Category Archives: Ham Radio

TX Factor Episode 28

Many thanks to SWLing Post contributor, Eric (WD8RIF), who notes that the 28th episode of TX Factor was recently released. Here’s the show summary:

Episode 28

It’s been over a year since our last episode was released so we’re trying to make up for lost time by releasing show number 28 almost eight years after our first show back in February of 2014. Where have the years gone?!

In this show, Bob and Mike get to grips with constructing a digital voice modem using an MMDVM module kit and Raspberry Pi Zero, and Bob reviews the long-awaited ID-52 5W hand-held transceiver from Icom. As always there’s a chance to win a bundle of books from the RSGB in our free-to-enter draw. See here for terms and conditions and full details of how to enter. Don’t forget we also provide a podcast of the GB2RS news every week. Details of how to download or subscribe are here.

Click here to view on YouTube.

Spread the radio love

Guest Post: Calculate Station Distances Using Excel Formulas

Many thanks to SWLing Post contributor, Bob Colegrove, who shares the following guest post:


Calculate Station Distances Using Excel

By Bob Colegrove

Introduction

On occasion, I’ve wanted to know just how far away a station was from my home.  I’ve never been much of a contester, but I know distance can play a part in the results.  There are a number of Internet cites which let you enter latitude and longitude information and then calculate the distance across the surface of the earth.  These are alright on an occasional basis, but I often wind up getting the data mixed for the two locations, and it is not handy when you want to make several measurements.  Here’s a way to generate the distance from your home to thousands of stations with just a little effort.

Many years ago, armed with my faded knowledge of high school trigonometry, I used Excel to calculate the surface distance between any two points on earth.  I managed to find the spreadsheet (file dated 1998) which has no fewer than 11 steps in the algorithm.  Although it worked, when I came back to it a few months later to make a change, I couldn’t remember my thought process.  There are Internet sites which develop earth surface calculations in highly esoteric terms and heavy-duty math.  But life is short, and I wanted to cut to the chase.  There are, in fact, several formula variations which have somehow managed to distill all this down to a neat single-cell calculation, and they seem to work very well.

Construction

The spreadsheet figure below is the simplest form used when you have decimal latitude and longitude data as input.  The convention is to use negative numbers for the Western and Southern Hemispheres.  Home is your reception location and all other locations are compared with that to determine the distances.  If you’re curious, the home location (yellow cells) used in these examples is the monument marking the geographic center of all 50 US states in Belle Fourche, South Dakota.  Google Maps is one easy source to determine the exact latitude and longitude of any point on earth.

To calculate the distance between any two points on earth, copy the formula below directly into a cell, then change the reference cell names as appropriate, and you’re ready to go.

=ACOS(COS(RADIANS(90-$B$5)) * COS(RADIANS(90-B9)) + SIN(RADIANS(90-$B$5)) * SIN(RADIANS(90-B9)) * COS(RADIANS($C$5-C9))) * 3959

$B$5 and $C$5 are the cell references for your home address (yellow in the figure above).  Of course, the dollar signs indicate these data remain fixed in each calculation.  B9 and C9 are corresponding latitude and longitude for the example radio station, WTOP (green).  Change these four cell locations as necessary.  The constant, 3959, at the end of the formula is the average radius of the earth in miles.  Use 6371 if you want kilometers.  The data cells in Columns D and E are populated with the formula and produce the result. These values are dynamic and can be replicated down the columns for the rest of your station location data.

Degrees, Minutes, and Seconds Format

The US FCC on-line database contains latitude and longitude tower locations for medium wave stations in Region 2, North, South, and Central America.  However, coordinates are in degrees, minutes, and seconds format and must be converted to digital format for calculation of distances.  The conversion process can also be done in Excel.

