Category Archives: Books

Free Online Event: Matt Zullo presents the “The U.S. Navy’s On-The-Roof Gang, Prelude to War” October 8, 2020

Many thanks to SWLing Post contributor, Aaron Kuhn, who notes that author Matt Zullo will give a free online presentation about his novel, The US Navy’s On-The-Roof Gang, Volume One tomorrow (Thursday October 8, 2020, at 16:00 UTC).

Click here to register for this free event.

Description:

THE US NAVY’S ON-THE-ROOF GANG: VOLUME I – PRELUDE TO WAR is an historical novel based on the unknown true-life story of the “On-The-Roof Gang,” the U.S. Navy’s fledgling radio intelligence organization in the years leading up to World War II. It is based on the real life of Harry Kidder, a U.S. Navy radioman who first discovered and deciphered Japanese katakana telegraphic code while stationed in the Philippines in the 1920s, discovering that he was listening to Imperial Japanese Navy (IJN) radio communications. Kidder strongly believed in the future of radio intelligence and a chance meeting with Lieutenant Laurance Safford led to the birth of the Navy’s Radio Intelligence community. Kidder taught others the nascent art of intercepting IJN communications on the roof of the Main Navy Building in Washington, DC. From 1928 to 1941, 176 Sailors and Marines attended this training and were then stationed as radio intercept operators around the Pacific. These men would become known as the On-The-Roof Gang and were charged with keeping track of the IJN as they prepared for war with the United States. The circumstances of America’s entry into World War II hinged on success or failure of the On-The-Roof Gang, and Harry Kidder knew this. On-the-Roof Gang: Prelude to War concludes with the “date which will live in infamy,” December 7, 1941

Matt Zullo is a retired U.S. Navy Master Chief Petty Officer who has more than 35 years’ experience in Radio Intelligence, now more commonly known as Communications Intelligence. He holds a Master’s degree in Strategic Intelligence from the National Intelligence University, where he researched and wrote his master’s thesis on the On-the-Roof Gang. He has published numerous articles on the On-the-Roof Gang in the Naval Cryptologic Veterans Association’s Cryptolog magazine and on social media platforms. As one of only a few quantifiable experts on the subject, Matt has spoken at the 2009, 2011, and 2013 Cryptologic History Symposiums, as well as at several Navy events around the world. He recently (Nov 2019) attended the induction of Harry Kidder into NSA’s Cryptologic Hall of Honor and spoke about Harry Kidder at a subsequent event for the sailors of Cryptologic Warfare Group Six. Matt continues his research into the On-the-Roof Gang as he writes and edits his two-volume history about the group.

Click here to view the author’s website.

Spread the radio love

Radio War: Looking forward to this read…

Have you ever ordered an item knowing you would be facing shipping delays, and when it finally arrives, you forgot you had even ordered it in the first place? Sort of feels like you got a gift from yourself?

Please tell me you do–!

That’s how I felt recently when my copy of Radio War by David Abrutat arrived. I first read about this book in RadCom and then in The Spectrum Monitor. Being a WWII history buff and (obviously) a radio enthusiast, it doesn’t get much better than this.

I’m brewing a cup of coffee right now, and heading to our porch for a little “DEAR” time as my girls like to call it (Drop Everything and Read).

This is the life!

Spread the radio love

The book that took David down the path of SWLing and ham radio

Many thanks to SWLing Post contributor, David (G4EDR), who writes:

I enjoyed reading about the vintage shortwave radio book memories from Bob W6ACU and it prompted me dig out the book which got me started in SWLing back in 1970. It was in a series of illustrated teach yourself books and the title was ‘Radio’ written by David Gibson G3JDG [see cover above].

I borrowed it from the school library and renewed the loan so many times the librarian suggested I should buy my own copy so that someone else could have the chance to borrow it! I still have my own copy of the book bought with my saved pocket money for the sum of 15 shillings. That was before the UK changed to decimal currency (15 shillings is 75p in decimal).

The book covered basic radio theory and several construction projects including a crystal set and an atu which I made and I also learned all about amateur radio and QSL cards.

That was the start of my life long obsession with radio. How things have changed over 50 years! Thank you for allowing me to rekindle those happy early days of this fantastic hobby of ours.

73, David – G4EDR.

Thank you, David, for sharing your memories with us. It’s amazing, isn’t it, the impact one book or one radio can have on one’s life!

