio input is held nicely with a couple of velcro wraps.

The wire from there goes to the usual setup of Palstar amplified preselector with battery pack and Airspy HF+, which goes into the USB port on the small Dell laptop.  After some initial problems with a non-functioning HF+ and rebooting a few times, I was finally able to get a signal.  At first I thought it was the antenna but the error condition acted the same way whether the antenna was connected or not.  It could be that my HF+ is starting to exhibit the first signs of failure, which I have read about from complaints on the internet about the reliability of SDR’s used in the field.  I may have to bring along my SDRPlay SDR2 just in case!  In other words, don’t depend on computer hardware and software to work (especially if you happen to go on vacation and have no backup radio!!).  I also have a couple of portable non-SDR radios I could bring with me as well.  Enough said.

Using It

The screen of the laptop shows a very nice black background, very quiet, and a moderate signal level of WRMI on the 31 meter band.  I did not have the time or processing power for real Data captures, so all I have to share are less optimal MP3 files.  The signal level is somewhat low. I think this is typical for a single-wire loop antenna and seems adequate. I did have to crank my Palstar preamp to maximum the whole time while on shortwave (my Wellbrook amp would probably work slightly better).  On mediumwave, the gain seemed more than adequate (I don’t have any recordings of that band at this time, maybe a future article).

Directionality is very good and usable across a very wide range of frequencies!  It certainly worked well up to the 25 meter band where I started to notice a drop off of nulling ability.  And this is good despite my lack of perfect circular mounting of the wire. Even though my county park is a “Forest Preserve” and not meant to have any development, there is increasing noise in the neighborhood and I find the loop to be very useful in cleaning up some background noise (as well as noise coming from the laptop!).  This is especially seen with the Voice of Iran broadcast in French. The weak signal was aided by moving the loop to balance the signal level to local noise.

The loop is a bit flimsy using it this large.  Keeping the connectors tight may be a problem in the future if subject to a lot of wind.  I think you will find the smaller (usual) setup in the instructions to be less of a problem.  My plastic clips at the sides of the crossbar and the plastic tie downs at the top are not optimal and will need something better (in other words, it would help if I had a better mounting for the wires).  Also, the tripod definitely wanted to tip over as a storm blew past, so I need to make sure I tie down one or more legs to the picnic table in the future!!

Final Thoughts

In summary, this is a very useful loop for portable operations since it fits easily into a backpack. Mounting it in a repeatable manner will need some experimentation.  Performance is good with usable nulling at a wide range of frequencies. Signal strength is moderate, so a good preamp is necessary in order to boost the signal into the sweet spot of your receiver RF stage.  Parts quality is good, but the wire is thin solid conductor, so do not kink/fold it!.  The connectors and housing for the phase change and balun are very small, with non-waterproof plastic housings that can be easily abused, so take care of them. The whole kit is small to pack and lends itself to experimentation.  Highly recommended given its limitations.

Furthermore, I feel my old, original 14-inch “crossed-parallel loop” did as good a job as this larger diameter YouLoop.  I wonder how the YouLoop can be modified to create a larger gain using, say, two or more wires in parallel (perhaps a future article!)?  Generally, the deeper the loop design, the higher the gain.  The YouLoop potentially could be a better performing, more portable version if I can replicate using more turns of wire.  Although it is in disrepair now, pictures of my old 14-inch loop are found here, and also here.

Sample Recordings

Here are a bunch of sample recordings to enjoy, some of which are unique to shortwave radio and found no where else:

9830 kHz, Voice of Turkey

10000 kHz, WWV

9395 kHz, WRMI

9420 kHz, Voice of Greece

11760 kHz, Radio Habana Cuba

11780 kHz, Radio Nacional Brazilia

11940 kHz, Radio Nationale Espana

7193 kHz, W3M – special Amateur Radio event to celebrate the birthplace of Memorial Day (Boalsburg, Pennsylvania) 

7230 kHz, Voice of Iran (French)

7315 kHz, Voice of Vietnam, from WHRI-1 transmitter

7350 kHz, Radio China International, in English from Kashi PRC

7375 kHz, Radio Romania booming in from Romania

7490 kHz, WBCQ (Spanish) from Monticello ME (guide says only 50 kw but sounded more than that)

6180 kHz, Radio Nacional Brazilia

6070 kHz, CFRX Toronto – discussion about some people with ashes of relatives in the home

6115 kHz, WWCR Nashville TN – discussion about Jesus saving a young woman from Satanic ritual abuse as a child

5850 kHz, Radio Slovakia International from WRMI booming in as usual

73’s & Happy Listening,


Thank you, Tom, for sharing your field-portable SDR setup! I like how you’ve made an inexpensive and packable support system for the larger diameter YouLoop. While I’ve yet to design a similar system around the YouLoop, I really should. I’ve always believed that for both SWL and ham radio field-portable operations, a self-supporting antenna system is a must as it gives you ultimate flexibility to cope with variable site conditions.