In this case, the inclusion of the coordinate hemispheres, N or S, and E or W is important.  Whereas, the hemispheres in the decimal example were signed + or -, the inclusion of the appropriate letters here is necessary.  Cell L5 reads

=IF(H5=”S”,-I5-(J5/60)-(K5/3600),I5+(J5/60)+(K5/3600))

and cell Q5 is similar for longitude, except “W” is substituted for “S.”  These formulas are then replicated in columns L and Q for each data item.  Columns R and S contain the distance calculation formulas as described above.  Line 14 is not necessary, but can be used to see if your formulas are correct; that is, the distance from home to home should be zero.

Let Excel Get the Information for You

What follows is for anyone tired of copying cumbersome latitude and longitude data.  Unfortunately, it only works on the current version of Microsoft 365 Excel, and apparently goes off into the big cloud in the sky to instantly download the information.

  1. Enter the town followed by either the US state, Canadian province, or other country name (Column A).
  2. Copy these locations to the next column (Column B).  The cells in Column B will become temporary geography cells.  Note:  As shown above, the data have already been converted to geography format (Step 4).
  3. Make sure you have all the geography cell locations selected (Column B).
  4. On the Data ribbon select Geography.  A map icon will appear at the left of each cell, and the state, province and country will be truncated.
  5. For the first latitude (Cell C7), enter =B7.Latitude; likewise, =B7.Longitude in Cell D7.
  6. The formulas in C7 and D7 can be replicated down your list.
  7. Columns for miles and kilometers (E and F) can be added using the distance formula as described above.

The geography data (Column B) cannot be replicated.  If you want to add data later, you will have to reapply the geography format for the new data.  Or, latitude and longitude can still be inserted manually for any additional entries.  The geography data (Column B) are not needed beyond this point and can be deleted or hidden.

Note:  I logged on to my first mainframe computer in September 1976 and have never ceased to be amazed at what these confounded things can be made to do.  I tried as best I could to trip the system with small, obscure towns in faraway places, as well as duplicate names.  I finally succeeded with a relatively large city, Ulaanbaatar, Mongolia.  To be fair, I tried to get it to accept alternate spellings.  So, if you need that one, you’ll have to enter it manually.

Medium Wave Example

This example is for medium wave DXers in Region 2, the Americas.  It makes use of the FCC AM database at https://www.fcc.gov/media/radio/am-query.  The database currently contains more than 24,500 entries, many of these are duplicate entries for stations using different daytime and nighttime powers.

  1. Download the database as a pipe-delimited text file.
  2. Import the file into Excel.
  3. Create additional columns to convert the latitude and longitude data from degree-minute-second format to decimal as described above.
  4. Add some rows above and enter your home coordinates in decimal.
  5. Create another column to calculate the distance from home to all the stations, again using the base formula above.
  6. Hide any columns in the FCC database that you don’t need.
  7. Finally, by creating an Excel table from all of the data, except your home location, you can do some on-the-fly filtering.

The example below shows some of the stations near our example home in Belle Fourche, South Dakota.  The Distance column on the right has a filter applied to limit the listing in the table to stations within a 150 mile radius, that is, it only lists potential daytime stations.  You could also use the conditional formatting feature of Excel to highlight the same information in the unfiltered data.

Shortwave Example

The AOKI log, http://www1.s2.starcat.ne.jp/ndxc/, has listings for all of the recent broadcasting cycles, B21, A21, etc.  The Excel format files are zipped for download, and include the latitude and longitude of each station.  Unfortunately the coordinates are not only in degrees, minutes and seconds, but they are all mashed together in one cell for each listing.  Excel to the rescue again.  Select Text to Columns in the Data Tools portion of the Data ribbon.  This feature will allow you to divide the single column into four columns each for latitude and longitude, that is, degrees, minutes, seconds and hemisphere.  Then you can use the conversion formula to change degrees-minutes-seconds to decimal.  Note that the first three digits used for longitude are minutes (they go up to 180); the remaining numerical columns have two digits each (up to 60 or 90), and the hemisphere columns (alpha) one character each.

