Tag Archives: SDR

New Dragonfly wide band SDR with 32 MHz bandwidth

Many thanks to SWLing Post contributor, Franco (K4VZ), who writes:

Last night I came across a new SDR receiver from China called ‘RX-666’. On paper its specs are interesting: 16bit ADC, max sample rate 32MHz (in theory one could sample the whole LW+MW+SW bands at the same time), USB 3 interface, and tunable from 1kHz to 1.8GHz.

Its design seems to be a “derivative” of Oscar Steila’s (IK1XPV) BBRF103 SDR – see this post from Oscar – it looks like they upgraded the ADC, made use of a better voltage regulator, and moved to a 4-layer PCB (the original was a 2-layer PCB).

Unfortunately (for Linux people like me) they only have proprietary drivers running on Windows.

Besides the AliExpress store, I saw it is also available on eBay – the AliExpress vendor has two versions, a cheaper one with a ‘standard crystal’, and a more expensive one with an ‘upgraded crystal’; I messaged them earlier to find out what is the difference between the two, but I haven’t heard back yet.

I thought some of those readers of the Post who are interested in capturing large parts of the radio spectrum to decode later might want to look into this SDR receiver.

Thanks for the info on this SDR, Franco. I was not familiar with it. A 16 bit wide band SDR with a 32 MHz working bandwidth is most impressive–I’m sure FM DXers will be following this closely. I’m glad they’re using a USB 3.0 port but am very curious if it can even handle the amount of data should a user initiate a really wide spectrum recording. Perhaps recordings have capped bandwidths?

As a side note, someone should tell the manufacturer that their model number “RX-666” is…well…a culturally sensitive number!

Post Readers: Please comment if you’re familiar with this SDR.

Spread the radio love

Radio Waves: FCC Fines Drone Retailer, High School WSPR Buoy, Flashing Radio Firmware, and “Radio Recliner” Powered by Senior Resident DJs

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Ron, Pete Eaton, Paul Evans, and Jennifer Gulley for the following tips:


FCC Fines HobbyKing Nearly $3 Million for Marketing Unauthorized Drone Transmitters (ARRL News)

The FCC has issued a Forfeiture Order (FO) calling for HobbyKing to pay a fine of $2,861,128 for marketing drone transmitters that do not comply with FCC rules. An FCC Enforcement Bureau investigation stemmed in part from a 2017 ARRL complaint that HobbyKing was selling drone transmitters that operated on amateur and non-amateur frequencies, in some instances marketing them as amateur radio equipment. The fine affirms the monetary penalty sought in a June 2018 FCC Notice of Apparent Liability (NAL). The FCC said its investigation found that dozens of devices marketed by the company transmitted in unauthorized radio frequency bands and, in some cases, operated at excessive power levels. “Such unlawful transmissions could interfere with key government and public safety services, like aviation systems,” the FCC said.“We have fully considered HobbyKing’s response to the NAL, which does not contest any facts and includes only a variety of legal arguments, none of which we find persuasive,” the FCC said in the FO. “We therefore adopt the $2,861,128 forfeiture penalty proposed in the NAL.”[]

High School Marine Buoy Transmitter Now Active on 20-Meter WSPR (ARRL News)

Phil Karn, KA9Q; Randy Standke, KQ6RS, and members of the Mount Carmel High School Amateur Radio Club (MCHSARC) in San Diego have constructed and deployed an amateur radio marine buoy in the Pacific. The buoy, which transmits WSPR on 14.0956 MHz USB, has already been heard around the continental US, Brazil, Hawaii, Japan, Costa Rica, Australia, and South Africa.

“Over the past year, Randy and I have mentored the MCHSARC in designing and constructing a simple marine buoy that was deployed from the RV Sally Ride [on July 16], about 700 kilometers off the coast of southern California,” Karn said in a post on the AMSAT Bulletin Board. “It is up and transmitting WSPR on 20 meters using the call sign KQ6RS, and is being received all over the US and into Canada and Brazil.” Karn is blogging about the project with updates.

The electronics are the 20-meter WSPR version of the WB8ELK “pico tracker” that has been flown on long-duration balloons. “We removed the solar panels and substituted 21 ordinary alkaline D cells, wired to supply 4.5 V,” Karn explained. “We estimate battery lifetime will be 6 months.”

[…]The first reception report was on July 16 at 12:52:30 UTC from grid square CL89eu, although the current carried the buoy east into CL89fu at 20:32:30 UTC. The buoy (KQ6RS-1) can be tracked on the APRS and WSPRnet sites.[]

Stop Bad Laws Before They Start (Hackaday)

With everything else going on this summer, you might be forgiven for not keeping abreast of new proposed regulatory frameworks, but if you’re interested in software-defined radio (SDR) or even reflashing your WiFi router, you should. Right now, there’s a proposal to essentially prevent you from flashing your own firmware/software to any product with a radio in it before the European Commission. This obviously matters to Europeans, but because manufacturers often build hardware to the strictest global requirements, it may impact everyone. What counts as radio equipment? Everything from WiFi routers to wearables, SDR dongles to shortwave radios.

