Tag Archives: Modifications

Imre’s HanRongDa HRD-737 modification increases sensitivity

Many thanks to SWLing Post contributor, Imre Olajos, who writes:

Hi, HRD 737 lovers! I have a good news!

I  (became brave enough to) modify my HRD-737.

I tried reverse-engineering- but I gave up. No numbers on IC-s. I found specifications for the analog switches (one for each band ) and found information about the transistors around those analog switch IC-s. Nice, 1 GHz fT transistors, all surface mount, so I gave up that line.

I found an NPN SM transistor in a damaged TV remote. It is only a 300 MHz transistor but
I had no better than that, so I started to build a little antenna amplifier circuit, wide band and simple.

I lost a few SM capacitors during the soldering but I have plenty of those. So the 1/4 square inch circuit board was finished last week. I tested it with an external 3 volt battery and I found it good working. Today ( 07-27-2019 ) I opened up the HRD-737 and wired it into the radio.
The results are much better than I expected. The HDR-737 became a good shortwave radio!

When I touch the built in antenna by my finger, radio is sensing the touch and station comes in. This effect was not there before. Radio became more sensitive on CB band than my Realistic DX392.

I have a YouTube channel [in the following video/slideshow] and I will show you the little ugly but great working circuit in the radio:

Click here to view on YouTube.

Later on next week I will try to record some video of the shortwave reception and post up it on the same YouTube channel.

I am a shortwave lover since 50+ years and I will be very happy to share the good news with others. Now I can listen my Greek music on this little radio, on 9420 kHz. Yes, the radio became [more sensitive than I had hoped].

You can see my other shortwave radios on my YouTube channel too, Have fun and never give up the hope!

Many thanks, Imre, for sharing and documenting this modification. One of the lessons here, too, is that if you have an inexpensive radio like the HanRongDa HRD-737 and you feel tempted to try a modification, there’s little to lose. It’s not like modifying a $1000 transceiver–just dig into the little radio and give it a go. If you harm the radio, you’ve only invested $37 or so in the project. That’s a much better solution than letting it sit on a shelf collecting dust because it’s not sensitive enough! Well played, Imre!

Spread the radio love

Tivdio V-115: Simple modification to abate internally-generated noise

Many thanks to SWLing Post contributor, Marc Thomas, who shares a link to this site which describes modifications to eliminate the Tivdio V-115’s internal noise.

In a nutshell, the author made two small mods:

  • Decouple the power/battery with an electrolytic capacitor of around 10uF soldered to the battery connector inside the radio (see photo above)
  • The author also grounded the speaker, but didn’t test to see if this alone had any positive impact

I could not find contact details for the author of this mod, so I hope they don’t mind the fact I shared it here on the SWLing Post.

Note that the Tivdio V-115 is also known as the Audiomax SRW-710S and Kaimeda SRW-710S (and likely rebadged as a number of other models).

Click here to read reviews of this radio.

Retailers:

Spread the radio love

The AirSpy HF+ R3 bypass modification

After SWling Post contributor, Guy Atkins, posted the survey results of his excellent Elad FDM-S2  vs AirSpy HF+ weak signal comparison, I received a few questions about the AirSpy HF+  “R3 Bypass” modification Guy mentioned in his post.

Guy has not yet performed the modification on his HF+–neither have I–but he points out that others have noted it: “significantly boosts sensitivity of the HF+ from longwave up to about 15 MHz, without any noted overload issues.”

I reached out to AirSpy president, Youssef Touil, for a little more insight about this modification. Youssef replied:

During the early phases of the design R3 was a place holder for a 0 ohms resistor that allows experimenters to customize the input impedance. For example:

  • A 300 pF capacitor will naturally filter the LW/MW bands for better performance in the HAM bands
  • A 10µH inductor would allow the use of electrically short antennas (E-Field probes) for MW and LW
  • A short (or high value capacitor) would get you the nominal 50 ohms impedance over the entire band, but then it’s the responsibility of the user to make sure his antenna has the right gain at the right band
  • A custom filter can also be inserted between the SMA and the tuner block if so desired.

Click to enlarge. (Photo source: RTL-S1DR.com)

R3 and the nearby resistors have been intentionally left outside of the RF shield, and their size was picked to be big enough to allow anyone to play with them. You will notice the size difference with the rest of the components.

In general, unless one knows what he’s doing, it’s not recommended to alter a working system. “If it’s working, don’t fix it”. But, we are hobbyists, and not doing so leaves an uncomfortable feeling of something unachieved. Most brands addressing the hobby market leave some tweaks and even label them in the PCB.

The main purpose of the HF+ is the best possible performance on HF at an affordable price. This is to incite HAMs to get started with this wonderful technology while using an SDR that isn’t worse than their existing analog rig.

The MW/LW/VLF crowd may have slightly different requirements, but that can be addressed by shorting a resistor.

Regards,

Youssef Touil

Thank you, Youssef, for replying to my inquiry so quickly and thoroughly.

No doubt, I too will eventually modify R3–it’s very difficult not to experiment, especially when a product was designed with the experimenter in mind.

I really feel like AirSpy has knocked it out of the ballpark with the HF+. For those of us primarily concerned with HF performance, this SDR is very hard to beat–especially at its $199 price point!

Spread the radio love

Rolf’s Sony ICF-SW35 mod removes the beep sound

Many thanks to SWLing Post contributor, Rolf Snijder, who shares the following modification for the Sony ICF-SW35. The mod is very simple: remove one capacitor.

Rolf shows the capacitor location on the following images:

Click to enlarge.

Click to enlarge.

Thanks, once again, for sharing your modifications, Rolf!

Spread the radio love

Rolf’s LED backlight mod for Sony ICF-SW35

Many thanks to SWLing Post contributor, Rolf Snijder, who writes:

This is a simple LED backlight modification for the Sony ICF-SW35.

Simply add a 120K resistor and a bright LED:

Overview of resistor placement. (Click to enlarge)

Detail of Pin 10 (Click to enlarge)

Detail of resistor. (Click to enlarge)

Detail of Pin 10 (Click to enlarge)

Detail of LED placement–replacement of capacitor is not necessary. (Click to enlarge)

When you push the backlight switch, the light stays on.

When radio is turned off, the light goes off–then push light switch and backlight will stay on for 15 seconds or so.

Thanks for sharing this simple mod, Rolf!

Spread the radio love