Accuracy

Here are a few things affecting accuracy:

  1. The constants 3959 or 6371 used in the formula for miles and kilometers are generally accepted averages for the earth’s radius.  The difference between the equatorial (longer) and polar (shorter) radii is about 13 miles.
  2. If you are using town locations in your data, remember that the actual distance to the tower in that town is likely to be different.  The FCC and AOKI data are assumed to be station tower locations.
  3. Some decimal sources of latitude and longitude data have less resolution, which could lead to a slight error.

You’re on Your Own

You may have noticed the examples shown in the figures all have multiple station locations. My thought in doing this was provide some test for accuracy and secondly to provide a seed for developing the spreadsheet into a more inclusive log of stations. There is likely enough basic Excel knowledge among the folks gathered here, and each person will likely have an individual preference in designing a spreadsheet. Nevertheless, the spreadsheet shown in the figures can be downloaded by clicking this link.

The first sheet shows Figures 1 and 2 from this article; and the second sheet, Figure 3. The link in Cell I2 of the second sheet describes how to use the geography feature of Microsoft 365 Excel. The third sheet is a recent copy of the FCC AM database (Figure 4). To facilitate storage and downloading, only stations from 530 kHz to 600 kHz are included. Numerous unused columns from the FCC AM database have been hidden; so you can still copy the full, pipe-delimited FCC database into Columns A through AH. The FCC database has been converted to an Excel table; the Home location is not part of the table. Try substituting your own location for Home (Cells AI2, latitude and AJ2, longitude) and setting a distance filter from your home in Cell AK4. In the example, the distance filter has been set limiting the list of stations to less than 600 miles from our example in South Dakota. Note also that the Conditional Formatting feature on the Home ribbon has been used to highlight stations less than 100 miles from home.

If you have any interest in developing your own spreadsheet, perhaps you can comment on what you have done, or provide the rest of us with something I have missed. Hopefully, I have provided enough information to get you started.

Spread the radio love

Special Event to Mark VOA’s 80th Anniversary

Many thanks to SWLing Post contributor, Kim Elliott, who shares the following news from the Brightleaf Amateur Radio Club:


VOA 80th Anniversary Special Event

To honor this 80 year commitment, three stations have been invited by VOA to be “special event stations” in the amateur radio bands with the call signs of W3V (VOA in Washington DC), W8O (VOA Museum in West Chester, Ohio), W4A (VOA in Greenville, NC) where the suffix of the calls spell out “VOA“. This event is scheduled to start on February 19th and 20th, from 9am-5pm each day eastern time.[…]

Date

This event will start Saturday February 19th at 9am to 5pm (Eastern Time) and go through to Sunday February 20th at 9am to 5pm, 2022 (Eastern Time).

Bands & Modes

Operating modes will be SSB, CW, Digital (FT8) on 20, 40, 80 meter bands. SSB will start at 14,280 / 7,280 / 3,880 MHz and move up or down to a clear frequency. CW frequencies will be in the CW-General portion of each band. Check DxSpots to find us at a specific time. FT8 will be on the FT8 frequencies on each band as set by WSJT-X software.

QSL

Amateur radio stations that contact the VOA stations will get an electronic QSL card via email from each special event station automatically if their email is correct on QRZ.com. An electronic Certificate will also be sent in PDF format that has contact acknowledgement and information on the stations. Stations that wish to get the paper QSL cards should contact the VOA stations directly and send SASE’s. The cards will be mailed after the event.

Click here to read the full announcement with more details.

Spread the radio love

Jock explores “The Essential Listening Post Part II – When the lights go out”

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


Photo by Parker Coffman on Unsplash

When the lights go out: The Essential Listening Post – Part II

By Jock Elliott, KB2GOM

What’s the most valuable commodity in an emergency? Information.

Without information, it is very difficult to make decisions of what actions you should – or shouldn’t – take. Fortunately, as swling.com readers know, radio can come to your rescue.

As an example, I offer for your approval this minor incident that happened just a few mornings ago.

At 4:30 am, I awoke. That’s not particularly unusual; I get up early lots of mornings to run the Commuter Assistance Network on ham radio.

