Tag Archives: Antennas

Video: Paul’s large aperture “Volleyball Net” loop antenna

Many thanks to SWLing Post contributor, Paul Walker, who shares the following video and notes:

Here is a 10 minute narrated, detailed video on my 25 foot long by 10 foot tall “Volleyball Net” Loop antenna using a Wellbrook ALA100LN amp control head and antenna interface.

https://www.youtube.com/watch?v=ICHNlcLhAKE

Click here to view on YouTube.

Great job, Paul!

I like how Paul is using the antenna space he has so effectively. Though he has no antenna restrictions, his mag loop can be deployed and taken down quite easily; it’s obviously serving him well on both the HF and mediumwave bands. As he mentions, it’ s also manually steerable.

Those of you with the Wellbrook ALA100LN amplifier might try building this loop as well.

I also like how Paul is using the Tecsun ICR-100 recorder. Not only does it provide an easy way to record line-in audio from his radio, but the built-in speaker serves as an excellent monitor. It’s pretty affordable, too.

I agree with Paul about the Emtech ZM-2 ATU: it’s an exceptional little tuner that can be used for both QRP and SWL applications. I recently purchased the ZM-2 after having borrowed one from my buddy Eric (WD8RIF). Great value, in my opinion.

Thanks again, Paul!

Post readers: If you have an antenna design you’d like to share, please comment or contact me.

Spread the radio love

Eric seeks advice: Building a directional mediumwave antenna for the RSP2 SDR

Many thanks to SWLing Post contributor, Eric McFadden (WD8RIF), who writes with the following question:

A request for assistance.

After comparing the reception of the RSP2 and 1/2 doublet to the reception of the County Comm GP-5 SSB and its little external ferrite-bar, I’ve decided I probably want to make some sort of directional antenna to use on AMBC with the RSP2. A wire loop, perhaps, or some sort of ferrite-bar thing, that connects to the RSP2’s Hi-Z input.

[Perhaps SWLing Post readers can suggest] options and then I can get the needed bits at the 2017 Hamvention.

Post readers: if you can offer Eric suggestions, or point him to antenna plans, please comment! I do believe he would rather build an antenna than simply buy one and he’s looking to permanently mount this antenna outdoors.

Spread the radio love

Tony performs a quick LNA4ALL test

Many thanks to SWLing Post contributor, Tony Roper, who shares the following guest post which originally appeared on his blog, Planes and Stuff:


Quick LNA4ALL test

by Tony Roper

Despite the best efforts of the Royal Mail service, I have been able to get my hands on a Low Noise Amplifier created by Adam at LNA4ALL. The Royal Mail showed just how useless it is, when the parcel arrived here in the UK in just 11 hours from Croatia on February the 14th, but then not getting delivered to me until March the 14th – yes, one month! There is no surprise that courier companies such as DPD and Hermes are getting more business than the Royal Mail – they are bloody useless.

Anyway, the reason for the purchase is for a later review on an AIS dongle that I will be testing, but which has unfortunately been possibly damaged before getting to me.

So, as I had some time to spare I thought I’d run a quick test on how the LNA performs against the claims that is shown on the LNA4ALL website. For the test I used a quickly built 12v to 5v PSU that was connected to a Maplin bench PSU and also a Rigol DP711 Linear DC PSU where I could ensure a precise power input. As it was, it was good that I used the DP711 because my quick PSU was only chucking out 1.2v at connection to the LNA4ALL, despite an unconnected output of 5v – some work needed there I think.

Despite this lower power the LNA4ALL still worked with just the 1.2v input, though the results where not as good.

Other equipment used were a Rigol DSG815 Signal Generator and a Rigol DSA1030 Spectrum Analyser (no longer available), along with various Mini-Circuits shielded test cables. The Rigol equipment I purchased from Telonic Instruments Ltd last year.

Below then is a table that contains all the relevant data. As you’ll see the Gain claim is pretty much spot on with some being over. Just a couple of frequencies are below that which is claimed, especially at 28 MHz.

LNA4ALL Frequency data

A couple of things to note.

Firstly, somehow I managed to miss testing 1296 MHz. I obviously didn’t put it in the table in Excel before I started ? Also, the DSG815 only goes up to 1.5 GHz so I couldn’t test above that.

