Tag Archives: SDR

SDR pioneer Dr. Vanu Bose dies at 52

Photo credit: Vanu Inc.

(Source: Southgate ARC)

Software Defined Radio pioneer Dr. Vanu Gopal Bose passed away on November 11, 2017 aged 52

In 1998 he founded Vanu Inc. which pioneered the commercialization of software-defined radio and was the first company to receive FCC certification of a software-defined radio in 2004.

The firm’s technology, which grew out of Bose’s graduate research at MIT, increases the role of software in operating the radio-based component of wireless communications networks, including those used for cellphone communications.

His company had recently deployed over 40 Community Connect base stations in Puerto Rico to provide cellular service in the wake of two devastating hurricanes.

Read the Boston Globe story
http://www.bostonglobe.com/metro/2017/11/12/vanu-bose-pioneer-cellular-wireless-infrastructure-dies/mK9MjcOEiuPIOovhCGUHFJ/story.html

“Virtual Radios” by Vanu Gopal Bose, et al 1998. One of the original MIT SpectrumWare papers
https://archive.org/download/VirtualRadios/VirtualRadios-VanuBose.pdf

2003 Guardian newspaper article Radio active revolution
https://www.theguardian.com/technology/2003/jul/10/onlinesupplement2

Connecting the last billion
https://www.technologyreview.com/s/609009/connecting-the-last-billion/

Spread the radio love

Airspy HF+ SDR Now Available to Order

As reported recently on the SWLing Post that the Airspy HF+  would be available “really, really, really soon”, the rumor has become reality–this new SDR receiver is for sale on Airspy’s main sale site www.Itead.cc.

The direct link for purchase is: https://www.itead.cc/airspy-hf-plus.html.  The price in US dollars is a very reasonable $199.00, considering the high performance evident by the few test units “in the wild” recently.

There was an initial $50-off coupon code available first come, first served this morning for the first 100 orders. These were snapped up quickly; I was fortunate to make it into that limited group and I saved $50 each off a couple of HF+ units. My intent is to pair them up for full coverage of the medium wave band–while recording I/Q WAV files)–using two receiver “instances” within Studio 1 or SDR-Console software. (The alias-free bandwidth of the HF+ is a modest 660 kHz, a trade-off this receiver makes to deliver high performance at a low price.) I expect a EXTIO DLL file to be available soon for use in EXTIO software like Studio 1 (or the EXTIO version of SDRuno which I also use).

I plan to be comparing the HF+ to my current Elad FDM-S2 SDR; based on specs and early user reports, it should be a tight race.

UPDATE: I’ve learned that the shipping timeframe for the HF+ is the beginning of December (approx. three weeks). There is also a U.S. distributor who is kindly offering a similar $50-off deal: https://v3.airspy.us/product/airspy-hfplus/

Simon Brown, author of the popular SDR-Console software versions, closely compares the Airspy HF+ ($199 USD) against a RFspace NetSDR ($1449 USD w/o options): http://www.sdr-radio.com/Radios/Airspy/AirspyHF

Who else is planning on an Airspy HF+ purchase? What are your monitoring interests you plan to use it for? Please comment below and share your thoughts with other SWLing Post readers!

 

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Airspy’s latest: The Airspy HF+ SDR

SDR manufacturer, Airspy, has a new product shipping “really really really soon” (per their website). The Airspy HF+ promises improved frequency agility through the use of high-performance passive mixers with a polyphase harmonic rejection structure. Airspy states that no external band filters are required as they are with many budget SDRs.

There are many other improvements over their previous iterations. Here’s the product information copied from the Airspy HF+ page on Airspy’s website:

(Source: Airspy)

The Software Defined Radio revolution brought great flexibility in VHF and UHF reception. Today we offer the best wide band receivers which address these needs. We also provide a high performance extension for weak-signal wide band reception on HF – something other competing solutions fail to address efficiently.

Airspy HF+ is a paradigm shift in high performance HF radio design. It is a joint effort between Airspy, Itead Studio and a top-tier semiconductor company to build a state of the art SDR for HF and VHF bands.