What made this morning unusual were the things I couldn’t see: the digital clock across the room, the tiny LED lamp that illuminates the way to the bathroom in the middle of the night. They were both dark. In fact, the only light that I could see was the LED from the uninterruptable power supply for the computer in the next room. It was pulsing, indicating the power from the mains was out.

With the help of a flashlight kept within easy reach of the bed, I made my way downstairs. A peek out the windows revealed the surrounding area was dark; no lights in local houses, no street lights. A house across the ravine behind my house had a single light, but it had the bright white look of an emergency lantern. So this outage was wider spread than just the lane where I live. But how widespread was it? In early February in upstate New York, it’s winter; temperature about 6 degrees Fahrenheit on this particular morning. The thermostat on the wall has already dropped below where the furnace should have kicked on. With no electricity; no furnace.

With no house power, I had no internet, so I couldn’t look things up to find out why there was no house power. Because we use Voice Over Internet Protocol (VOIP), with no internet, no house phone.

Now, I know what you’re thinking: “Well, dummy, fire up your smart phone, and in a few moments you’ll have your answers.”

To that I say: “Not so fast there, pardner.

I consulted with a ham radio friend who makes his living in the commercial radio business. He consults with many companies, including cell phone companies, so he knows what he is talking about.

It turns out there are three things that could render your smart phone useless.

The first is whether your local cell tower(s) have battery back-up. Most do, but how many hours the batteries will run the cell tower can vary widely from just a couple of hours to perhaps eight. Depending upon when the power went out, you may or may not be able to connect.

The second is that many cell phone towers themselves connect to the rest of the network through wire or fiber optic cable. If a vehicle has taken down a pole, or a falling tree has taken down a cable, the network may be disrupted.

Finally, if there is high demand for your local cell phone tower, you may not be able to make a connection. My commercial radio “guru” relates that he went to an event at a local community college. There is a cell tower right on the property, but he had great difficulty connecting simply because so many people were trying to use the tower.

During emergencies, cell phone networks frequently go into gridlock because of high demand, so it’s a good idea to have other means of gathering information. An interesting aside: some years ago, I heard a presentation from one of the hospital administrators who was in New Orleans during Hurricane Katrina. They were unable to make voice phone calls, but apparently they could sometimes send and receive text messages.

Getting back to my small lights-out incident, I was in the actual act of firing up a radio to check out what local broadcasters on the AM (medium wave) band had to say, when the lights came on, the furnace started, and internet and phone service were restored. My greatest inconvenience was having to reset a couple of digital clocks.

But it raised a serious question: what should be your essential listening post if the lights go out, the fertilizer hits the ventilation equipment?

First and foremost, a battery-powered radio capable of receiving your local broadcasters. You need to know – or find out – which ones have back-up power so they can keep transmitting. Knowing that will do two things for you: first, tuning in to a station with back-up power will hopefully get you the information you need, and second, if stations that don’t have back-up power are off the air, that will give you an indication of how widespread the power outage is.

Knowing the extent of the blackout can be important. A couple of decades ago, on an August afternoon, my better half and I took our young son to a local park where there was a water fountain that the kids could run through. When we got home later, the power was out. I saw the neighbor standing in her yard and asked if she had reported the outage. “No point,” she said. “Why?” I asked. “Because the lights are out from Canada to Virginia.” Oh.

In addition to knowing which stations are likely to be on the air, it’s also good to know which local stations have news staff that are likely to collect and broadcast information that is needed during an emergency.

Second, if you live in the United States or Canada, you need a weather radio. Every state in the Union has bad weather of one sort or another . . . and some of them can kill you. NOAA weather radio is an excellent source of information. It’s free, and it does a fine job of delivering weather-related info in a concise and useful format.

Third, it would be very useful to have a scanner or ham radio capable of receiving your local 2 meter repeaters. This could be an additional source of useful information in a crisis.

So, are there any radios that I would recommend for “The Essential Listening Post” when the lights go out?

Yes, there are.

