Shortwave listening and everything radio including reviews, broadcasting, ham radio, field operation, DXing, maker kits, travel, emergency gear, events, and more
Before I start talking Youloop, I have a little confession to make up front:
At the Winter SWL Fest when I gave a presentation about Portable SDR DXing, not only did I give attendees the wrong name of the Airspy Youloop antenna, but I also configured it incorrectly, hence the poor performance via my Miscrosoft Surface Go tablet PC.
I had assumed the the crossover component of the antenna was the transformer component. I realized the mistake I made when I saw some of the first promotional photos of the Youloop antenna a few weeks ago.
The crossover connects both sides of the loop while the tee junction contains the transformer.
Doh! I’m trying to forgive myself for making such an obvious mistake, but in my defence–and in the spirit of full disclosure–my antenna was a very early sample prototype without instructions, diagrams, etc. so I set it up imagining it being similar to the homebrew loop Vlado and I built. (FYI: When I say “Vlado and I built” it, I really mean, “Vlado built it.”)
So obviously I made a poor assumption.
Once I assembled the antenna correctly? Wow. Just. Wow!
Youloop: The ideal travel antenna for high dynamic range SDRs
The Youloop, Airspy HF+ Discovery, SDRplay RSPdx, and all cables easily fit in my Red Oxx Lil Roy pack.
The Youloop is truly the travel antenna I’ve always wanted for portable SDR DXing. Here’s why:
I’ve also used it numerous times with the new SDRplay RSPdx while using SDRuno in High Dynamic Range (HDR) mode. With the RSPdx, I can make spectrum recordings of the entire AM broadcast band. Note that HDR mode is only available on the RSPdx at 2 MHz and below, using the SDRuno app.
I have not tested the Youloop with other SDRs yet. I will soon test it with my WinRadio Excalibur.
So how well does the Youloop perform?
Listen for yourself!
I’m doing a little cargiving family members today. Their home is swimming in RFI (radio interference/noise). In the past, I’ve struggled to make good mediumwave recordings at their home–certainly an ideal situation for a mag loop antenna.
This morning, I wanted to record one of my favorite local AM stations (WAIZ at 630 kHz), so I set up the Youloop in the middle of a bedroom, hanging off a large bookshelf set against an interior wall. In other words: not an ideal situation.
When I plugged in the Airspy HF+ Discovery and loaded the Airspy SDR application, I fully expected to see a spectrum display full of broadband noise.
Instead, I saw signals. Lots of signals:
Sure, there’s some noise in there, but it’s low enough I could even do proper mediumwave DXing on most of the band if I wished.
In fact, if you’d like to experience the HF+ Discovery/Youloop pairing in this compromised, less-than-ideal DXing setup, why not tune through one of the spectrum recordings I made?
The recording was made on March 30, 2020 starting around 10:50 UTC. You’ll need to open this file inAirSpy’s free application SDR#or a third party SDR app that can read AirSpy .wav files.
I can’t wait to try the Youloop in other locations. Since we’re in lock-down due to Covid-19, I won’t be able to try the Youloop in a hotel any time soon. Almost all of my 2020 travel plans have been canceled.
Highly recommend
If you have one of the SDRs mentioned above, go grab a Youloop. At $35 USD, it’s a fantastic deal.
I devoted a good portion of the presentation describing how to build a passive loop antenna design by Airspy’s engineer and president, Youssef Touil. This passive mag loop takes advantage of the Airspy HF+ Discovery‘s exceptionally high dynamic range and is an impressive performer.
In short? This passive loop antenna pairs beautifully with the Airspy HF+ Discovery. I’ve also been very pleased with results using the new SDRplay RSPdx on the mediumwave band where the receiver now sports a high dynamic range mode.
Overdue corrections…
After returning from the Winter SWL Fest last week, I was hit with an upper respiratory bug. No doubt, a souvenir of my travels! It wasn’t the flu (I was tested), nor COVID-19, but it did knock me off my feet for a few days with fever, coughing, and headaches. You might have noticed a lot less posts last week and almost no replies from me via email. I’m only now feeling totally human again and trying to catch up with my backlog.
Shortly after my SWL Fest presentation, I realized I made (at least!) two mistakes. I had planned to post corrections here on the SWLing Post last week, but the bug delayed all of that, so here you go:
#1 Schematic of my homebrew passive loop antenna
When Youssef started experimenting with passive loop antenna designs, he posted a few schematics of at least three build options.
