Tag Archives: Antennas

Ron’s thoughts on RFL200 and Q-Stick longwave antennas

Many thanks to SWLing Post contributor, Ron, who shares his thoughts on comparing two portable longwave antennas:

To begin, for reference, check out this post where The Professor reviews the RFA200. Also, check out the following video from the replies of that post:

Both the RFL-200 and the Q-Stick came in today.

Performance of both was very nearly identical but for now the Q-Stick wins on price ($67.50 vs. $75.78 delivered) and the Q-Stick does both LW and MW.

But Gerry says he’s going to close RadioPlus early next year so-presumably-
that will leave just the RFL-200 and its REA-200 sibling.

The “200” no doubt comes from the length, 200mm or 8 inches…the Q-stick
uses a 7-3/4 inch ferrite bar which is probably why the similar performance.

There is one thing: the small tuning knob is not hard to turn on the RFL-200
as it was on the REA-200 tested earlier but a bigger knob would be nice.

But the tuning cap uses a 1/8th inch shaft so finding a larger knob is too
much bother, most are for 1/4 inch shafts.

By comparison the Q-Stick has a nice big knob and is quite easy to tune.

So for now the Q-Stick would be the better buy, but don’t tarry.

[One more note,] if you want the most bang for your buck, forget both of these, get
a PK Loop
for $90.60 delivered (be sure to specify the 155-500 kHz model).

Thanks for sharing your thoughts, Ron!

Click here to check out the RFL200 longwave antenna on eBay.

(Click here to view the RFA200 mediumwave version.)

Click here to check out the Q-Stick antenna at Radio Plus. 


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

The NooElec Balun 1:9 v2

Many thanks to SWLing Post contributor, Grayhat, who writes:

Hi Thomas, was about to write you about some infos related to the NooElec balun when found that they now offer a v2 model:

https://www.nooelec.com/store/balun-one-nine-v2-barebones.html

The new balun has the same schematic as the previous one:

But it is slightly bigger, has a better connector for the antenna wires and (according to NooElec) uses a transformer which allows the tiny balun to work more efficiently from 0 to around 70 MHz (check out the charts found in the downloads section of this link).

The transformer used, judging from the pics, is a CoilCraft WB9-1, whose data can be found here:

https://www.coilcraft.com/wb_th.cfm

As I wrote the reason for this was the fact that a friend of mine reported that he used the (v1) balun with a Loop On Ground (LoG) Antenna !

If you look at the schematic (above) you’ll notice that there’s a “jumper” labeled R1 (zero Ohm resistor). That tiny detail is important, see, leaving the balun as is, it will work fine with a longwire, one just connects contact #1 to the antenna and #2 to a counterpoise or ground system and there he goes, BUT there’s another way to use the balun, that is, CUT the “jumper” (ok, resistor) labeled “R1”. If you cut it, the balun will become a 9:1 isolation transformer and with such a modification will work just fine with the KK5JY “LoG”
antenna: http://www.kk5jy.net/LoG/

According to what my friend reported, the balun works just fine, and although probably the ferrite core used in the V1 isn’t up to par with the original one used by KK5JY, the difference isn’t so huge.

Oh, and I also suspect that the modified balun may work fine with the KK5JY simpler passive loop http://www.kk5jy.net/rx-loop/ which may be a nice antenna for restricted spaces!

I think it may be of interest to people not knowing/willing to wind their own baluns, at that point one may just need an enclosure to protect the balun and putting up a receive antenna will be as easy as 1-2-3.

Thank you for sharing this! Readers: Grayhat has been encouraging me to deploy a LoG antenna at my home and I do plan to do so in the coming months. Please comment if you use a LoG similar to the KK5JY model and what your results have been.

Thank you again for the tip, Grayhat!

A liquid-based VHF/UHF steerable antenna

Many thanks to SWLing Post contributor, Marty, who shares this fascinating article from the IEEE Spectrum:

A new antenna that uses saltwater and plastic instead of metal to shape radio signals could make it easier to build networks that use VHF and UHF signals.

Being able to focus the energy of a radio signal towards a given receiver means you can increase the range and efficiency of transmissions. If you know the location of the receiver, and are sure that it’s going to stay put, you can simply use an antenna that is shaped to emit energy mostly in one direction and point it. But if the receiver’s location is uncertain, or if it’s moving, or if you’d like to switch to a different receiver, then things get tricky. In this case, engineers often fall back on a technique called beam-steering or beamforming, and doing it at at a large scale is one of the key underlying mechanisms behind the rollout of 5G networks.