The C.Crane CCRadio 2E

First on my list would be the C.Crane CCRadio 2E (or CCRadio3). It receives AM, FM, NOAA Weather Band with Weather Alert and the 2-Meter Ham Band. It will run on house power or, if the lights are out, over 200 hours on batteries. By all accounts, it offers excellent performance on AM and FM, and it is one of the most sensitive NOAA weather radio receivers I have tested. I bought one and can heartily recommend it.

CC Skywave SSB

The CCrane Skywave SSB receives AM, FM, NOAA Weather band plus Alert, Shortwave (1711-29.999MHz) with SSB, VHF Aviation Band. It doesn’t receive the 2 meter ham band, but it will receive hams on HF frequencies, which might come in handy in an emergency. It is not quite as sensitive as the CCrane 2E on NOAA weather frequencies, but, as I reported last year it was the most sensitive NOAA weather radio receiver I took to Sodus, NY. It is very small and portable and will run for over 50 hours on batteries. I bought one and can heartily recommend it.

The Eton FRX3+

The Eton FRX3+ is an interesting alternative for a “when the lights go out” radio. This battery-powered radio receives AM, FM, and NOAA weather radio with alert. It has a couple of LED lights for navigating in the dark and can be charged by a built-in solar panel, hand-crank, or USB cable, and can even be used to charge your cell phone. Eton Corp. sent me one of these, and I find that it offers worthy performance on AM and FM, and excellent sensitivity on NOAA weather radio. Recommended.

In the future, I hope to offer some additional useful information about NOAA weather radio as well as a comparison of different ways to receive NOAA weather radio, including dedicated weather radio, consumer radio, scanner, and ham handi-talkie.

-Jock Elliott

Spread the radio love

Radio Waves: Russia Shuts Down DW, History of WGY, W2AN/1BCG On The Air, and Summits On The Air

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!


German anger as Russia shuts international broadcaster Deutsche Welle (BBC News)

Germany and the EU have condemned Russia’s decision to shut down the Moscow bureau of international public broadcaster Deutsche Welle (DW).

All DW’s staff have lost their press accreditations and the channel is barred from broadcasting in Russia.

Germany’s culture minister said the move was “not acceptable in any way”.

Russia argued it was retaliating after German regulators decided a new Russian state-run TV channel, RT DE, did not have a suitable licence to operate.

Russian Foreign Ministry spokeswoman Maria Zakharova appeared to offer an olive branch to the German government on Friday, saying that if Germany moved to “normalise the situation”, then Russia would too.

RT has channels in English, French and Spanish and launched its German-language satellite channel in December 2021, using a licence from Serbia, outside the European Union. [Continue reading…]

Exhibit showcases history of radio station WGY (WAMC)

The City of Schenectady, home of General Electric, was once a nursery for broadcasting. One of the nation’s first commercial radio stations began broadcasting 100 years ago. A new exhibit at the Museum of Innovation and Science is celebrating the history of WGY.

WGY was created by GE in 1922 and still operates today under different ownership as a news/talk station. The station’s history is currently on display at miSci in a photo exhibit called WGY: Radio’s Laboratory Celebrates Its Centennial.

Chris Hunter, the museum’s Vice President of Collections and Exhibitions, took me on a tour of the exhibit located in a new gallery inside the museum.

“So, it was about 10th commercial station licensed in 1922. And because it was formed by GE’s publicity department, and not so much the engineers that formed a lot of the other early radio stations, they really placed a premium on entertainment and, kind of, the development of broadcasting.” [Continue reading…]

W2AN/1BCG On-The-Air Again for two-Way QSO’s (AWA)

After a successful AWA on-air sending of the historic 1921 Trans-Atlantic message in December of last year, using the AWA replica of the 1921 transmitter, plans are now in place to do it again only this time to offer two-way QSO’s with all stations wishing to participate.