Spread the radio love

“Letters of a Radio-Engineer to His Son”

Many thanks to SWLing Post contributor, Paul, who shares a link to Letters of a Radio-Engineer to his Son by John Mills. The book, originally published in 1922, is in the public domain and shared/hosted on the Project Gutenberg website.

It is a fascinating read. Mills does a rather amazing job explaining complex electronic principles in a simple narrative form.

To give you a taste, check out Letter 3 – How a Battery Works below:


LETTER 3
HOW A BATTERY WORKS

(This letter may be omitted on the first reading.)

My Dear Boy:

When I was a boy we used to make our own batteries for our experiments. That was before storage batteries became as widely used as they are to-day when everybody has one in the starting system of his automobile. That was also before the day of the small dry battery such as we use in pocket flash lights. The batteries which we made were like those which they used on telegraph systems, and were sometimes called “gravity” batteries. Of course, we tried several kinds and I believe I got quite a little acid around the house at one time or another. I’ll tell you about only one kind but I shall use the words “electron,” “proton,” “nucleus,” “atom,” and “molecule,” about some of which nothing was known when I was a boy.

We used a straight-sided glass jar which would hold about a gallon. On the bottom we set a star shaped arrangement made of sheets of copper with a long wire soldered to it so as to reach up out of the jar. Then we poured in a solution of copper sulphate until the jar was about half full. This solution was made by dissolving in water crystals of “blue vitriol” which we bought at the drug store.

17Blue vitriol, or copper sulphate as the chemists would call it, is a substance which forms glassy blue crystals. Its molecules are formed of copper atoms, sulphur atoms, and oxygen atoms. In each molecule of it there is one atom of copper, one of sulphur and four of oxygen.

When it dissolves in water the molecules of the blue vitriol go wandering out into the spaces between the water molecules. But that isn’t all that happens or the most important thing for one who is interested in making a battery.

Each molecule is formed by six atoms, that is by six little groups of electrons playing about six little nuclei. About each nucleus there is going on a game but some of the electrons are playing in the game about their own nucleus and at the same time taking some part in the game which is going on around one of the other nuclei. That’s why the groups or atoms stay together as a molecule. When the molecules wander out into the spaces between the water molecules something happens to this complicated game.

It will be easiest to see what sort of thing happens if we talk about a molecule of ordinary table salt, for that has only two atoms in it. One atom is sodium and one is chlorine. The sodium molecule has eleven electrons playing around its nucleus. Fairly close to the nucleus there are two electrons. Then farther away there are eight more and these are having a perfect game. Then still farther away from the nucleus there is a single lonely electron.

The atom of chlorine has seventeen electrons which 18play about its nucleus. Close to the nucleus there are two. A little farther away there are eight just as there are in the sodium atom. Then still farther away there are seven.

I am going to draw a picture (Fig. 1) to show what I mean, but you must remember that these electrons are not all in the same plane as if they lay on a sheet of paper, but are scattered all around just as they would be if they were specks on a ball.

You see that the sodium atom has one lonely electron which hasn’t any play fellows and that the chlorine atom has seven in its outside circle. It appears that eight would make a much better game. Suppose that extra electron in the sodium atom goes over and plays with those in the chlorine atom so as to make eight in the outside group as I have shown Fig. 2. That will be all right as long as it doesn’t get out of sight of its own nucleus because you remember that the sodium nucleus is responsible for eleven electrons. The lonely electron of the sodium atom needn’t be lonely any more if it can persuade its nucleus to stay so close to the chlorine atom that it can play in the outer circle of the chlorine atom.

The outer circle of the chlorine atom will then have a better game, for it will have just the eight that makes a perfect game. This can happen if the chlorine atom will stay close enough to the sodium atom so that the outermost electron of the sodium atom can play in the chlorine circle. You see everything will be satisfactory if an electron can be shared by the two atoms. That can happen only if the two atoms stay together; that is, if they form a molecule. That’s why there are molecules and that’s what I meant when I spoke of the molecule as a big game played by the electrons of two or more atoms.

This molecule which is formed by a sodium atom and a chlorine atom is called a molecule of sodium chloride by chemists and a molecule of salt by most every one who eats it. Something strange happens when it dissolves. It wanders around between the water molecules and for some reason or other–we don’t know exactly why–it decides to split up again into sodium and chlorine but it can’t quite do it. The electron which joined the game about the chlorine nucleus won’t leave it. The result is that the nucleus of the sodium atom gets away but it leaves this one electron behind.