Secondly I ran a test for the AIS centre frequency of 162 MHz, for which there was no comparison to the LNA4ALL data. A gain of over 24dB though shows that the LNA would be perfect for those of you with AIS receivers that may want to get better reception. To prove the theory I compared the LNA reception against data without it connected to the NASA Engine AIS receiver that I currently use. In ShipPlotter I average a max range of around 15nm without the LNA, but with it connected this increased to around 22nm. The number of messages received also tripled as it was able to dig out the weaker signals.

The NASA Engine isn’t a bad receiver, but it is a frequency hopper rather than a dual monitor, and so it changes between the two AIS frequencies every 30 seconds (161.975 MHz and 162.025 MHz). I suspect a dual monitor would give better message numbers and range.

Below is a graph made using the excellent software by Neal Arundale – NMEA AIS Router. As you can see the message numbers (or sentences) for over an hour are pretty good – well, it is a vast improvement on what I used to get with my current “temporary” set-up, with 419 messages received in an hour. The software is available at his website, for free, along with various other programs that you can use with AIS. If you’d rather not use ShipPlotter he has created his own AIS Decoder which can be linked into Google Earth and such like. Visit his website for more information.

My antenna isn’t exactly top-notch. It is at a height of just 4 metres AGL in the extension loft, and it is made from galvanised steel angle bead used by plasterers to strengthen corners prior to skimming – this I cut down as a dipole for a target of 162 MHz. As usual with my trimming of antennas, I cut just too much off and ended up with it cut to 161.167 MHz. It gives a VSWR of 1.018 and Return loss of 40.82dB, with 162 MHz being approx. 30dB Return loss which equates to 1.075 VSWR – that will do.

Also, as I live right on the coast, about 50 metres from the sea, I’m practically at sea level, which doesn’t help much with range and signal reception either. Despite this the antenna produces great results, though it is just temporary until I can get a new homebuild up on the roof.

VSWR reading for the homebrew loft AIS Antenna

The LNA4ALL retails at various prices depending on what option you go for. I went for the aluminium box version so it was around £54 including the delivery. I had looked at a Mini-circuits equivalent, and when it looked like the LNA4ALL was lost I did actually order one. But this was nearly twice the price, and seeing as the LNA4ALL contains many components from Mini-Circuit I doubt it is any different really.

All in all the LNA4ALL is all you need to boost your weak signals – couldn’t get any more all’s in ?.


Many thanks for sharing your quick test of the LNA4ALL, Tony! Post Readers: if you’d like to read more of Tony’s work, check out his blog, Planes and Stuff.

Spread the radio love

Gary’s mediumwave DX FSL antenna phasing experiment

Many thanks to SWling Post contributor, Gary DeBock, who shares the following note about his latest FSL antenna experiment:

Medium wave DX FSL antenna phasing experiment– 1593-CNR1 (Changzhou, China, in Mandarin) boosted up to strong (S9) peaks by two 5 inch “Frequent Flyer” FSL’s at 1435 UTC on February 25th in my frozen back yard in Puyallup.

Unlike other high gain MW antennas, the FSL’s can provide cumulative gain at very close inductive coupling ranges.

Click here to download and play MP3 recording.

Amazing, Gary!  Thank you for sharing this excellent bit of DX!

Click here to read more about Gary’s FSL antennas.

Spread the radio love

Southgate ARC: What Is a Balun and How to Make One Cheaply

(Source: Southgate ARC)

Ham Radio – What Is a Balun and How to Make One Cheaply

A Balun is a transformer which allows coaxial cable, which is an unbalanced lead to be connected to a balanced load, for example a resonant aerial.

The 1:1 balun is often called a choke balun, it works by eliminating Radio Frequency currents flowing on the outside of your coaxial cable, this is important because it prevents the pattern of the dipole becoming distorted and prevents the braid of the coaxial cable radiating.

Connecting coax to your resonant dipole which can be configured in a V shape or in a sloping fashion, however serious power loss and feeder radiation can occur without the use of a balun transformer. No one wants to induce Radio Frequency currents into Television receivers or Broadcast equipment as it may result in disputes with neighbours and could possibly lead to your station having to close down. Try to keep the centre of your aerial away from buildings as it may induce Radio currents into the mains wiring.

Building a choke is not difficult all you need is some plastic pipe available from many Do It Yourself outlets and warehouses. I use a length of about 1 foot of plastic pipe and 21 feet of coaxial cable, the length of the pipe and diameter is chosen because it works well if using R-G-5-8 coax the ends of the pipe can be sealed after placing a SO-239 connector for your coaxial lead. I use two bolts and solder tags at the other end of the pipe to connect the ends of the dipole to the choke.