Although I described how to build my passive loop antenna, I grabbed the wrong schematic for my presentation slides. Many thanks to those attendees who noticed this.
Here is the schematic I should have shared:
Note that the transformer has four turns on both sides (the one in the presentation had 4:2).
Again, apologies for any confusion.
#2 The Airspy Youloop passive loop antenna
If you’re not inclined to build your own passive loop antenna per the diagram above, Airspy is planning to manufacture and sell a lightweight, high-performance loop of a similar design.
Prototype of the Airspy Youloop in the field (note bright blue cable jacket)
During the presentation, I called the future AirSpy antenna, the “Spytenna.” I was incorrect. (Turns out, I got this name from an early antenna schematic and somehow it stuck in my head!)
Airspy is calling their passive loop antenna the Youloop. Youssef posted the following note in the Airspy email discussion group:
We are currently arranging the shipping of the affordable passive version to Airspy.us and RTLSDR Blog.
Btw, It’s called “Youloop”
Many thanks to Richard Langley and a number of other readers who pointed this out last week.
I’ve had a prototype of the Youloop since November and brought it to the SWL Fest and presentation. It’s a quality antenna and incredibly compact when disassembled and rolled up.
When the Youloop is available to order, we’ll post links here on the SWLing Post.
More to come!
Once I catch up here at SWLing Post HQ, I plan to publish detailed construction photos of the homebrew loop antenna.
Many of you have questions about how to tap into the center conductor at the mid-point of the loop. These photos should help guide you.
Here’s an update on additional software for the RSPdx. SDRplay’s SDRuno fully supports the RSPdx but it takes several weeks for other software to catch up to the capabilities offered on the other RSP models.
Simon Brown has released his latest version of SDR Console V3 which supports the RSPdx (Version 3.0.18 dated January 1st) over on https://www.sdr-radio.com/ (make sure you download the latest API 3.x from our downloads page first)
We have released an EXTIO plugin for the RSPdx which will enable the RSPdx to work with any EXTIO-based software (e.g. HDSDR) although it doesn’t support HDR mode. HDR mode will not be added and the source code for the plugin can be found on our GitHub repository (https://github.com/SDRplay/ExtIO_SDRplay) we will not be supporting the plugin source code or extending the plugins capabilities. They are all free to be modified.
It is important to note that the RSPdx ExtIO plugin does NOT, AND WILL NOT, support HDR mode. If you need HDR mode, then SDRuno is the best option. HDR mode requires the end application to work in a certain way and this is not something that can be controlled via the ExtIO protocol.
Work has also begun on supporting RSPdx for SoapySDR based applications such as Cubic SDR (again this won’t include HDR mode). A Gnu Radio source block for the RSPdx will follow.
We are working with Steve Andrew, author of the Software Analyser software programme (see https://www.sdrplay.com/spectrum-analyser/ ) to help get compatibility for the RSPdx – this is a slightly longer process so this will take several more weeks.
Regarding stocks of the RSPs, SDRplay and most of our resellers on www.sdrplay.com/distributors/ have plenty of stock of RSP1A and the RSPduo. However there continues to be a shortage of the RSPdx whereby many of the resellers have sold out of their first deliveries. SDRplay is queuing up their replacement orders on a first come, first served basis. We also have our own quantity planned in there to allow us to sell direct from our website. We still hope that by the end of January we will have supplied this second wave of RSPdx demand.
Many thanks to SWLing Post contributor, Mike Ladd with SDRplay, who shares the following videos comparing the new RSPdx with a number of benchmark SDRs:
SDRplay RSPdx and ELAD FDM-S2 weak NDB station
SDRplay RSPdx and ELAD FDM-S2 medium wave selectivity
https://youtu.be/ah5Zu8qgvp8
SDRplay RSPdx and Airspy HF+ Discovery medium wave selectivity
SDRplay RSPdx and Airspy HF+ Discovery weak NDB station
SDRplay RSPdx and Microtelecom Perseus medium wave selectivity
SDRplay RSPdx and Microtelecom Perseus weak NDB station
Many thanks to SWLing Post contributor, Ivan (NO2CW), who writes:
The new RSPdx has what they call “High Dynamic Range: (HDR) mode below 2 mHz. I tested a day after receiving the new unit by turning HDR mode on and off. It seemed to make quite a difference when receiving Non Directional Beacons.