Beam-steering lets you adjust the focus of antenna without having to move it around to point in different directions. It involves adjusting the relative phases of a set of radio waves at the antenna: these waves interfere constructively and destructively, cancelling out in unwanted directions and reinforcing the signal in the direction you want to send it. Different beam patterns, or states, are also possible—for example, you might want a broader beam if you are sending the same signal to multiple receivers in a given direction, or a tighter beam if you are talking to just one.[…]

Click here to read the full article.

 

Swiss Army Knife FM antenna

Many thanks to SWLing Post contributor, Balázs Kovács, who shares the following video of a Swiss Army knife and tweezers being used as FM antennas:

Click here to view on YouTube.

Thanks for sharing this, Balázs. The video actually makes a good point: it takes so little to make an effective FM antenna to receive local stations. I’ve been with repair technicians when working on radios They’ll often use their precision screwdriver as an antenna to test the receiver before reassembly.

I also carry a couple cheap instrumentation patch cord with alligator clips on both ends to act as a short antenna or antenna extension when needed. Honestly, It’s amazing how often I reach for them!

Guest Post: Summer Daytime DXing 2019

Many thanks to SWLing Post contributor, TomL, who shares the following guest post:


Summer Daytime DXing 2019

by TomL

I took note of the mediocre band conditions this summer amongst amateur radio operators as they were making off the cuff comments about still being in a solar minimum.  Some had gone out and bought upgraded transmitters to solve the problem (MOAR WATTS!). And more power thrown at a weak ionosphere does seem to help get a signal farther.  I had not been out since the spring and decided to find out for myself. But instead of more watts, I wanted more height.

Greene Valley Scenic Overlook is open to the public from May through October on weekends only (and only from 11am-6pm).  It was the largest land fill (aka, garbage dump) in Illinois, now covered over and producing captured methane gas. On August 3 & 4, I ventured over there to see if its 190 feet above the surroundings might help my radio reception.

After trying my luck with a 12 foot vertical antenna on a tripod (and numerous children running around it chasing butterflies or looking at the view of Chicago), I went out the next day and parked away from anyone and put up my 19 foot vertical on the roof of the car.  This setup is still amazing to me and works much better than the tripod mounted antenna, probably because it has a proper ground plane as well as being 7 foot taller.

So, yes, the conditions were so-so, not too bad and not too good.  Lots of weak signals and some empty frequencies that I had expected to hear some South American stations around the 5 – 10 kw range.  Weak stations from Asia were more scratchy sounding than usual even with the extra 190 feet of height. Here are 5 broadcast recordings as a sample (times in UTC):

9920 kHz at 21.14 – Radio Thailand in Thai, just catching the end of the broadcast:

9685 kHz at 21.20 – Radio Free Asia in Chinese from Kuwait:

9650 kHz at 21.23 – Radio Guinea in French:

9445 kHz at 21.30 – All India Radio in English (fighting off computer generated noise on my SDR and cheap Dell laptop) and just getting a station identification:

11780 kHz at 21.44 – Radio Nacional de Amazonia booming in with the usual annoying host yelling enthusiastically over every tune he played:

Running out of things to listen to, I wandered over to the 20 meter amateur radio band and found a different situation.  Propagation was decent between the Western hemisphere and Europe. Lots of “pile ups” going on with people trying to make contact with their trans-Atlantic counterparts.  Some said they were running 500 watts or more, so more power does seem to help! Here are 5 recordings to show how active it was:

14171 kHz at 21.55 – Inaki (F5RAG) from southwestern France conversing with Carlos (YV3CRT) in Venezuela (surprised anyone is left in Venezuela with operating radio equipment and not sold off for food with the ongoing difficulties there).  Then Inaki makes contact with Alejandro (CE2ATS) from Chile with a good signal. All in Spanish:

14199.38 kHz at 22.04 – Ervin (VE3GAL) tries his QRP portable setup from Ontario to contact Ron (F4VSM) in Southwestern France who has a 500 watt setup and large Yagi antenna. Sometimes things do not go so well but that is the challenge of using low power, maybe around 10 watts (meaning that just because you can hear them, you cannot always transmit to them with the same effectiveness and vice-versa, for various reasons):

14228 kHz at 22.12 – “BAN” (IZ1PNT) from Italy makes contact with Norman (N3PVQ) in FL after asking everyone to be quiet. Good control over the frequency:

14238 kHz at 22.17 – Slavko (S57DX) booming in, making a contact (Rob, KK4HEQ) in Florida:

14245 kHz at 22.24 – Gabrielle from the Czech Republic, participating at a Youth event using station OL88YL contacting Ira (VP2EIH) in the British Virgin Islands and then another dude from Florida, Roy (AD4AN).  She handled it very well:

This outing was quite educational and I find it curious that people running 1000 watts or less are able to be heard well between continents but the large broadcasters were difficult to hear.  Antennas pointed in the right direction, at the right time of day and frequency, can certainly do amazing things, plucking those weak signals out of the air so easily. And I do think the extra height had something to do with hearing this magic, too!