The idea is to prevent rogue reconfigurable radios from talking over each other, and prevent consumers from bricking their routers and radios. Before SDR was the norm, and firmware was king, it was easy for regulators to test some hardware and make sure that it’s compliant, but now that anyone can re-flash firmware, how can they be sure that a radio is conformant? Prevent the user from running their own firmware, naturally. It’s pretty hard for Hackaday to get behind that approach.[]

New Internet Radio Station Helps Seniors Share Their Favorite Music (NPR)

A new internet radio station called Radio Recliner has started during the coronavirus pandemic. It gives residents in senior living facilities a chance to share some of their favorite music.

Click here to check out the Radio Recliner website.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

NASA’s SCAN testbed was an orbiting multi-function SDR

SCAN Testbed (Source: NASA)

Many thanks to SWLing Post contributor Dan (VR2HF) who writes:

“This looks like the world’s most expensive SDR to me. And a little mysterious. Like quantum computing!”

(Source: NASA)

Space Communications and Navigation (SCAN) Testbed

The SCAN Testbed, formerly known as Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT), served as a test facility for NASA research on radio communications and the Global Positioning System (GPS).

SCAN Testbed on International Space Station (Source: NASA)

The SCAN Testbed was launched on July 20, 2012 on a Japanese H-IIB Transfer Vehicle and installed in the International Space Station to provide an on-orbit, adaptable software-defined radio (SDR) facility with corresponding ground and operational systems. This permitted mission operators to remotely change the functionality of radio communications through software once deployed to space, offering them flexibility to adapt to new science opportunities and recover from anomalies within the science payload or communication system.

The SCAN Testbed payload was used to conduct a variety of experiments with the goal of further advancing other technologies, reducing risks on other space missions, and enabling future mission capabilities.

After seven successful years, and more than 4,200 hours of testing, it was decommissioned June 3, 2019 as it burned up in the trunk of SpaceX CRS-17 upon reentry into Earth’s atmosphere.

To learn more:
Communications Testbed Leaves Legacy of Pioneering Technology 
2019 Space Technology Hall of Fame: Ka-Band Software-Defined Radio (SDR)/Harris AppSTAR™ Architecture
NASA’s Space Communications Testbed
Unique Testbed Soon will be in Space
SCAN Testbed Celebrates One Year Anniversary
Glenn Research Center SCAN Testbed

Thank you for sharing this, Dan! I had never heard of the SCAN testbed. I can only imagine what it might have been capable of accomplishing from orbit. I dare say there are even more powerful SDRs orbiting the planet at this moment!

Spread the radio love

The new Silphase R1 SDR receiver


I’ve just learned about a new SDR receiver in development by the Polish company Silphase. It’s called the Silphase R1 and appears to be a stand-alone, high-performance SDR receiver.

What could set this receiver apart from the rest is the:

  • Color backlit 5″ TFT touch screen display
  • Magnesium alloy body/chassis
  • USB out for recording and native logging
  • Record to internal “flash memory” (unclear if audio and/or spectrum)
  • Four internal speakers
  • 12.6V 12000 mAh, internal battery
  • IP55 rating for water/dust protection
  • The price is $1199/€1099 with no expected availability date at time of posting
  • Click here to download the PDF product brochure.

The receiver is portable and will measure 11.25×4.3×2.2in (285×110×55mm). Looks like the screen will be 5″ which should allow for a detailed spectrum viewing area (for comparison, the Icom IC-7300 TFT display is 4.3″)

Siphase is a new company based in Poland and they claim they also plan to eventually produce transceivers:

“At the end of 2020 we will introduce a 25W transceiver in the same form factor powered by an internal battery, and a bit little later a 100W transceiver in the same form factor also powered by an internal battery.”