When wrapping your coax around the pipe don’t use too much force as it may damage the inner braid and space the turns away from each other by a millimetre or two. R-G-2-1-3 coax around 21 feet used with 5 inch pipe will handle 400 watts pf power. Wire ties can be used to hold the turns together along the length of the pipe. Using these measurements your choke will cover all of the ham radio bands from 1.8 Megahertz through to 28 Megahertz and will keep the radiation pattern.

Using a dummy load connected to the choke and transmitting 100 watts from my transmitter indicated an S.W.R. readings of around 1.5 to 1 at 3.5 Megahertz when testing 28 Megahertz the S.W.R. reading came down to 1.1 to 1 which is an excellent match. Using the choke as it should be at the feed point of a dipole cut for 40 metres give an S.W.R. reading of 1.2 to 1. The highest reading was 1.5 to 1 when using 18 Megahertz but the rest of the High frequency bands gave me very acceptable matching.

By
John Allsopp G4YDM
https://g4ydm.blogspot.co.uk/

Article Source:
http://EzineArticles.com/expert/John_Allsopp/1925417

Article Source:
http://EzineArticles.com/9615600

Spread the radio love

Guest Post: “Car Shack” Radio Listening

Many thanks to SWLing Post contributor, TomL, for the following guest post:


“Car Shack” radio listening

by TomL

My car is an unusual place to listen to shortwave radio but has interesting possibilities. Due to the obscene noise at my home QTH, I decided that I must try something away from this unfortunate situation. So I took my homemade 14-inch loop antenna and outfitted the appropriate ancillary equipment with DC power packs. My trusty Sony ICF-2010 is the radio “vehicle” to “drive” this experiment (LOL). And, seriously, this is a way to show the public that it is not that hard to have a portable radio listening setup. Believe me, if I can do this, anyone can!
The basic ingredients are pictured here with some variations (see text):

  • Homemade 14-inch Loop antenna + EF-SWL balun mounted backwards
  • Wellbrook amplifier powered by DC power pack of 10 eneloop AA batteries
  • KIWA Broadcast band (mediumwave) inline filter
  • Palstar preselector (active antenna) plugged into car cigarette lighter
  • Sony 2010 connected to a second DC power pack
  • Sony ICD PX333 digital recorder
  • Sennheiser earbuds
  • 7 inch Samsung tablet and 4G MiFi device to do internet schedule lookups

Illustration SEQ “Illustration” 1: Car Shack in operation.

An important finding was that anything that has a cheap IC circuit to regulate and/or convert DC power can be extremely noisy!  The pictured 16000 maH lithium brick would initially be quiet but after a while it would start spewing noise all over the bands.  Power cycling it sometimes helped but I decided that it is too unpredictable.  Also, converter cables that convert 5V to 12V for devices needing 12V also produce overwhelming amounts of noise.  Even a small 5V USB converter plugged into the cigarette lighter makes a modest amount of ubiquitous noise.  I am ditching the lithium power pack and converter cables and any cigarette lighter adapters!

So, the main radio power pack will use the internal Sony battery comparment consisting of nine 2700 maH NiMH AA’s inside three D-cell battery holders that can each hold 3 AA batteries in parallel.  This boosts the capacity to around 8100 maH for a modest cost (I already have NiMH chargers and the 4.5V requirement is not too high for the batteries in question).  Pictured are examples of a single D-cell AA holder of which I bought 12 and the silver-top Powerex 2700 maH AA’s from fleaBay.  The total voltage is slightly low (3.6V) but the Sony 2010 still works at a slightly lower performance (received signals are slightly weaker).  I run the Sony on Local sensitivity and crank up the Palstar active antenna to compensate.

In a further quest for clean, portable DC power without noisy IC chips, I have been researching lithium batteries and it is quite a large amount of work to sift through all the variables.  The Palstar active antenna and the Wellbrook amplifier both use external connections of 12V, 2.1mm (+ tip) plugs.  NiMH is not going to cut it, too many needed and getting too heavy.  Amongst the variables are things like:

  • Using a proper charger and not leaving it unattended or it could burn down your house
  • Chinese fakes being sold by the zillions that look exactly like the real thing
  • Initial cost being higher than current NiMH
  • Avoiding 1.5V step down batteries with noisy step down converter built-in
  • Learning the new terminology for sizes: AA = 14500 = 14mm diameter & 50mm length
  • Learning the differences between type of lithium: Lithium, Li-ion, LiFePo4, IMR, etc.
  • The difference between protected vs. non-protected batteries
  • How to avoid discharging the batteries too much which could render them completely useless (not just usage but also NON-usage as well)
  • How to physically handle Lithium batteries to avoid shock and temperature extremes
  • Learning how to compare maH’s of lithium to NiMH batteries
  • Finding out that most top rated 14500 Li-ion batteries are too long to fit into AA battery holders without risking damage to the protection PCB mounted at the bottom of the battery
  • and the list goes on and on…..

