Pete rediscovers the 1984 Channel 4 Film “C.Q.”

Many thanks to SWLing Post contributor,  Pete Madtone, who writes:

I was coming home from my tai chi class in the local park yesterday and remembered this play that I watched a long time ago. Please tell me you don’t know it!

[In] the credits at the end it has another radio connection: the UK reggae DJ (BBC) David Rodigan. Great eh?

“Life changes dramatically for radio amateur Norman when he gets in touch with a round-the-world yachtsman who introduces him to a different life – and a taste of fame.”

Thanks, Pete! I was not at all familiar with this TV Movie, but I absolutely love the nostalgia factor!

Post readers: Anyone familiar with “C.Q.”–? Do you remember watching it when it was first broadcast in 1984? Please comment!

 

Spread the radio love

Dan spots a shortwave radio in Canadian TV series “Pure”

Many thanks to SWLing Post contributor, Dan Robinson, who writes:

[Found this Tecsun S2000 or Grundig 750] in the Canadian TV series Pure, which lasted 2 seasons, about Mennonites in Ontario involved in drug trafficking from Mexico.

Thanks for the tip, Dan! I was not at all familiar with this series.

We’ll put this in our ever-growing collection of radios in movies.

Spread the radio love

FTIOM & UBMP, October 25-31

From the Isle of Music, October 25-31:
Part 1 of 2 parts: Special guest Zenovio Hernández Pavón, a prolific researcher, author, historian and radio producer in Holguín, helps us explore Holguín’s important and distinctive musical culture with several examples.
The broadcasts take place:
1. For Eastern Europe but audible well beyond the target area in most of the Eastern Hemisphere (including parts of East Asia and Oceania) with 100Kw, Sunday 1500-1600 UTC on SpaceLine, 9400 KHz, from Sofia, Bulgaria (1800-1900 MSK)
2. For the Americas and parts of Europe, Tuesday 0000-0100 on WBCQ, 7490 kHz from Monticello, ME, USA (Monday 8-9PM EDT in the US).
3 & 4. For Europe and sometimes beyond, Tuesday 1900-2000 UTC and Saturday 1300-1400  (NEW UTC) on Channel 292, 6070 kHz from Rohrbach, Germany.
Our Facebook page is https://www.facebook.com/fromtheisleofmusic/
Our V-Kontakte page is https://vk.com/fromtheisleofmusic
Our Patreon page is https://www.patreon.com/tilford

Uncle Bill’s Melting Pot, October 25, 27 and 31:
Episode 188 presents a variety of musical styles from Venezuela. If you have never been to Venezuela (maybe even if you have), some of what you will hear will surprise you.
The transmissions take place:
1.Sunday 2200-2300 (6:00PM -7:00PM EDT) on WBCQ The Planet 7490 kHz from the US to the Americas and parts of Europe
2. Tuesday 2000-2100 UTC on Channel 292, 6070 kHz from Rohrbach, Germany for Europe.
3. Saturday 0800-0900 UTC on Channel 292, 9670 kHz from Rohrbach, Germany for Europe.
Our Facebook page is https://www.facebook.com/UncleBillsMeltingPot/
Our V-Kontakte page is https://vk.com/fromtheisleofmusic
Our Patreon page is https://www.patreon.com/tilford

Spread the radio love

Video: Uncovering a Buried Co-Channel Station with the New AirSpy SDR# Tool

AirSpy’s Youssef Touil shares a video from YouTube author “PY3CRX&PY2PLL” which dramatically demonstrates the extent to which the Co-Channel Canceller tool can uncover a much weaker signal beneath a powerful one:

Youssef commented on the video that It only needs some tweaking to the lock/offset to get a perfect decode. So, presumably the result could be even better than heard here.

For more information on the Co-Channel Canceller, see my original article here, and the follow-up piece.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Mike’s SDRuno frequency database

Many thanks to Mike Ladd at SDRplay who notes that he has posted his extensive SDRuno frequency banks on the SDRplay website. If you aren’t a frequent user of SDRuno’s memory banks, I would highly recommend loading Mike’s frequencies as a means of a little radio frequency discovery!

Click here to download via the SDRplay website.

Spread the radio love

How to properly install a Mini Whip antenna in an noisy urban environment

Many thanks to SWLing Post contributor, Grayhat, who shares the following guest post:


Setting up a Mini Whip antenna

by Grayhat

I’ve been fiddling with my “balcony antenna” experiment for quite a while now, and I settled with a Linear Loaded Dipole (LLD, also known as “Cobra”) which, in my case, due to self-imposed limitations was a short one (about 9m total).

Since I mentioned it, here is a pic of the antenna showing its installation:

Click images to enlarge.

In the above image you can see the overall setup of the LLD, the modification I did, by adding additional wires to the end of the arms and also the Mini Whip location

The LLD served me well, from LW up to around 200MHz allowing me to listen to broadcasters, hams, aircraft communications, time signals and then more, and it’s definitely a keeper, but I wanted to give a try to the “Mini Whip” antenna, even if a lot of people discard it saying it’s a noisy antenna and not worth it; keep in mind the Utwente SDR uses it and it seems to work fine, so I had to give it a try !