Click here to check out Tom’s previous guest posts and portable adventures!

Spread the radio love

Guest Post: Summer Daytime DXing 2019

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:

Summer Daytime DXing 2019

by TomL

I took note of the mediocre band conditions this summer amongst amateur radio operators as they were making off the cuff comments about still being in a solar minimum.  Some had gone out and bought upgraded transmitters to solve the problem (MOAR WATTS!). And more power thrown at a weak ionosphere does seem to help get a signal farther.  I had not been out since the spring and decided to find out for myself. But instead of more watts, I wanted more height.

Greene Valley Scenic Overlook is open to the public from May through October on weekends only (and only from 11am-6pm).  It was the largest land fill (aka, garbage dump) in Illinois, now covered over and producing captured methane gas. On August 3 & 4, I ventured over there to see if its 190 feet above the surroundings might help my radio reception.

After trying my luck with a 12 foot vertical antenna on a tripod (and numerous children running around it chasing butterflies or looking at the view of Chicago), I went out the next day and parked away from anyone and put up my 19 foot vertical on the roof of the car.  This setup is still amazing to me and works much better than the tripod mounted antenna, probably because it has a proper ground plane as well as being 7 foot taller.

So, yes, the conditions were so-so, not too bad and not too good.  Lots of weak signals and some empty frequencies that I had expected to hear some South American stations around the 5 – 10 kw range.  Weak stations from Asia were more scratchy sounding than usual even with the extra 190 feet of height. Here are 5 broadcast recordings as a sample (times in UTC):

9920 kHz at 21.14 – Radio Thailand in Thai, just catching the end of the broadcast:

9685 kHz at 21.20 – Radio Free Asia in Chinese from Kuwait:

9650 kHz at 21.23 – Radio Guinea in French:

9445 kHz at 21.30 – All India Radio in English (fighting off computer generated noise on my SDR and cheap Dell laptop) and just getting a station identification:

11780 kHz at 21.44 – Radio Nacional de Amazonia booming in with the usual annoying host yelling enthusiastically over every tune he played:

Running out of things to listen to, I wandered over to the 20 meter amateur radio band and found a different situation.  Propagation was decent between the Western hemisphere and Europe. Lots of “pile ups” going on with people trying to make contact with their trans-Atlantic counterparts.  Some said they were running 500 watts or more, so more power does seem to help! Here are 5 recordings to show how active it was:

14171 kHz at 21.55 – Inaki (F5RAG) from southwestern France conversing with Carlos (YV3CRT) in Venezuela (surprised anyone is left in Venezuela with operating radio equipment and not sold off for food with the ongoing difficulties there).  Then Inaki makes contact with Alejandro (CE2ATS) from Chile with a good signal. All in Spanish:

14199.38 kHz at 22.04 – Ervin (VE3GAL) tries his QRP portable setup from Ontario to contact Ron (F4VSM) in Southwestern France who has a 500 watt setup and large Yagi antenna. Sometimes things do not go so well but that is the challenge of using low power, maybe around 10 watts (meaning that just because you can hear them, you cannot always transmit to them with the same effectiveness and vice-versa, for various reasons):

14228 kHz at 22.12 – “BAN” (IZ1PNT) from Italy makes contact with Norman (N3PVQ) in FL after asking everyone to be quiet. Good control over the frequency:

14238 kHz at 22.17 – Slavko (S57DX) booming in, making a contact (Rob, KK4HEQ) in Florida:

14245 kHz at 22.24 – Gabrielle from the Czech Republic, participating at a Youth event using station OL88YL contacting Ira (VP2EIH) in the British Virgin Islands and then another dude from Florida, Roy (AD4AN).  She handled it very well:

This outing was quite educational and I find it curious that people running 1000 watts or less are able to be heard well between continents but the large broadcasters were difficult to hear.  Antennas pointed in the right direction, at the right time of day and frequency, can certainly do amazing things, plucking those weak signals out of the air so easily. And I do think the extra height had something to do with hearing this magic, too!

Happy Listening,



  1. An easy way to lookup amateur radio operator “call signs” is to go to web site QRZCQ.com which does not need a login.  Some records may be out of date, but most of it is accurate.
  2. Setup used was a cheap Dell laptop, Windows 10, SDR Console 3.03,  connected to the AirSpy HF+, a Palstar amplified preselector, and an old Kiwa BCB filter, then going up to the car roof magnetic balun (a Palomar MLB2) which is then connected to the 4 magnet base and the MFJ 19 foot stainless steel antenna.  You can read about it here:


Brilliant report, Tom! It’s true: the bands are fickle, but like you I always find interesting things to hear on HF. I think your setup using your vehicle as the ground plane for the antenna is a fantastic idea. Plus, set up is easy, self-supporting, and you’ll never have to worry about a park ranger, for example, complaining because you have a wire suspended from a tree. And when there are no trees? You’re still golden. 