Here are some of the web pages I read to try to understand this technology:

So, to cut to the chase, I have decided to order this one from XTARDirect because:

  • I can order from a USA distributor who orders from the factory in Shenzen China
  • The price is very reasonable for “protected” lithium ion batteries
  • They actually should fit into typical AA battery holders without damaging it

Illustration SEQ “Illustration” 2 XTAR 14500 800 maH Li-ion

They are not the highest rated in terms of capacity, load drain, amp surge ability, etc., but they seem to have enough positive statements from users that indicate it gets the job done. Since I don’t have the lithiums yet, I am using some temporary 10-cell AA holders with good old Eneloops – good enough for now.  And I am buying this discontinued charger at a discount to recharge lithiums:

Illustration SEQ “Illustration” 3: Nitecore i4 original version

I will make two power packs made from these items pictured.  The wire is fragile so I super glue the insulation directly to the DC power plug housing (avoiding getting any glue onto the bare wire inserted at the back).  I will use three sets of lithiums (9 batteries) plus one set of Eneloop Pro’s (3 batteries) per power pack in the aforementioned parallel AA holders.

Illustration SEQ “Illustration” 4: 4X D-Cell battery holder.

Illustration SEQ “Illustration” 5: “9V” Snap connector.

Illustration SEQ “Illustration” 6: 2.1mm x 5.5mm DC power plug.

Other items of note: The umbrella stand is optional since I found I like to move the antenna around and even tilt it to get slightly better directional signal.  More importantly, I found that if I cut the Sony 2010 sensitivity from DX to Local, and then crank the Palstar preselector’s amplifier, I get a cleaner sound with less background noise. Also, the KIWA mediumwave filter is essential due to overloading.

One of my favorite stations is Radio Educacion (XEPPM) on 6185 kHz.  A 1 kW station near the foot of Vulcan de Guadalupe in Mexico City, it is so weak that I almost never hear it and their wonderful selection of music representative of regional & cultural heritage.  It is also 1675 miles distant according to Google Earth.  Now, if I want to bother, I can go out and listen in my car at locations less noisy than home.  So far, the safest places have been the parking deck at work (only two stories high) and the local grocery store parking lot.  What I would really like is a very tall parking deck whose owners let me stay up on top long into the evening without harrassment (not sure I want to risk security personnel questioning me about the strange contraption and equipment – paranoia reigns these days)!

Sample of XEPPM, moderately good propagation from the work location:

Click here to download MP3.

Of course, the Brazilian station is booming next door at 6180 kHz (thank goodness for SSB-selectable Sync detectors):

Click here to download MP3.

Unexpected reception happens with this experiment.  I mounted the antenna in the back, away from the engine and against the rear side window.  Was traversing the local restaurant drive-through lane to get a hot dog, and turning the corner next to the long empty brick wall, the reception became dramatically stronger and clearer!  Apparently, the brick wall blocked some interference as well as enhanced the signal coming from the Northeast.  You can hear the effect starting at 25 seconds into the recording of RRI:

Click here to download MP3.

Also, not recorded from a previous evening at the grocery store location, 6135 kHz Radio Santa Cruz in central Bolivia, a 10 kW station playing Spanish rock music and a clear ID near the top of the hour.

More experiments to do, like

    • Mount the antenna as high I as dare with PVC pipe (too cold out now and I would rather not open any windows but I am itching to mount the umbrella stand and antenna on a 3 foot PVC pipe on the roof of the car, the increase in received signal strength is significant)
    • A bigger backpack to carry all this equipment away from the car
    • If Elon Musk has his way and builds the Gigafactory (and competitors follow suit), there could be many more experiments with lithium type batteries in the future
    • Perhaps get an SDR and cheap laptop computer to replace the Sony radio

PS: I found out that the three-AA battery holders do not make contact at the (+) tip of the XTAR lithium batteries I purchased. I just gently lifted up the contact inside the battery holder to allow it to reach the battery tip, that’s all that is needed. Whatever you do, do not put an extra piece of metal inside the battery holders! I accidentally damaged the outside skin of two of the batteries with a common piece of copper metal and the batteries immediately started to get HOT. I took them out as soon as I could and the batteries cooled down. So, don’t use any extra metal surface inside the battery holders; lithium batteries do not tolerate any kind of short circuit!