Anyhow, after searching the internet for a suitable whip, I finally found this one:

I bought the antenna on Amazon, but it’s also available on eBay and while the price isn’t the lowest one, I chose it since it uses BNC connectors only (some models use a mix of UHF/BNC or the like). This one had a top wing nut allowing to connect an additional (optional) external whip (may be useful on lower bands) and, last but not least, its color; being gray, it is quite stealth, which may be useful for some people (not my case, luckily). So I went on and ordered the antenna, the delivery took about 10 days and the package contents were exactly as shown above. The supplied coax is thin (RG-174 I believe) and it would be a good idea replacing it with some runs of RG-58, but for the sake of the experiment, I used the original wire.

So, having the antenna, I looked around for informations about the correct installation for the “Mini Whip” and found that in most cases, the reported poor performances of the Mini Whip are due to people installing it the wrong way. For reference and information about how the whip works and about how to properly install it, please refer to the information from PA3FWM found here and here.

Now, if you can place the whip in a garden or yard, using a pole, the correct installation of the whip is the one shown in this pic:

If you carefully look at the image you will notice that the whip sits above the supporting (metallic) pole and that the ground of the connector is electrically connected to the pole (through the clamp). Plus, the pole is then grounded (at the bottom) and the coax (which has chokes) runs away from the metallic pole.

What does the above mean ? Well, the Mini Whip antenna needs a “counterpoise” (ground) to work, and installing it as above, instead of using the coax braid as its counterpoise, the Mini Whip will use the supporting pole, this helps a lot minimizing the noise and it’s one of the tricks for a proper setup, the other one is placing the whip as far away from the “noise cloud” of your home as possible. In my case, I choose the far end of the balcony–also since I had a nice support there, the image below shows the whip installation using a piece of PVC pipe I bought at a nearby home improvement store:

At first, I just installed the antenna without the ground wire and with the coax coming down vertically from the connector. When I compared the whip to my LLD, the results were discouraging: the noise floor was much higher and a lot of signals, which the LLD received without problems, totally disappeared inside the noise floor.

Being the kind of hard-headed guy I am (and having read the documentation about proper setup) I went on and made further modifications.

Let me detail the installation a bit better with this first image (click to enlarge):

As you can see in the above image, the whip is supported by a piece of PVC pipe which keeps it above the metal fencing of the balcony (or a support pole if you’ll use it) and I also connected a short run of insulated wire to the ground of BNC plug at the bottom of the whip. This short run goes to a wire clamp which allows it to connect to the “counterpoise” (ground) wire.

In my case, since the balcony was at 2nd floor, I didn’t have a way to give to the antenna a real ground, so I decided to run a length of wire (AWG #11) down the pipe and then along my balcony fencing (10m total). An alternative, which will also work for roof installations, would be using chicken wire (fencing). In such a case, you may lay as much chicken wire as you can on the floor/roof and connect the wire coming down from the whip ground to it. I haven’t that that (yet!) but I think it may further lower the noise and improve performances.

Notice that in the case of the Utwente Mini Whip, the antenna support pole is connected to metallic roofing so it has plenty of (virtual) ground.

Later on, I improved the setup by raising the antenna a bit more and routing the wire (almost) horizontally from the feedpoint to reduce coupling with the vertical “counterpoise” wire.

The image below shows the final setup:

While not visible in the above image, I also wrapped the coax wire in a loop at the point where it’s held by the fencing and added some snap-on chokes to the coax at the point where it enters the building.

With all the modifications in place, the antenna started performing as it was designed to. The noise floor is still a bit higher than the one of the LLD, but given that it’s an active antenna, that’s to be expected

To give you an idea of the signals and noise floor, here are a couple of images taken from the screen of my laptop while running SDRuno. The first one shows the waterfall for the 40m band

While the second one, below, shows the one for the 80m band:

At any rate, my usual way of testing antenna performance (and modifications effects), aside from some band scanning/listening, is to run an FT8 session for some hours (and optionally repeat it over some days) and then check the received spots.

In the case of the Mini Whip, after all the modification to the setup, I ran an FT8 session using JTDX for some hours and the images below show the received spots. The first image shows the whole map of the received stations:

While the second one below is a zoom into the European region to show the various spots picked up there; the different colors indicate the 20m (yellow), 40m (blue/violet) and 80m (violet) bands:

As you can see, the Mini Whip performed quite well despite the “not exactly good” propagation.

While some time ago I’d have discarded the Mini Whip as a “noise magnet”, as of today, with a proper installation, I think it’s a keeper. While it can’t be compared to bigger antennas, I believe it may be a viable antenna for space-constrained situations. The only thing it needs is a bit of care when setting it up to allow it to work as it has been designed to.


Brilliant job, Grayhat! Thank you so much for sharing your experience setting up the Mini Whip antenna. As you stated, so many SWLs dismiss the Mini Whip as “noisy”–but with a proper ground, it seems to perform rather well. The benchmark example of a Mini Whip’s performance must be the U Twente Web SDR

Thank you again, Grayhat! 

Spread the radio love

John’s Tecsun PL-990 Hidden Features Quick Reference Sheet

Many thanks to SWLing Post contributor, John Hoad, who shares the following:

I took delivery of my Tecsun PL-990x yesterday from Anon. I thought this hidden features list might be of interest.

Click here to download (PDF).

Thank you for sharing this sheet, John! Well done!

Spread the radio love