Thanks for sharing your experience and DX! Amazing that even with mediocre conditions, you still snagged some distant signals.

Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Mesh cages to shield noisy power supplies

Many thanks to SWLing Post contributor, TomL, who writes:

Hi Thomas,

Stumbled onto this article while on the RTL-SDR website. Talks about shielding noisy power supplies inside a homemade wire mesh cage. It might be interesting as a weekend project. I wonder if a noisy laptop could be put inside one of these things, too?

The All New remote RIG – Part 1.1 “Testing the HF shield”

Thanks for the tip, Tom! As this author states, it looks like it’s well worth the time and the wear and tear on your fingers to build one of this mesh cages.

Spread the radio love

Guest Post: A DSP Hi-Fi “Stupid Radio Trick”

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:

Stupid Radio Trick – DSP “Hi-Fi”

by TomL

If you can remember the 1960’s, there was an audiophile rage going on called Hi-Fi.  The base unit consisted of a ponderous piece of furniture consisting of a rectangular cabinet and equally large mellow sounding speaker of fairly smooth frequency response, say in the range of around 40 – 15000 Hz.  They would have a built-in radio (using vacuum tubes) with large analog scale. Most would also have a “record player” embedded on the top to spin some vinyl discs (78 or 33 rpm).

For pedestrian consumers, it became a decision of how to keep up with the Joneses, so-to-speak.  And that meant a trip to Sears to look at the latest offerings. When the decision finally came to purchase, of course no one could buy it outright.  So, to add to the suspense, one had to put money down on “Lay-A-Way” plan that did not allow you to take possession of your prized choice until the last monthly payment!  One had to visit or mail in a check every month.

So where am I going with all this?  Well, as you can see from the photo [above], I have purchased three portable radios for three very different purposes.   All three were painstakingly studied and reviewed and weighed against all other possible choices. All are highly rated by the usual reviewers like RadioJayallen, SWLing Blog readers and other internet personalities.  The Sangean is for home use and listening to baseball games when I did not want to fire up the stereo hooked up to the Grundig Satellit 800. The small Sony ICF-19 is a phenomenal knock around radio for the car and listening while out to lunch or a walk in the park.  The large Tecsun S-8800 is a possible replacement for my ailing 20+ year old Sony ICF-2010 for shortwave use.

Well, I was tired of listening to any one of them in terms of sound quality.  The Sangean has too much upper bass/lower mid range, the small Sony is very carefully maximized for total speech clarity, and the Tecsun seems to lack a little in the mid range frequencies (compared to highs and lows).  Staring at them, I thought to self, “What if I turn on the Sangean and Sony together???” What ensued was a revelatory sonic experience (it sounded pretty good)! One seemed to fill in the other in certain ways. But it was not perfect.

Duh, I had the new Tecsun in a carry case while trying to decide if I send it back for a tuning quirk and dug it out and plopped it on top.  Turning it on, I heard more lows and highs, just like a Field Radio should have but with the mid range filled in! After very careful volume adjustment, I now have something that could rightly be called DSP Hi-Fi.  At least, that is what I am calling it for now. ?

Violin and piano pop-out of an orchestra but not too harsh sounding.  Rock & Roll sounds loud and punchy without that boombox effect. Bass lows are there (could be better, now all I need is a small subwoofer connected to the Tecsun line-out ???).  Highs are there too but well controlled. Mid range voice clarity is stunning, as if someone is in the room with me but not sounding too forward! It is not room-filling but acts more like a near-field monitor.  I like that I can line-up the speakers over each other.

The really fortunate thing is that all three radios have complete DSP for FM and receive my favorite over-the-horizon station with very similar reception quality.  Also, they process DSP with a similar delay before output to its respective speaker. The sound is fairly coherent and even though it is still mono output, the full range of musical fidelity can be appreciated better.  It is not audiophile quality but it is very satisfying and I can actually hear more details in the music than with any one of the radios by themselves. Just goes to show you that you CAN teach a new Radio dog old Tricks (LOL)!

Happy Listening,


I love it, Tom!  Thanks for pointing out that sometimes it takes a “stupid radio trick” to really produce some amazing audio fidelity! This reminds me that in the early 90s, I used to have a Zenith Transoceanic and RadioShack DX-440 on my radio table in my room.  If I recall correctly, the Zenith was on my left and the DX-440 on the right. I used to tune to shortwave, MW and FM stations and produce a makeshift “stereo” effect by playing both at the same time. Sometimes, on shortwave, it actually helped me discern voices in weak signal work!

Thanks again, Tom!

Spread the radio love