Like most high-end HF receivers, the HF+ uses very high dynamic range ADC’s and front-ends. But unlike the current offerings in the market, it also brings more frequency agility by using high performance passive mixers with an excellent polyphase harmonic rejection structure. No external band aid filters are required like the lower end HF receivers, which makes it the ideal companion for light portable high performance operation.

Both the architecture and level of integration achieved in this design allow us to bring top performance reception at a very affordable price.

All the major SDR software is supported. Check the download page.

State of the Art SDR streaming technology!

We concentrated state of the art DSP and networking techniques into our SpyServer software to allow multiple users to stream high quality IQ data from the same receiver at the same time. No compromises in the quality were made like it is usually done in Web SDR interfaces. You get actual IQ data you can process with your plugins and extract the last bit of information out of it.
The server software is highly scalable and can run on computers as small as the $7 Orange Pi Zero to top end 64bit servers with multiple cores/cpus, including the popular Raspberry Pi series.

HF Tuner

Airspy HF+ achieves excellent HF performance by means of a low-loss band filterhigh linearity LNAhigh linearity tunable RF filter, a polyphase harmonic rejection (HR) mixer that rejects up to the 21st harmonic and multi-stage analog and digital IF filtering.
The 6 dB-stepped AGC gain is fully controlled by the software running in the DSP which optimizes the gain distribution in real time for optimal sensitivity and linearity. Harmonic rejection is a key issue in wide band HF receivers because of the large input signal bandwidth of the input signal. The output of the IF-filter is then digitalized by a high dynamic range sigma delta IF ADC for further signal processing in the digital domain.

VHF Tuners

Excellent VHF performance is also achieved by using optimized signal paths composed of band filtershigh linearity LNAs with a stepped AGC, a polyphase harmonic rejection mixer and IF filters optimized for their respective bands.
The amplifier gain is switchable in 3 dB-steps and fully controlled by the AGC running in the DSP. The RF signal is converted to baseband by a high linearity passive mixer with a polyphase harmonic rejection structure. The low-IF signal is then converted into the digital domain by the same IF ADC used in the HF chain.

IF Sampling

The IF analog to digital converter (ADC) is a 4th order multi-bit noise shaping topology; it features very high dynamic range and linearity. The IF-ADC sampling rate is determined by a control algorithm running in the embedded DSP. This advanced technique adjusts the sampling rate depending on the tuning frequency with the goal of avoiding the disturbances and spurs generated by the switching discrete-time sections of the IF-ADC.

Digital Down Converter

Once the IF signal is digitalized, the high sample rate I/Q stream is then frequency translated and processed with cascaded CIC and FIR decimation stages. After every stage, the sample rate is reduced and the resolution increased. The final signal at the output has 18bit resolution and an alias rejection performance of 108 dBc. The data is then scaled to 16bit and sent to the Micro-Controller for streaming over USB.

Architectural Advantages

The main advantages over techniques from the legacy super-heterodynes up to the now mainstream direct sampling is that the whole receiver chain is well protected against out of band blockers while still relaxing the RF filtering constraints, making it simple and cost effective.
The natural filtering of the sigma-delta ADC combined with the excellent linearity and sensitivity of the analog chain reaches an unprecedented level of performance and integration.

Use it over the network!

Connect as many SDR applications as needed to the HF+, over the Internet or in your own local network with near zero latency thanks to the new SPY Server software.
This setup basically brings all the flexibility of Web based SDRs while still benefiting from the full power of desktop applications. The IQ data is processed in the server with state of the art DSP and only the required chunk of spectrum is sent over the network. What is sent is the actual IQ signal, not compressed audio. This means you can use all your favorite plugins to process the IF, eliminate noise and perform heavy lifting of the signals as you are used to do with locally connected SDR’s.
We have a tradition of building multi-tools, so we made sure the SPY Server runs on 32/64bit Windows and Linux on Intel and ARM processors without any compromises. Low cost Raspberry Pi 3 and Odroid boards are in the party.