As far as Medium Wave itself, I did see some difference but it was harder to make conclusions there as propagation of weak signals on medium wave can change up and down in the course of a minute and some additional testing on Medium Wave will be done in the future. Overall for anyone interested in the world below 2 mHz HDR mode is definitely something to explore!
For over two weeks now, I’ve had an early production model of the RSPdx here in the shack operating on a beta version of the SDRuno application.
In the spirit of full disclosure, SDRplay is a long-time supporter of the SWLing Post and I have alpha- and beta-tested a number of their products in the past. This early production RSPdx was sent to me at no cost for a frank evaluation, and that’s exactly what I’ll offer here. To be clear, while I am using beta software, this is not a beta SDR, but one from a first limited production run.
And thus far, I must say, I’m impressed with the RSPdx.
Upgrades
The RSPdx has been introduced as a replacement for the RSP2 and the RSP2pro receivers. It has been updated and upgraded, with a completely new front-end design.
Here are the highlighted improvements and changes:
Performance below 30 MHz has been enhanced when compared to the RSP2/RSP2pro.
Performance below 2 MHz has been substantially upgraded. Through the use of the new HDR mode, both dynamic range and selectivity have been considerably improved.
There is now a BNC antenna connector on antenna C position instead of a HiZ port. Both A and B antenna ports are SMA like other RSP models.
Let’s face it: those of us interested in low-cost SDRs are spoiled for choice these days. The market is chock-full of sub-$200 SDRs, especially if you include all of the various RTL-SDR-based SDRs and knock-off brands/models one can find on eBay.
Personally, I invest in companies that support radio enthusiasts for the long haul…those that do their own designs, innovations, and production. SDRplay is one of those companies.
SDRplay’s market niche has been providing customers with affordable, high-performance wideband receivers that cover an impressive 1 kHz to 2 GHz.
Wideband coverage can come at a cost. Unless you pay big money for a commercial-grade wideband receiver, you’re going to find there’s a performance compromise somewhere across the spectrum. On the RSP2 series, those compromises would have been most apparent on frequencies below 30 MHz.
That’s not to say HF, MW, and LW performance was poor on the RSP2 series–indeed, it was quite impressive and well-balanced; it just didn’t stack up to the likes of the similarly-priced AirSpy HF+ and HF+ Discovery, in my humble opinion. Both little Airspy SDRs have wooed DXers with their impressive dynamic range and overall ability to work weak signals in the HF portion of the spectrum.
Neither of the AirSpy HF+ models are wideband receivers, but still offer a generous range: 9 kHz to 31 MHz and from 60 to 260 MHz––about 11.5% of the frequency coverage of RSP models. (Note that the Airspy R2 and Mini do cover 24 – 1700 MHz.) For shortwave radio listeners that also want to venture into the UHF and SHF regions, a wideband SDR is still required.
It’s obvious SDRplay’s goal is to make the wideband RSPdx into a choice receiver for HF and, especially, for MW/LW DXers. But have they succeeded? Let’s dive in…
Performance
As I say in most of my SDR reviews: doing comparisons with receivers that have so many features and adjustments is never easy. In other words, we want an apples-to-apples comparison, but it can be difficult to achieve, especially with new products.
The RSPdx, Excalibur, and HF+ Discovery all used the same antenna in my tests––a large, horizontal delta loop antenna, via my ELAD ASA15 amplified antenna splitter. I’ve used this antenna splitter for years and can vouch for its equitable, lab-grade distribution of signal.
The RSPdx is not in full production at time of posting, thus application options are limited. Typically, I’d load comparison SDRs in SDR Console or HDSDR and test them with identical settings as well. At present, the RSPdx is only compatible with a beta version of SDRplay’s own application, SDRuno (which will come out of beta rior to the first major production run). The benefit of using SDRuno is that you unlock the full potential of the RSPdx, plus signal and noise numbers are incredibly accurate.
For each SDR in this comparison, I used their native/OEM application to give them the best possible performance.
I also matched filter settings and made an effort to match AGC and volume settings as closely as I could.
Additionally, I resisted the temptation of comparing my RSP2 with the new RSPdx because I didn’t want to run two simultaneous instances of SDRuno on the same computer––especially considering one was in beta.
Is this comparison perfect? Probably not, but I did the best with the time I had available. I do intend to make further comparisons in the future.
