Category Archives: News

Alan Roe’s updated B19 season guide to music on shortwave

Many thanks to SWLing Post contributor, Alan Roe, who notes:

I attach a copy of my “Music Programmes on Shortwave” PDF file for the current B-19 broadcast season which I hope you will find of interest, and for you to upload to your SWLing Post webpage if you wish.

Alan, thanks so much for keeping this excellent music guide updated each broadcast season and for sharing it here with the Post community! Being a fan of music over shortwave, I always keep a printed version of your guide at my listening post!

Click here to download a PDF copy of Alan Roe’s Music on Shortwave B-19.

Spread the radio love

Just ordered the new $149/$199 uBITX v 6.0 QRP transceiver

Many thanks to SWLing Post contributor, Pete (WB9FLW), who notes that Ashhar Farhan (VU2ESE) has recently announced the availability of the uBITX v 6.0–as Pete notes, “just in time for the Holidays!

Pete shared the following message from Farhan:

Here is what [the uBITx v 6.0] looks like :

And of course, you can buy it on hfsignals.com. The shipping will happen from Tuesday onwards. We have a limited supply of the first 200 boards. The rest is for after Christmas.

The most important thing about this revision is that the Radio circuitry is almost unchanged. We have incorporated the connectors on the PCBs. So, this kit needs none of the confusing soldering. You snap in the TFT Raduino onto the main board, plug the power and antenna from the back, snap on headphones, plug in the mic (supplied with the kit) and off you go!

It is offered in two kits now : The basic kit (150 USD) is without the box (like old times) but with a microphone and two acrylic templates for the front and back panels.

The Full kit (199 USD) has the box with speaker, mounting hardware etc. Both are described on the website.

Now, about the TFT display:

For those who are using the 16×2 display and you would like to upgrade, you will have to do three things:

Add a heatsink to the 7805 of the raduino

Buy [here] and hook it up as per [this article].

Grab the new Arduino sketch from https://github.com/afarhan/ubitxv6

Background:

I have been hacking away at adding a TFT display for the Arduino for sometime. Finally, I managed to do this with a really inexpensive 2.8 inch TFT display that uses a controller called the ILI9341. The display update is slow but, clever guy that I am, the display very usable. it uses the same pins that earlier connected to the 16×2 LCD display. This display is available everywhere for a few dollars.

Many thanks, Pete, for sharing this announcement. The price was simply too attractive to me, so I just purchased the full kit for $199 US. (Thanks for being the good enabler you are, Pete!)

Update – 30 May 2020: Many thanks to Armin Sander who notes that the uBITX V6 full kit price has increased to $209 US.

I’ll post an update when I receive the transceiver and assemble it. I do hope this is a workable little radio–it would be pretty amazing for newcomers to the hobby to be able to get on the HF bands for a mere $200 US. I also love the fact that this is all based on open-source, hackable technologies.

Spread the radio love

Restoration of a USN version of the ARC-5 command set receiver

(Source: Southgate ARC)

Gregory Charvat N8ZRY writes on Hackaday about an un-modified-since-WW2 surplus CBY-46104 receiver with dynamotor.

He writes:

I’ve been told all my life about old-timey Army/Navy surplus stores where you could buy buckets of FT-243 crystals, radio gear, gas masks, and even a Jeep boxed-up in a big wooden crate. Sadly this is no longer the case.

Today surplus stores only have contemporary Chinese-made boots, camping gear, and flashlights. They are bitterly disappointing except for one surplus store that I found while on vacation in the Adirondacks: Patriot of Lake George.

Read the full story at
https://hackaday.com/2019/12/12/wwii-aircraft-radio-roars-to-life-what-it-takes-to-restore-a-piece-of-history/

Video

Video description: Repair and restoration of a USN version of an ARC-5 command set receiver. This model covers 1.5-3 Mc, runs off its original dynamotor, with no internal circuit modifications. This radio is original with the exception of a small number of caps that tested bad which were re-stuffed. Build date is Feb. 42, who knows where and what this radio may have been involved in?

I’ve always wanted a functioning ARC-5 command set to accompany my BC-348-Q receiver. This article has inspired me.

Post readers: Anyone own a functioning ARC-5 (or any variants)? Please comment!

Spread the radio love

Mike compares the SDRplay RSPdx on mediumwave and longwave

Many thanks to SWLing Post contributor, Mike Ladd with SDRplay, who shares the following videos comparing the new RSPdx with a number of benchmark SDRs:

SDRplay RSPdx and ELAD FDM-S2 weak NDB station

SDRplay RSPdx and ELAD FDM-S2 medium wave selectivity

SDRplay RSPdx and Airspy HF+ Discovery medium wave selectivity

SDRplay RSPdx and Airspy HF+ Discovery weak NDB station

SDRplay RSPdx and Microtelecom Perseus medium wave selectivity

SDRplay RSPdx and Microtelecom Perseus weak NDB station

Spread the radio love

George Laurer, amateur radio operator and inventor of the Bar Code, dies at 94

Many thanks to SWLing Post contributor, Paul Evans, who writes:

George Laurer (K4HZE), the inventor of the Bar Code (that’s on everything you buy) died recently: https://www.bbc.com/news/world-us-canada-50726950

I happened to meet him and fellow IBM ‘pusher’ of the idea (Norman Woodland) when they were visiting Bermuda. Ed Kelly (VP9GE) invited them to give a presentation to the RSB (Radio Society of Bermuda) meeting at the Elbow Beach resort in November 1975.