Happy Listening,

TomL

NOTES:

  1. An easy way to lookup amateur radio operator “call signs” is to go to web site QRZCQ.com which does not need a login.  Some records may be out of date, but most of it is accurate.
  2. Setup used was a cheap Dell laptop, Windows 10, SDR Console 3.03,  connected to the AirSpy HF+, a Palstar amplified preselector, and an old Kiwa BCB filter, then going up to the car roof magnetic balun (a Palomar MLB2) which is then connected to the 4 magnet base and the MFJ 19 foot stainless steel antenna.  You can read about it here:

https://swling.com/blog/2018/07/guest-post-backpack-shack-3-0-part-3/


Brilliant report, Tom! It’s true: the bands are fickle, but like you I always find interesting things to hear on HF. I think your setup using your vehicle as the ground plane for the antenna is a fantastic idea. Plus, set up is easy, self-supporting, and you’ll never have to worry about a park ranger, for example, complaining because you have a wire suspended from a tree. And when there are no trees? You’re still golden. 

Thanks for sharing your experience and DX! Amazing that even with mediocre conditions, you still snagged some distant signals.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

LZ1AQ Evaluates Impact of the Height Above the Ground on Mag Loop Performance

Source: LZ1AQ

Many thanks to SWLing Post contributor, Harald Kuhl (DL1AX), who shares the following article on LZ1AQ’s website:

Published on: 2018/11/20, Rev. 1.0 July 2018, Rev. 1.1 Nov 2018

Author: Chavdar Levkov LZ1AQ

Setup

Two identical small loops were placed one above the other according to Fig.1. One of the loops is very low – almost on the ground. The other one is placed at height which usually is used by the loop users. Two AAA-1C wideband active antenna amplifiers were used. Their gain difference was not more than 0.3 dB. The feeder was FTP cable each 20 m long. No cable baluns were used. The outputs were connected through two way antenna switch to a SD RX (Perseus). I used a measurement technique described in – A Periodic Switching Technique to Compare Receiving Antenna Performance in the Presence of Strong Fading. This is a precise method to compare two receiving antennas with real sky wave signals and the resolution can be less than a decibel. The idea is to switch periodically between two antennas and to estimate their difference on a calibrated graphic strength meter of a SD radio.[…]

Click here to read the full article.

I’ve often assumed height had little effect on the performance of an HF loop antenna–this evaluation seems to support that theory. Thanks for sharing this, Harald!

Kev-Flex Stealth Kevlar Antenna Wire: an incredibly durable wire for field radio

My good friend David Cripe (NMOS) has recently informed me about a new product he’s offering to the radio community via his eBay store: Kev-Flex Stealth Kevlar Antenna Wire. Kev-Flex looks like a superb option for field antennas of all stripes especially since it has an incredibly high tensile strength. It’s available in 75′ bundles, but Dave can also cut custom lengths. NM0S is also a trusted retailer in the ham radio world, so you can purchase with confidence.

Here’s the product description and link:

Kev-Flex is a unique antenna wire manufactured exclusively for NM0S Electronics. The lightweight center core of the wire is made from Kevlar fiber, giving the wire its incredible strength. The Kevlar core is wrapped with six tinned strands of 30 AWG copper. The effective surface of the wire creates an effective skin area capable of handling well over 100W.

The cable is protected from the elements by a coating of UV-resistant black polyethylene. With a total diameter of only 1/16″ (incl. insulation) and a weight of just 16 feet per ounce, the tensile strength 125 lbs allows lengthy unsupported horizontal runs. Kev-Flex is ideal for extremely long LW-antennas and Beverages and is great for balloon or kite-supported antennas. Its low weight and high break-load makes it most suitable for SOTA activations and other field operations.

The outer insulation makes the wire kink-resistant, and its slippery finish makes it ideal for stealth antennas that must be passed through trees or other obstacles without snagging.

This antenna wire is sold in 75 foot long bundles, which is enough for a 40M dipole or EFHW. Two 75 foot bundles would make a great 80M dipole. Custom lengths are available on request.

Specification

– Kevlar fiber core wrapped with six 30 AWG copper strands
– Weather-proof black polyethylene (PE) insulation, 1/16″ O.D.
– Weight: 16 feet per ounce
– Breaking-load: 125 lbs
– Velocity factor 0.97

Click here to view on eBay.