Longwave performance
Via the RSPdx’s new “HDR” mode, both dynamic range and selectivity have been considerably improved with frequencies below 2 MHz. While I’ll fully admit that I’m not much of a longwave DXer, my very first listening session with the RSPdx started in this region of the spectrum.
In fact, the first evening I put the RSPdx on the air and confirmed that I was, indeed, in HDR mode, I noticed a small carrier via the spectrum display on 171 kHz. I clicked on it and quickly discovered it was Medi 1. The signal was faint, but I could clearly ID at least one song. This truly impressed me because I believe this was the first time I had logged Medi 1 on longwave from the shack.
I didn’t connect the Excalibur at that point to see if it could also receive the faint Medi 1 signal, but I imagine it could have. I’m pretty sure this would have been outside the reach of the RSP2, however.
I tried to explore more of the longwave band, but due to local RFI (I suspect an appliance in my home), most of the LW band was inundated with noise. With that said, I did grab three of my benchmark non-directional beacons.
Obviously, the RSPdx is a capable LW receiver. I would like to spend more time on this band once I’ve tracked down the source of my local RFI.
Mediumwave/AM performance
In the past two weeks, I’ve spent many hours with the RSPdx on mediumwave.
We’re heading into the winter months in the northern hemisphere, and that’s normally when my listening habits head south on the bands.
In short: I find the RSPdx to be quite sensitive and selective on the mediumwave bands while the HDR mode is engaged. A major improvement over its predecessor.
I primarily compared the RSPdx with my WinRadio Excalibur on mediumwave since I consider the Excalibur to be a benchmark MW receiver. And, as you’ll hear in the screencasts below, the RSPdx truly gives the Excalibur a run for its money:
Note that my horizontal delta loop antenna is omni-directional, hence the tug-of-war you hear between stations in the clips above.
In truth, I could have done more to stabilize the signal on both of these fine SDRs, but I wanted to keep the comparison as fair as possible.
You might have noticed that both were running AM sync mode. It seems the sync lock on the RSPdx may have also improved––though I would need to do a direct comparison with the RSP2 to know for sure––but in terms of stability, I still found that the WinRadio Excalibur was superior. Mind you, the Excalibur is a $900 – $1,000 receiver and has the strongest synchronous detector of any radio I’ve ever owned.
Shortwave/HF
SDRplay notes on the preliminary specifications sheet that the RSPdx has been “enhanced” when compared with the RSP2 series.
And, after having spent two weeks with the RSPdx on the shortwave bands, I would say this is a bit of an understatement. For although I haven’t compared the RSPdx directly with the RSP2 yet, I do feel HF performance is substantially better than its predecessor. Indeed, in my comparisons, I often found it gave the Excalibur some serious competition. Overall, the Excalibur had an edge on the RSPdx, but the gap has closed substantially. That’s saying something.
For the comparison videos below, I also included the excellent AirSpy HF+ Discovery.
As you can see and hear, the RSPdx is now in the league of some of the finest HF receivers in my arsenal.
But I’m curious to know what you think after listening to these comparisons. Please comment!
Notch Filters
For those of you living in areas with DAB/DAB+ broadcasters nearby, you’ll be happy to note that the RSPdx has a DAB filter to help mitigate any potential overloading.
Also, if you live near a blowtorch mediumwave station, you’ll be quite pleased with the MW notch filter. It’s so effective at filtering out the mediumwave band, my local blowtorch on 1010 kHz is barely visible on the spectrum once the notch filter is engaged. (Note: I should add that neither the DAB nor the mediumwave notch filter was engaged during any of my previous comparisons above.) Check out the screen shots below showing the mediumwave band before and after the MW notch filter is engaged:
Before:
After:
Summary
For those of you looking for a budget wideband SDR with solid performance below 30MHz, look no further.
For $199 US, you’re getting a quality UK-designed and manufactured SDR in a proper metal housing. The OEM application, SDRuno, is one of my favorite SDR applications and can fully take advantage of the RSPdx’s new HDR mode. No doubt, with a little more time, most third-party SDR applications will also support the RSPdx.
Frankly, I was expecting classy mediumwave and longwave performance as this was the most touted upgrade of the RSPdx. SDRplay certainly delivered.
In my experience, SDRplay doesn’t oversell their products. Their preliminary product sheet mentioned improved performance on HF, but their press release didn’t even mention the HF upgrades. And this is where I, in particular, noticed significant improvement. Perhaps this is because I am primarily an SWLer, thus spend a larger portion of my time in the HF region.