It turns out they were promoting the idea to local supermarkets because Bermuda was an isolated test subject that would be ideal for a limited roll-out. We couldn’t understand why they would stick a label with bars on it onto every thing and then scan it! It just wasn’t going to take off…. or so we thought!

Well, it never took off in Bermuda. Today ‘Marketplace’ (formerly Piggly Wiggly) still sticks price labels on every item and there is no bar code scanning. It must be one of the last places to do so in the First World!

It’s interesting how they were both hams and that the idea was based on Morse code. It’s a small world.

I had no idea…his legacy will certainly live on. There’s hardly an item on the planet that doesn’t have a barcode these days. Many thanks for sharing this memory with us, Paul.

Spread the radio love

“NASA’s solar probe reveals stunning results”

Artist’s Image of Parker Solar Probe via NASA

Many thanks to SWLing Post contributor, Marty, who shares the following article from Popular Science:

NASA’s solar probe reveals stunning results after swooping in close to the sun

Rogue plasma waves and sideways, 100,000-mile-per-hour solar winds abound.

The sky is full of stars, but only one sits within our reach. Even as close as it is, the sun poses plenty of mysteries that can’t be solved from Earth. Odd patterns in sunlight during solar eclipses suggest that the corona, the sun’s outermost bit of atmosphere, inexplicably burns hundreds of times hotter than its surface. And while researchers can catch whiffs of the solar wind—streams of charged particles emanating from the sun—here on Earth, a lot of valuable data washes away by the time it blows by us. Getting measurements from right up next to the sun is a better way to understand our giant, burning ball of gas.

That’s why NASA’s Parker Solar Probe has spent the last year swooping closer and closer to the sun. In its first two passes it encountered new features that may help explain both the corona’s extreme heat and the origins of the solar wind, researchers announced on Wednesday in a series of four publications in Nature. As humanity’s first close encounter with a stellar environment continues, further observations will help researchers better understand how solar weather affects Earth, as well as how all stars age and die.

“We needed to go right to the source,” said Nicola Fox, director of NASA’s Heliophysics Division in a press conference on Wednesday.

In November 2018 and April of this year, two of Parker’s orbits brought it closer to the sun than any spacecraft had been before. Diving toward the sun and looping around the back, the probe reached about 15 million miles from the star’s surface—roughly six times closer than the distance between the sun and the Earth. At the shortest parts of its dive, the probe matched the speed of the sun’s rotation, in effect hovering above its surface. “We just sit over it, and let that part of the sun kind of wash over us,” says Kelly Korreck, head of Science Operations for one of Parker’s instrument suites that measures the solar wind.

Up close, the sun’s magnetic field and solar wind are both much more intense compared to what researchers can measure here on Earth, giving Parker an alien environment to explore. Korreck likens the craft’s experiences in the strong magnetic field to those of a diver entering the sea. “It’s kind of like going underwater,” she says. “Things sound different. You get different physics effects.”

Two features in particular came as surprises. The first were what the researchers are calling “rogue waves” in the magnetic field, which Parker registered as spikes in intensity and reversals in direction lasting for seconds to minutes as they rolled over the spacecraft. Dubbed Alfvén waves after Hannes Alfvén, a Swedish plasma physicist who won the 1970 Nobel prize in physics for their description, the phenomenon had been observed from Earth but never with such strength.[…]

Click here to continue reading the full article at Popular Science.

Also, check out this video from NASA:

Spread the radio love

USB Charging Cubes and Cables: Bill’s tests prove that not all are created equal

Many thanks to SWLing Post contributor, Bill Hemphill (WD9EQD), who shares the following guest post:


Power Cubes and USB Cables Multiply Like Rabbits

by Bill Hemphill (WD9EQD)

If your house is like mine, you have a box or drawer somewhere that has a tangle of 5V power cubes and cables.  This is what one of my drawers looks like:

And yes I do have two full drawers.

Every new toy I receive comes with another cable and a power cube.  With Christmas coming, we can all look forward to even more of them.

But I have learned  that not all power cubes or cables are created equally.  Earlier this year I realized that sometimes my tablets would take forever to charge and other times they seemed to re-charge a lot faster.  That got me wondering what was causing the difference. I found that switching power cubes or switching cables could make a difference.

I decided to try some experiments.  First I acquired a couple of Drok USB testers.  These are small, inline, digital USB voltage and amp testers.  They clearly show the amp draw and the voltage being furnished to the device being charged.

Second step was to gather up my power cubes and test them against a device that would load the cube close to it rated capacity.  I quickly found that ANY power cube I owned that was rated at less than 1 amp at 5 volt was not capable of providing anywhere near their rated capacity.  Some would drop all the way down to 4.11V at 0.47A. So I made the decision to throw away ANY power cube that was rated at less than 1 amp at 5 volts. That trimmed down the total number.