The QSO party begins on Saturday evening, February 26, at 6:00 p.m. EST, or 23:00 GMT. AWA operators at the museum site in Bloomfield, NY will begin calling CQ on 1.821 MHz, CW, and will listen on or about that frequency for callers. We will work as many folks as we hear in order received and continue to do so until all amateur stations on the planet are in the log or propagation goes away, which ever happens first!

No QSL’s are required for you to receive a nice full sized color certificate confirming your QSO with W2AN/1BCG. Simply send your QSO information via email to [email protected] and the personalized certificate will be sent to the sending email address.

Inside the Summit-Obsessed World of Ham Radio (Outside Magazine)

n a gray Friday afternoon last spring, Steve Galchutt sat high atop Chief Mountain, an 11,700-foot peak along Colorado’s Front Range. An epic panorama of pristine alpine landscape stretched in almost every direction, with Pikes Peak standing off to the south and Mount Evan towering just to the west.

It was an arresting view, and the perfect backdrop for a summit selfie. But instead of reaching for his smartphone, Galchutt was absorbed by another device: a portable transceiver. Sitting on a small patch of rock and snow, his head bent down and cocked to one side, he listened as it sent out a steady stream of staticky beeps: dah-dah-di-dah dah di-di-di-dit. “This is Scotty in Philadelphia,” Galchutt said, translating the Morse code. Then, tapping at two silver paddles attached to the side of the radio, he sent his own message, first with some details about his location, then his call sign, WG0AT.

At this point, a prying hiker could have been forgiven for wondering what, exactly, Galchutt was doing. But his answer—an enthusiastic “amateur radio, of course!”—would likely only have further compounded their confusion. After all, the popular image of an amateur-radio enthusiast is an aging, armchair-bound recluse, not some crampon-clad adventurer. And their natural habitat is usually a basement, or “ham shack,” not a windswept peak in the middle of the Rockies. [Continue reading…]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: BBC License Fee Frozen, Battling RFI, Warning to RTL-SDR Users in Ukraine, and WRD Special Broadcast

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!


BBC’s funding system under fire (Marketplace)

In the United Kingdom, you need a license to drive a car, fly a plane, practice medicine and watch TV.

The “TV license” is what Brits call their system for funding their world-famous broadcaster, the BBC. Currently, it costs the equivalent of $216 a year and is compulsory. Anyone in the U.K. caught watching or recording programs broadcast on any television channel or livestreamed on an online platform without a license is likely to be prosecuted.

The BBC — the Beeb, as it’s known — derives around $5 billion a year from this source. That’s 75% of the total revenue it needs to run a vast media empire, comprising 10 national TV channels and 10 national and 40 local radio stations as well as its World Service broadcasts and a global news website.

Full disclosure: The Beeb is a content partner for Marketplace.

But the license fee is under attack. The government just announced that it’s freezing the fee at the current level for two years and not increasing it in line with inflation — a decision that could cost the corporation nearly $400 million. The government has also hinted that it would like to eventually scrap the license fee altogether. [Continue reading at Marketplace…]

RF Interference (Nuts and Volts)

It’s everywhere! It’s everywhere! Fortunately, you can take a bite out of RFI.

RF interference — is it interference to you? Is it interference by you? Possibly both! What does this interference consist of? And how can you tell what type is present? A topic that starts off with so many questions is bound to cover a lot of ground, so let’s get started. Continue reading

Spread the radio love

February 2, 2022: A low-hazard CME could bring auroras to low latitudes and affect HF propagation

Many thanks to SWLing Post contributor, Ed, who shares the following news from Spaceweather.com:

GEOMAGNETIC STORM WATCH: A coronal mass ejection (CME) is heading for Earth. Estimated time of arrival: Feb. 2nd. This movie from SOHO shows the halo CME leaving the sun:

It was hurled into space during the early hours of Jan. 30th by an M1-class solar flare. Big sunspot AR2936 was the source of the blast. The long duration flare lasted more than 4 hours, so it put plenty of power into the CME.

A newly-released forecast model from NOAA shows the likely timing of impact:

Continue reading and follow updates at Spaceweather.com.

Spread the radio love