Technical specifications

  • HF coverage between DC .. 31 MHz
  • VHF coverage between 60 .. 260 MHz
  • -140.0 dBm (0.02 µV / 50 ohms at 15MHz) MDS Typ. at 500Hz bandwidth in HF
  • -141.5 dBm MDS Typ. at 500 Hz bandwidth in FM Broadcast Band (60 – 108 MHz)
  • -142.5 dBm MDS Typ. at 500 Hz bandwidth in VHF Aviation Band (118 – 136 MHz)
  • -140.5 dBm MDS Typ. at 500 Hz bandwidth in VHF Commercial Band (136 – 174 MHz)
  • -139.0 dBm MDS Typ. at 500 Hz bandwidth in the upper VHF Band (> 174 MHz)
  • +15 dBm IIP3 on HF at maximum gain
  • +13 dBm IIP3 on VHF at maximum gain
  • 110 dB blocking dynamic range (BDR) in HF
  • 95 dB blocking dynamic range (BDR) in VHF
  • 150+ dB combined selectivity (hardware + software)
  • 120 dB Image Rejection (software)
  • Up to 660 kHz alias and image free output for 768 ksps IQ
  • 18 bit Embedded Digital Down Converter (DDC)
  • 22 bit! Resolution at 3 kHz channel using State of the Art DDC (SDR# and SDR-Console)
  • +10 dBm Maximum RF input
  • 0.5 ppm high precision, low phase noise clock
  • 1 PPB! frequency adjustment capability
  • Very low phase noise PLL (-110 dBc/Hz @ 1kHz separation @ 100 MHz)
  • 2 x High Dynamic Range Sigma Delta ADCs @ up to 36 MSPS
  • No Silicon RF switch to introduce IMD in the HF path
  • Routable RF inputs
  • Wide Band RF filter bank
  • Tracking RF filters
  • Sharp IF filters with 0.1 dB ripple
  • Smart AGC with real time optimization of the gain distribution
  • All RF inputs are matched to 50 ohms
  • 4 x Programmable GPIO’s
  • No drivers required! 100% Plug-and-play on Windows Vista, Seven, 8, 8.1 and 10
  • Industrial Operating Temperature: -45°C to 85°C

Typical Applications

  • High Performance Networked HF/VHF Radio
  • Ham Radio (HF + 2m)
  • Short Wave Listening (SWL)
  • AM DX
  • FM DX
  • VHF-L TV DX
  • Remote Telemetry Radio Receiver
  • Low Bands IoT

Supported Operating Systems

  • Windows Vista, 7, 8, 8.1 and 10
  • Linux
  • *BSD
  • OSX

Supported Hardware

  • Intel compatible PC
  • Raspberry Pi 2 and 3
  • Odroid C1, C2 and XU4
  • Many other Single Board Computers (SBC)

Minimum hardware requirements

  • 1GHz Pentium or ARM
  • 1GB of RAM (to run your own OS, HF+ barely needs 1MB of memory)
  • High speed USB 2.0 controller

Supported Software

Developer API

  • Open source, multi-platform user mode driver libairspyhf on github

No price point has yet been made public–at least, none that I have discovered. Of course, we’ll post shipping and pricing details when they become available. Follow the tag AirSpy for more. Check out the Airspy website for full details and documentation.

Spread the radio love

U Twente antenna damaged

Many thanks to SWLing Post contributor, Dan Robinson, who shares the following item from BCL News and Richard Langley:

Antenna of Twente SDR receiver damaged // Bclnews
http://www.bclnews.it/2017/10/06/antenna-of-twente-sdr-receiver-damaged/

The antenna was damaged yesterday during a storm. As posted on the WebSDR website:

“The antenna currently is not working properly. After a preliminary repair of rain/storm damage on October 5, it seems reception has faded away again during the night. We’ll try to fix this soon, weather and spare-time manpower permitting.”

(Richard Langley via dxld yg)

Spread the radio love

Servosila develops a robot with onboard SDR package

(Source: Servosila Press Release)

Servosila introduces a new member of the family of Servosila “Engineer” robots, a UGV called “Radio Engineer”. This new variant of the well-known backpack-transportable robot features a Software Defined Radio (SDR) payload module integrated into the robotic vehicle. Servosila introduces a new member of the family of Servosila “Engineer” robots, a UGV called “Radio Engineer”. This new variant of the well-known backpack-transportable robot features a Software Defined Radio (SDR) payload module integrated into the robotic vehicle.