I proceeded to label each of the remaining power cubes from 1 to 10.  Following is list of the cubes with their power rating:

Note:  Power cubes 8, 9 & 10 have two USB ports.  I had purchased these so that I could charge two devices at once.  I had also thought of using them to power two Raspberry PI computers.

The following tablets were discharged down to less than 15% capacity:

  • Amazon Fire 10” HD Android Tablet
  • Amazon Fire 8” HD Android Tablet
  • Winbook 8” Windows 10 Tablet

Typically the Fire 10” and the Winbook will draw about 1.8 amps when charging.  The Fire 8” draws slightly less than one amp. So they would make great test subjects to exercise the capability of the power cubes and cables.

I tested several of my cables with the Winbook to make sure that the cable used for testing would provide the amps and voltage.  I then tested each of the power cubes using that cable with each of the tablets and got the following results:

Notes:

  1. All the cubes performed very well within their rated capacity.
  2. It’s interesting to see how the 1 amp rated cubes did with a higher draw.
  3. It’s clear that the cubes do NOT have limiting to their rated capacity.  I would have thought that the 1 amp cubes would have been limited to providing up to but not over that amount.
  4. Likewise, I would have thought that the tablets would limit amp draw when the voltage drops below 5 volts.

Next test was to see if the selection of cable makes a difference.  I randomly selected some cables and labeled them. I used one of the Anker power cubes since they perform the best.  The results were very interesting:

Notes:

  1. The cables were of various lengths from 12” to 36”.  Some of the short cables performed poorly and some of the long cables performed very well.  So cable length is not necessary an indication of how it will perform. You have to test it.
  2. All the cables performed well at 0.95 amps.  But some of them could not adequately handle higher loads.
  3. I had accidentally left the Winbook charging, so it was not at maximum charge during the cable tests.
  4. The cables in Red have been thrown away.

I have two special cables that I had purchased.  These were power splitter cables, single USB to two mini USB.  I had used these for a while running two Raspberry PI’s off of one power cube.  But they would reset every so often, so I thought that the splitter cable might not be providing power evenly between the two PI’s.  Time to test my theory.

Notes:

  1. The a & b denotes each of the legs of the spitters.
  2. It’s pretty obvious that the two legs do NOT provide the same capacity at the higher loads.
  3. These cables will also be tossed away.

Now for some fun testing.  I thought I would try to load the Anker Dual Port power cubes to see if they will provide their rated power on each port.

Very impressive.

And last, I have two Anker large capacity 5V battery packs:

Battery one – Anker Astro E7, Model A1210.  Capacity: 26800mAh. Rated: 4A@5V – 2A max per port.

Battery two – Anker Powercore Model A1277.  Capacity: 26800 mAh. Rated: 4A@5V – 2A max per port.

Update [18 Dec 2019]:  I had received a comment that I didn’t show the Anker Dual Port with both ports fully loaded.

I did another test – this time adding in my Pixel cell phone which draws about 1 amp when not fast charging.

Attached is photo showing the Anker power supply fully loaded:

(Fire 10 & Pixel on one port & Fire 8 and Winbook on the second port)

Port 1: 2.59A @ 5.03V

Port 2: 2.75A @ 5.01V

Pretty good for a cube only rated at 2.4A per port.

Conclusions:

  1. Don’t just select a random power cube from that drawer.  Be sure to select one that will provide both the required amp draw at a minimum of 5 volts.
  2. Likewise, don’t just select a random usb cable from that drawer.  Make sure the cable will carry the required current and voltage.
  3. The Anker products that I have (power cubes and batteries) produce the rated current and voltage.  I would highly recommend them.
  4. Where before  I had two drawers full of power cubes and cables; after throwing away about half of them, it has been consolidated into a single drawer.
  5. I may buy some more of the Anker power cubes.

Wow…thank you, Bill!

Your timing is impeccable. I’ve also been weeding out a number of USB power cubes from my own “drawer-o-plenty!” I had been simply looking at the rated amount on each cube and deciding which ones to keep–tossing all of the lower amperage ones. I think I may actually save a little time and simply invest in a few Anker Elite Dual-Port chargers (note this Amazon affiliate link supports the SWLing Post). At present, the white ones are $8.99 each. I especially like the fact that the plug folds and that it automatically switches between voltage standards (100-240 VAC) while travelling between countries.

Side note: I have also been very pleased with Anker’s customer support. I purchased some Soundcore Anker bluetooth earbuds in January–by November they started having issues maintaining a Bluetooth connection. I contacted Anker customer service and after a little troubleshooting, they dispatched a new replacement pair.

Although I know well that not all USB cables are created equally, I would have never guessed there would be much difference in terms of charging ability. Your tests certainly prove otherwise. I suppose I should not be surprised because most “free” USB cables that accompany consumer electronics are of the cheapest quality. I imagine many of the conductors/wires inside those cables are as thin as a hair, hence can’t handle the demands of devices like tablets and larger smart phones.

Again, Bill, thanks so much for sharing this excellent guest post!


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love