SDRplay products also have a mature, robust SDR application via SDRuno. Day to day, I tend to use Simon Brown’s SDR Console as my primary SDR application, since it’s compatible with so many of my SDRs and also offers some of the best recording functionality for those of us who do audio and spectrum archiving. Each time I beta test or review an SDRplay SDR, however, I’m more and more impressed with SDRuno. It’s evolved from being a rather cluttered application to one with a thoughtful, cohesive user interface that’s a joy to use––a product of true iterative agility.
Indeed, after having used SDRuno exclusively these past two weeks, I believe I would consider it as my primary SDR application…if only it had audio recording in addition to spectrum recording, and could run multiple instances with multiple SDRs. Again, given a little time, I wouldn’t be surprised if some of this functionality is eventually integrated.
Questions?
Since many SWLing Post readers already own an SDR, I’m sure some of you will have questions. Let’s address a few of those right now.
Question: “I have an RSP2/RSP2pro. Should I upgrade to the RSPdx?”
My recommendation: If you are a shortwave, mediumwave, or longwave DXer, I would indeed recommend upgrading to the RSPdx. If you primarily use your RSP2 series SDR on frequencies above 30 MHz and only occasionally venture below for casual listening, then I’d keep the RSP2.
Question: “I have an RSP1a. Should I upgrade to the RSPdx?”
My recommendation: If you’ve been enjoying your RSP1a and would like to take your listening/monitoring to the next level, then, yes, I would upgrade. Not only can you take advantage of the RSPdx’s enhanced performance, but the RSPdx affords you three antenna ports, and has a more robust front end.
Question: “I have an RSPduo. Should I buy the RSPdx?”
My recommendation: I’m a big fan of the RSPduo. Unless you’re a dedicated mediumwave/longwave DXer, or you’d just like to add another separate SDR to your radio arsenal, I wouldn’t rush out to buy the RSPdx.
And while I’m offering advice, I’d like to offer my standard two cents on the subject of performance optimization: a radio is only as good as its antenna!If you have a compromised antenna, invest in your antenna before upgrading your radio. You’ll be glad you did.
Conclusion
Happily, I can recommend the SDRplay RSPdx without hesitation. This latest iteration of the RSP series SDR is a proper step forward in terms of performance and functionality––obviously implementing years of customer feedback.
SDRplay also has a proven track record of innovation and customer support. Their documentation, video tutorials, and community are among the best in the industry. Purchase with confidence.
SDRplay Limited has announced the launch of a new Software Defined Radio product – the RSPdx.
The RSPdx is a replacement for the highly successful RSP2 and RSP2pro SDR receivers, which have been extensively redesigned to provide enhanced performance with additional and improved pre-selection filters, improved intermodulation performance, the addition of a user selectable DAB notch filter and more software selectable attenuation steps . The RSPdx , when used in conjunction with SDRplay’s own SDRuno software, introduces a special HDR (High Dynamic Range) mode for reception within selected bands below 2MHz. HDR mode delivers improved intermodulation performance and fewer spurious responses for those challenging bands.
The SDRplay RSPdx is a single-tuner wideband full featured 14-bit SDR which covers the entire RF spectrum from 1kHz to 2GHz giving up to 10MHz of spectrum visibility. It contains three antenna ports, two of which use SMA connectors and operate across the full 1 kHz to 2 GHz range and the third uses a BNC connector which operates up to 200MHz.
The RSPdx also features a 24 MHz ‘plug and play’ reference clock input which allows the unit to be synchronised to an external reference clock such as a GPS disciplined oscillator (GPSDO)
Due to its exceptional combination of performance and price, the RSP family of receivers have become very popular, and the RSPdx builds on the learning and feedback from many thousands of users across the amateur, scientific, educational and industrial SDR community.
As was the case for the other RSP family members, SDRplay will work with developers of the popular third party SDR receiver software packages to maximise compatibility. SDRplay will also provide multiplatform driver and API support which includes Windows, Linux, Mac, Android and Raspberry Pi 3 and 4.
The RSPdx will be available to purchase in the next few weeks and is expected to retail at approximately £159 GBP or $199 USD (excluding taxes).
For more information visit the SDRplay website on www.sdrplay.com About SDRplay:
SDRplay limited is a UK company and consists of a small group of engineers with strong connections to the UK Wireless semiconductor industry. SDRplay announced its first product, the RSP1 in August 2014
Spread the radio love
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!