What gets away isn’t a sodium atom for it has one too few electrons; and what remains behind isn’t a chlorine atom for it has one too many electrons. We call these new groups “ions” from a Greek word which means “to go” for they do go, wandering off into the spaces between the water 20molecules. Fig. 3 gives you an idea of what happens.

You remember that in an atom there are always just as many protons as electrons. In this sodium ion which is formed when the nucleus of the sodium atom breaks away but leaves behind one planetary electron, there is then one more proton than there are electrons. Because it has an extra proton, which hasn’t any electron to associate with, we call it a plus ion or a “positive ion.” Similarly we call the chlorine ion, which has one less proton than it has electrons, a minus or “negative ion.”

Now, despite the fact that these ions broke away from each other they aren’t really satisfied. Any time that the sodium ion can find an electron to take the place of the one it lost it will welcome it. That is, the sodium ion will want to go toward places where there are extra electrons. In the same way the chlorine ion will go toward places where electrons are wanted as if it could satisfy its guilty conscience by giving up the electron which it stole from the sodium atom, or at least by giving away some other electron, for they are all alike anyway.

Sometimes a positive sodium ion and a negative chlorine ion meet in their wanderings in the solution and both get satisfied by forming a molecule 21again. Even so they don’t stay together long before they split apart and start wandering again. That’s what goes on over and over again, millions of times, when you dissolve a little salt in a glass of water.

Now we can see what happens when copper sulphate dissolves. The copper atom has twenty-nine electrons about its nucleus and all except two of these are nicely grouped for playing their games about the nucleus. Two of the electrons are rather out of the game, and are unsatisfied. They play with the electrons of the part of the molecule which is called “sulphate,” that is, the part formed by the sulphur atom and the four oxygen atoms. These five atoms of the sulphate part stay together very well and so we treat them as a group.

The sulphate group and the copper atom stay together as long as they are not in solution but when they are, they act very much like the sodium and chlorine which I just described. The molecule splits up into two ions, one positive and one negative. The positive ion is the copper part except that two of the electrons which really belong to a copper atom got left behind because the sulphate part wouldn’t give them up. The rest of the molecule is the negative ion.

The copper ion is a copper atom which has lost two electrons. The sulphate ion is a combination of one sulphur atom, four oxygen atoms and two electrons which it stole from the copper atom. Just as the sodium ion is unsatisfied because in it there is one more proton than there are electrons, so the copper ion is unsatisfied. As a matter of fact it is twice 22as badly unsatisfied. It has two more protons than it has electrons. We say it has twice the “electrical charge” of the sodium ion.

Just like a sodium ion the copper ion will tend to go toward any place where there are extra electrons which it can get to satisfy its own needs. In much the same way the sulphate ion will go toward places where it can give up its two extra electrons. Sometimes, of course, as ions of these two kinds wander about between the water molecules, they meet and satisfy each other by forming a molecule of copper sulphate. But if they do they will split apart later on; that is, they will “dissociate” as we should say.

Now let’s go on with the kind of batteries I used to make as a boy. You can see that in the solution of copper sulphate at the bottom of the jar there was always present a lot of positive copper ions and of negative sulphate ions.

On top of this solution of copper sulphate I poured very carefully a weak solution of sulphuric acid. As I told you, an acid always has hydrogen in its molecules. Sulphuric acid has molecules formed by two hydrogen atoms and one of the groups which we decided to call sulphate. A better name for this acid would be hydrogen sulphate for that would imply that its molecule is the same as one of copper sulphate, except that the place of the copper is taken by two atoms of hydrogen. It takes two atoms of hydrogen because the copper atom has two lonely electrons while a hydrogen atom only has one. It takes two electrons to fill up the game which the 23electrons of the sulphate group are playing. If it can get these from a single atom, all right; but if it has to get one from each of two atoms, it will do it that way.

I remember when I mixed the sulphuric acid with water that I learned to pour the acid into the water and not the other way around. Spatterings of sulphuric acid are not good for hands or clothes. With this solution I filled the jar almost to the top and then hung over the edge a sort of a crow’s foot shape of cast zinc. The zinc reached down into the sulphuric acid solution. There was a binding post on it to which a wire could be connected. This wire and the one which came from the plate of copper at the bottom were the two terminals of the battery. We called the wire from the copper “positive” and the one from the zinc “negative.”