Cheers from Noizey Illinoiz,

TomL


Thank so much, Tom, for sharing your experiences and your ongoing experiments! Lately, I’ve been doing NPOTA activations with a portable loop antenna on top of my vehicle. I completely understand what you mean about getting strange looks from passers-by! We look forward to hearing about your future experiments fighting RFI.

Spread the radio love

Review of the DoxyTronics 8020CA magnetic loop antenna

8020ca-assembled-1

(Image source: DoxyTronics)

Many thanks to SWLing Post contributor, Troy Riedel, who shares the following guest post:


Review: DoxyTronics Portable HF Magnetic Loop 8020CA

-by Troy Riedel

Before I purchased the DoxyTronics 8020CA antenna, I emailed the owner/manufacturer and asked if he felt this antenna would be a good choice with the radios that I own. He promptly and courteously answered my question and I purchased the antenna on September 30th. I received the antenna approximately 6-days after I ordered it.

The DoxyTronics 8020CA magnetic loop antenna

The DoxyTronics 8020CA magnetic loop antenna

I have been evaluating the antenna for 5-6 weeks mostly on my Grundig Satellit 750 and my Grundig G3. I have used other portables but the two aforementioned Grundigs were the radios I used most.

The antenna control box has a ¼-20 hole on the bottom so it can be mounted to a video camera tripod. The assembled antenna weighs 3 lbs. I tried using a light duty DSLR tripod that I own, however that was nowhere near sturdy enough. I had to use a heavier duty tripod (Ravelli AVT) that I use for astronomical purposes. This Ravelli has a weight capacity of 16 lbs and it easily supported the antenna. I’m confident a much smaller and lighter duty tripod than the Ravelli could be used, I simply don’t own anything in-between as my astronomical binoculars and binocular telescopes weigh 5 – 14 lbs.

The 8020CA Antenna consists of a large tuning knob and control box. The control box has switch settings of 3-5 Mhz and 5-15 Mhz. In testing, I found that I could “tune” up to 17.840 MHz.   No batteries are needed to operate.

The antenna worked equally well with all of the “portable” radios that I tested (I am a SWL’er, not a ham).

I can summarize the antenna’s performance as this: it is not a magic elixir that will allow you to capture signals too faint to recognize without the antenna attached, but it definitely enhances the signal and “stabilizes” it to the point where the level of the signal remains relatively constant (less peaks & troughs in signal strength).

img_1908

Hopefully you can hear what I have summarized and concluded. I have included a two and one-half minute recording of the following:

Radio: Grundig Satellit 750
Recorder: RadioShack 140-214
Freq: 7.310 MHz
BW: Wide
Broadcaster: Radio Romania International
Date of Recording: 15NOV2016
Time: 2309 – 2313 UTC

Click here to download as an MP3.

00:00 – 00:30: 8020CA Antenna Attached
00:30 – 01:00: Radio’s Whip Antenna
01:00 – 01:30: 8020CA Antenna Attached
01:30 – 02:00: Radio’s Whip Antenna
02:00 – 02:30: This last 30-second segment is with the 8020CA attached, however I am panning the Ravelli tripod 360-degrees in the horizontal. You will hopefully notice that there is a “sweet spot” where the signal and reception is the best of the entire 2:30 recording. I had set-up the antenna and I completed a quick, test recording of Radio Romania. But conditions changed slightly and the best signal during the recoding was approximately 50-60-degrees away from where the best reception was earlier. This is a positive for the antenna: you can pan the tripod head where the antenna sits to null and/or find the best signal.

Note: this is my first shortwave and radio-related review I have ever done. I have done many astronomical reviews – where I have much more experience – so please be kind towards this first attempt.


No worries, Troy! We’re kind and appreciative here–especially since guest posts are all about sharing our experiences and experimentation!

I must say, the DoxyTronics loop is doing a fine job mitigating the local QRM/interference that is easily heard when only the telescopic whip is being used. I’m also impressed that a passive loop this modest in size has so much gain without amplification. 

Thanks, again, Troy for sharing your review! 

Click here to view and/or purchase the DoxyTronics 8020CA magnetic loop antenna.

Spread the radio love