The Silphase product page has a complete list of specifications, but here are some worth noting:

  • Frequency coverage RX 0.1–30MHz
  • Frequency resolution 1Hz
  • Frequency steps 1Hz to 1KHz
  • Dual VFO
  • Direct sampling 16bit high speed 122 M/s ADC
  • Modes: CW, SSB, AM, FM
  • Sensitivity 1.8–29.999MHz, SSB/CW: (BW: 2.4kHz at 10dB S/N) – 132 dBm, 0.06?V
  • 20dB LNA
  • Spurious and image rejection >90 dBm
  • Clipping level -3dBm
  • DSP (various filters, adaptive noise reduction, automatic notch filter, notch blanker, adjustable filters (0-1KHz HPF,0.5-6KHZ LPF, 50Hz step, etc.)
  • AGC (slow, medium, fast)
  • Main filter sharpness Factor 1.05 and lower
  • Audio recorder (use the internal flash memory or USB 16GB external flash memory)
  • Virtual USB audio card for OS update
  • Ham radio hardware log
  • OS QNX (“UNIX-like” real time operating system)
  • Telescopic antenna with F connector
  • Main optical encoder and four multifunction encoders
  • 6 input modes buttons (attenuators, adjustable filters, AGC, NB, auto notch filter, NR)
  • Power supply requirement 12.6 DC ±15%
  • Power consumption RX 0.6 A typical
  • Battery 12000 mAh, 12.6V (3×3.7V/12000 mAh)
  • Operating time 20 Hours
  • Operating temperature range –10C to +60C; 14F to 140F
  • Frequency stability Less than ±0.2ppm (–10?C to +60?C; 14?F to 140?F)
  • Dimensions (W×H×D) 285×110×55mm; 11.25×4.3×2.2in
  • Weight (approximately) 1.8kg; 4 lbs
  • Magnesium alloy body, IP55 (in future IP 67)
  • “Expected Operational Lifetime 30 Years” With One Year Warranty – Additional Warranty
  • Made in EU

As I learn more about this receiver and the company producing it, I’ll post updates with the tag: Silphase R1

Click here to check out the Silphase website.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Videos: RTL-SDR/YouLoop combo and exploring SDRs

Many thanks to SWLing Post contributor, Rob, who writes:

I recently made another video on the AirSpy YouLoop – this time paired in a configuration that shouldn’t really work. I used it with an RTL-SDR v3 dongle in direct sampling mode, and signals still came in. This was somewhat of a surprise given the RTL-SDR v3 isn’t primarily designed for HF.

It may be interesting to readers of the SWLing blog.

I have also started a 2020 SDR Guide that may also have some relevance. Episode 1 looked at some of the things that are possible using Software Defined Radios, and Episode 2 which was released yesterday was an introduction to accessing over 500 online SDRs through 4 different platforms. I focused mainly on HF, and although I didn’t specifically mention the broadcast bands, gace a demo of each platform (KiwiSDR, WebSDR, SpyServer & SDR Console).

Spread the radio love

Sneak peek of the Apache Labs Andromeda 100 watt SDR transceiver

Many thanks to Apache Labs who share the following announcement:

Sneak peek at the Andromeda 100W Transceiver……

10th GEN Intel 6 Core i7, 7 inch built in touch screen and an option to add up to two External HD Monitors.

Windows 10 Powerful PC and an Ultra High performance 100W SDR with PureSignal Goodness in a single compact Box!

Run FT8 and other Digital Modes out of the box!

Coming Soon!

We will post more information about the Andromeda transceiver when we have solid details.

Spread the radio love

The 2020 Software Defined Radio Academy will be held online

Many thanks to SWLing Post contributor, Alexander (DL4NO), who shares the following announcement from Markus (DL8RDS):

This year’s Software Defined Radio Academy is taking place as an online conference. Because of the great number of contributions, we are spanning the conference over two days: Saturday June 27 and Sunday June 28 2020.

We also decided to start the stream in the afternoon in order to give our overseas audience a fair chance to participate.

We have pre-recorded the talks, so there is no back-channel or interruption during the talks, but the speakers will be available in our video conferencing system and we will closely observe all the comments that will be submitted into the channel. At the end of the according slots, there is always a little time left for the speakers to respond. So there is a certain degree of interaction and we do encourage you to make use of it.

Our mother organisation, the German Amateur Radio Club DARC also decided to provide a decent online substitute to the HAMRADIO hamvention that was called off by the authorities and I’m proud to say that our team was giving the ideas and helped this really large event to take place. Alltogether our video team, the other video team from Faszination Amateurfunk and the DARC permanent staff managed to provide more than 60 hours of talks, discussions and fantastic content, which will be streamed at this weekend. For those of you who understand German, here is the streaming plan:

https://www.darc.de/fileadmin/filemounts/gs/oeffentlichskeitsarbeit/Veranstaltungen/HAM_RADIO/HAMOnline_Sendeplan.pdf

Back to the Software Defined Radio Academy:

I wrote that the programme is ready. Please check it out here:

https://2020.sdra.io/pages/programme.html

We’re looking forward to welcome all of you on our YouTube stream.
Please enjoy!

And please feel free to redistribute this information.

BR / VY73
Markus
DL8RDS

Thank you for the tip, Alexander!  Looks like an amazing lineup!

Click here to view the SDR Academy YouTube channel.

Spread the radio love