Now we shall see why and how the battery worked. The molecules of sulphuric acid dissociate in solution just as do those of copper sulphate. When sulphuric acid molecules split, the sulphate part goes away with two electrons which don’t belong to it and each of the hydrogen atoms goes away by itself but without its electron. We call each a “hydrogen ion” but you can see that each is a single proton.

In the two solutions are pieces of zinc and copper. Zinc is like all the rest of the metals in one way. Atoms of metals always have lonely electrons for which there doesn’t seem to be room in the game which is going on around their nuclei. Copper as we saw has two lonely electrons in each atom. Zinc 24also has two. Some metals have one and some two and some even more lonely electrons in each atom.

What happens then is this. The sulphate ions wandering around in the weak solution of sulphuric acid come along beside the zinc plate and beckon to its atoms. The sulphate ions had a great deal rather play the game called “zinc sulphate” than the game called “hydrogen sulphate.” So the zinc atoms leave their places to join with the sulphate ions. But wait a minute! The sulphate ions have two extra electrons which they kept from the hydrogen atoms. They don’t need the two lonely electrons which each zinc atom could bring and so the zinc atom leaves behind it these unnecessary electrons.

Every time a zinc atom leaves the plate it fails to take all its electrons with it. What leaves the zinc plate, therefore, to go into solution is really not a zinc atom but is a zinc ion; that is, it is the nucleus of a zinc atom and all except two of the planetary electrons.

Every time a zinc ion leaves the plate there are left behind two electrons. The plate doesn’t want them for all the rest of its atoms have just the same number of protons as of electrons. Where are they to go? We shall see in a minute.

Sometimes the zinc ions which have got into solution meet with sulphate ions and form zinc sulphate molecules. But if they do these molecules split up sooner or later into ions again. In the upper part of the liquid in the jar, therefore, there are sulphate 25ions which are negative and two kinds of positive ions, namely, the hydrogen ions and the zinc ions.

Before the zinc ions began to crowd in there were just enough hydrogen ions to go with the sulphate ions. As it is, the entrance of the zinc ions has increased the number of positive ions and now there are too many. Some of the positive ions, therefore, and particularly the hydrogen ions, because the sulphate prefers to associate with the zinc ions, can’t find enough playfellows and so go down in the jar.

Down in the bottom of the jar the hydrogen ions find more sulphate ions to play with, but that leaves the copper ions which used to play with these sulphate ions without any playmates. So the copper ions go still further down and join with the copper atoms of the copper plate. They haven’t much right to do so, for you remember that they haven’t their proper number of electrons. Each copper ion lacks two electrons of being a copper atom. Nevertheless they join the copper plate. The result is a plate of copper which has too few electrons. It needs two electrons for every copper ion which joins it.

How about the zinc plate? You remember that it has two electrons more than it needs for every zinc ion which has left it. If only the extra electrons on the negative zinc plate could get around to the positive copper plate. They can if we connect a wire from one plate to the other. Then the electrons from the zinc stream into the spaces between the atoms of the wire and push ahead of them the electrons 26which are wandering around in these spaces. At the other end an equal number of electrons leave the wire to satisfy the positive copper plate. So we have a stream of electrons in the wire, that is, a current of electricity and our battery is working.

That’s the sort of a battery I used to play with. If you understand it you can get the general idea of all batteries. Let me express it in general terms.

At the negative plate of a battery ions go into solution and electrons are left behind. At the other end of the battery positive ions are crowded out of solution and join the plate where they cause a scarcity of electrons; that is, make the plate positive. If a wire is connected between the two plates, electrons will stream through it from the negative plate to the positive; and this stream is a current of electricity.

Pl. III.–Dry Battery for Use in Audion Circuits (Courtesy of National Carbon Co., Inc.) Storage Battery (Courtesy of the Electric Storage Battery Co.).

 


Click here to read the entire book.

Spread the radio love

The Worldwide Listening Guide: A deep dive into online and over-the-air listening

I recently received a review copy of the 9th Edition of the Worldwide Listening Guide by John Figliozzi:

While WRTH is my favorite guide for radio frequencies and schedules, Figliozzi’s Worldwide Listening Guide (WWLG) is my go-to for programming and content, not only helpful on the shortwaves, but especially handy when tracking online content.