“Several of our key customers had asked us to enable an Electronic Warfare (EW) or Cognitive Radio applications in our robots”, – says a spokesman for the company, “By integrating a Software Defined Radio (SDR) module into our robotic platforms we cater to both requirements. Radio spectrum analysis, radio signal detection, jamming, and radio relay are important features for EOD robots such as ours. Servosila continues to serve the customers by pushing the boundaries of what their Servosila robots can do. Our partners in the research world and academia shall also greatly benefit from the new functionality that gives them more means of achieving their research goals.”

Coupling a programmable mobile robot with a software-defined radio creates a powerful platform for developing innovative applications that mix mobility and artificial intelligence with modern radio technologies. The new robotic radio applications include localized frequency hopping pattern analysis, OFDM waveform recognition, outdoor signal triangulation, cognitive mesh networking, automatic area search for radio emitters, passive or active mobile robotic radars, mobile base stations, mobile radio scanners, and many others.

A rotating head of the robot with mounts for external antennae acts as a pan-and-tilt device thus enabling various scanning and tracking applications. The neck of the robotic head is equipped with a pair of highly accurate Servosila-made servos with a pointing precision of 3.0 angular minutes. This means that the robot can point its antennae with an unprecedented accuracy.

Researchers and academia can benefit from the platform’s support for GnuRadio, an open source software framework for developing SDR applications. An on-board Intel i7 computer capable of executing OpenCL code, is internally connected to the SDR payload module. This makes it possible to execute most existing GnuRadio applications directly on the robot’s on-board computer. Other sensors of the robot such as a GPS sensor, an IMU or a thermal vision camera contribute into sensor fusion algorithms.

Since Servosila “Engineer” mobile robots are primarily designed for outdoor use, the SDR module is fully enclosed into a hardened body of the robot which provides protection in case of dust, rain, snow or impacts with obstacles while the robot is on the move. The robot and its SDR payload module are both powered by an on-board battery thus making the entire robotic radio platform independent of external power supplies.

Servosila plans to start shipping the SDR-equipped robots to international customers in October, 2017.

Web: https://www.servosila.com

YouTube: https://www.youtube.com/user/servosila/videos

About the Company

Servosila is a robotics technology company that designs, produces and markets a range of mobile robots, robotic arms, servo drives, harmonic reduction gears, robotic control systems as well as software packages that make the robots intelligent. Servosila provides consulting, training and operations support services to various customers around the world. The company markets its products and services directly or through a network of partners who provide tailored and localized services that meet specific procurement, support or operational needs.

Spread the radio love

PantronX: Titus II is ready for production

The Titus II portable SDR

(Source: Radio World via Richard Langley)

Titus SDR, a division of PantronX, says the Titus II multi-standard digital radio receiver is ready for production.

The consumer software-defined radio digital receiver platform, which is the result of collaboration between Titus SDR/Patron X, Jasmin-Infotech, TWR, and Fraunhofer IIS, supports multi-standard radio reception, including DRM, DAB and DAB+ and core data applications. The system is based on a custom Android tablet platform, featuring multipoint touch, WiFi/Bluetooth and stereo sound.[…]

Click here to continue reading the full article at Radio World.

Spread the radio love

Robert’s reviews and how-tos


Like a few of us contributors here on the SWLing Post, Robert Gulley (AK3Q), writes features for The Spectrum Monitor magazine (TSM).  Robert and I are both passionate supports of TSM–for a mere $24 per year, you get a monthly digital magazine that is simply chock-full of articles covering all aspects of our radio hobby. A phenomenal value indeed!

I’ve just discovered that Robert has published a number of his past TSM articles–reviews and how-tos–on his excellent blog All Things Radio.  Each article can be downloaded as a PDF. Here are the topics:

  • Using Weak Signal Software to Reach for the Sky! (Part 1)
  • Using Weak Signal Modes for Propagation, RFI, and Antenna Analysis (Part 2)
  • Putting My Handheld Antennas to the Test
  • Going Mobile with Software Defined Radio
  • Multipsk Software – A Review
  • TEN-TEC 1253 Build Review

Click here to view and download these articles at All Things Radio.

Thank you, Robert, for sharing these excellent articles with everyone! And many thanks to TSM for allowing its writers second publication rights. Click here to subscribe to The Spectrum Monitor.

Spread the radio love