The WWLG is a unique guide–there’s nothing quite like it on the market. I look forward to each edition because it truly takes a deep dive into the world of broadcasting, technology, and programming.

“Deep dive” almost feels like an understatement. I received the latest edition only a few days before Christmas travels, so packed it in my luggage and read it over the course of a week. Being the editor of the SWLing Post, I’m in the middle of a constant stream of news items and tips about the world of broadcasting and communications technology. When I read the WWLG, however, I discover so much information about the broadcasting industry as a whole, the health of various platforms, particular media companies, and even the history and technology behind content delivery systems.

Case in point: I always assumed SiriusXM satellite radio was delivered by a network of geostationary satellites. Turns out, they use a hybrid system of both “roving” satellites that orbit in a figure 8 pattern and geostationary satellites in the Clarke Belt. The WWLG is chock-full of details like this.

Each media delivery platform–AM, Shortwave, FM, Satellite Radio, Internet (WiFi Radio), and Podcasting–has a dedicated section in the book where Figliozzi explores each in detail. He also includes a “State of the Radio Platforms” chapter where he examines the health and potential direction of each.

SWLing Post contributor, Mark Fahey, recently summed up his love of the WWLG in the following comment: 

[I]t’s the best guide to digital streaming media I have ever found. An indispensable guide to the world’s public broadcasters and others broadcasters who appeal to us raised on decades of shortwave.

As shortwave transmitters close, don’t make the mistake of thinking your favourite broadcasters disappear – they in most cases continue and the Worldwide Listening Guide will guide you to them as live and on-demand programs.

I use the guide as a directory for online listening, but of course RF transmission broadcasts are comprehensively covered as well.

I agree 100%.

Like Mark and many SWLs, I’m something of a “Content DXer:” I love chasing obscure programming––news, documentaries, music, and variety shows, anything the broadcasting world has to offer.  For this, I often turn to Wi-Fi radio.  Wi-Fi radio offers the discerning listener the ability to track down fascinating regional content from every corner of the globe––content never actually intended for an international audience.

Digging into local content via a WiFi radio isn’t nearly as challenging or fun (for me, at least) as scanning the shortwave bands in search of elusive weak signal DX or a pop-up pirate radio station. Though my WiFi radio offers an easy and reliable way to “tune” to online content–both station streams and podcasts–the actual content discovery part is quite difficult.

Truth is, there’s so much content out there–tens of thousands of stations and shows–it’s hard to know where to start!

This is where the WWLG comes in: Figliozzi exhaustively curates thousands of programs, indexing their airing times, stations, days of broadcast, program types, frequencies, and web addresses. Additionally, he sorts the programs by genre:  arts, culture, history, music, sports, and more. And Figliozzi also includes a well-thought-out directory of at least forty genres. In my shack and office, the WWLG has been an invaluable tool for content discovery.

There’s a surprising amount of information packed into this slim, spiral-bound edition of the Worldwide Listening Guide…enough to keep even a seasoned content DXer happy for years.

The 9th edition of Worldwide Listening Guide can be purchased here:

Spread the radio love

Ninth Edition of The Worldwide Listening Guide

Many thanks to SWLing Post contributor, Dan (KB0RTQ), who writes:

Hi Thomas!
Apologies if you have covered this and I missed it – the 9th edition of John Figliozzi’s Worldwide Listening guide is available on Amazon (apparently, it has been since 11/15/19).

Click here to view on Amazon (affiliate link supports the SWLing Post).

Just thought I’d pass it along.

Thank you very much for passing this along, Dan! I see that Universal Radio also has the new guide in their inventory (click here to check it out).

The publisher is sending me a review copy of the ninth edition, so I’ll be posting my overview soon!

Spread the radio love

WRTH 2020 now available for order

Many thanks to SWLing Post contributor, Thomas Ally, who writes:

The new World Radio TV Handbook is on Amazon.

Click here to view on Amazon (affiliate link).

Or the WRTH shop: http://www.wrth.com/_shop/

Thanks for the heads-up, Thomas. Also, I see that both Universal Radio and the Book Depository has posted the new addition on their websites.

I can’t wait to check out WRTH 2020!

Spread the radio love