Tag Archives: Airspy

The AirSpy HF+ R3 bypass modification

After SWling Post contributor, Guy Atkins, posted the survey results of his excellent Elad FDM-S2  vs AirSpy HF+ weak signal comparison, I received a few questions about the AirSpy HF+  “R3 Bypass” modification Guy mentioned in his post.

Guy has not yet performed the modification on his HF+–neither have I–but he points out that others have noted it: “significantly boosts sensitivity of the HF+ from longwave up to about 15 MHz, without any noted overload issues.”

I reached out to AirSpy president, Youssef Touil, for a little more insight about this modification. Youssef replied:

During the early phases of the design R3 was a place holder for a 0 ohms resistor that allows experimenters to customize the input impedance. For example:

  • A 300 pF capacitor will naturally filter the LW/MW bands for better performance in the HAM bands
  • A 10µH inductor would allow the use of electrically short antennas (E-Field probes) for MW and LW
  • A short (or high value capacitor) would get you the nominal 50 ohms impedance over the entire band, but then it’s the responsibility of the user to make sure his antenna has the right gain at the right band
  • A custom filter can also be inserted between the SMA and the tuner block if so desired.

Click to enlarge. (Photo source: RTL-S1DR.com)

R3 and the nearby resistors have been intentionally left outside of the RF shield, and their size was picked to be big enough to allow anyone to play with them. You will notice the size difference with the rest of the components.

In general, unless one knows what he’s doing, it’s not recommended to alter a working system. “If it’s working, don’t fix it”. But, we are hobbyists, and not doing so leaves an uncomfortable feeling of something unachieved. Most brands addressing the hobby market leave some tweaks and even label them in the PCB.

The main purpose of the HF+ is the best possible performance on HF at an affordable price. This is to incite HAMs to get started with this wonderful technology while using an SDR that isn’t worse than their existing analog rig.

The MW/LW/VLF crowd may have slightly different requirements, but that can be addressed by shorting a resistor.

Regards,

Youssef Touil

Thank you, Youssef, for replying to my inquiry so quickly and thoroughly.

No doubt, I too will eventually modify R3–it’s very difficult not to experiment, especially when a product was designed with the experimenter in mind.

I really feel like AirSpy has knocked it out of the ballpark with the HF+. For those of us primarily concerned with HF performance, this SDR is very hard to beat–especially at its $199 price point!

Spread the radio love

Video: Comparing the SDRplay RSP1A and Airspy HF+ on HF & MW

Many thanks to SWLing Post contributor, Ivan Cholakov, who shares the following video where he compares the SDRplay RSP1A and the AirSpy HF+ software defined radios on shortwave and mediumwave:

Click here to watch on YouTube.

Spread the radio love

Results: AirSpy HF+ vs Elad FDM-S2 Weak Signal Comparisions

Looking north toward Cape Lookout, Oregon, near the site of my SDR receiver recordings. Photo courtesy of Wikimedia Commons.
In my original article 10 days ago, I set up a SWLing Post reader poll to let you give your opinion on which shortwave recordings within four pairs of audio files provided the most intelligible result. The recordings were intentionally noisy, low-level signals to help us discover–through critical listening to the files–if there is a clear favorite between the AirSpy HF+ or the Elad FDM-S2 receivers. Of course, there were only four pairs of recordings…not a very large sample size.

However, 34 readers of the original article took the time to listen and respond, so let’s get to the numbers, shown in these graphs:

Interestingly, the responses above seem to point to:

  • Two recording pairs tied in the results (50% / 50%) or were very close (HF+ 52.9% / FDM-S2 47.1%)
  • The FDM-S2 led one recording pair by a large margin (67.6% / 32.4%)
  • The HF+ led another recording pair by an equally large margin (67.6% / 32.4%)

Taken as a whole, no obvious winner emerged, although one might conclude the HF+ has a slight edge due to its lead in the “very close” recording pair of 7.230 MHz.

One thing is clear–the AirSpy HF+ is a surprisingly good performer for its price of $199 USD! For many enthusiasts this will be all the SDR they need.

As a final note, I’ll mention that the AirSpy HF+ used for the tests was totally stock. I have not yet performed the “R3 Bypass” mod nor the firmware update to my HF+ units. The simple R3 Bypass, discussed at length on the AirSpy Groups.io forum, significantly boosts sensitivity of the HF+ from longwave up to about 15 MHz, without any noted overload issues. For more on this modification from a MW DXer’s perspective, read Bjarne Mjelde’s insightful article at his Arctic DX Blog.

Thank you to all the readers who took the time to listen to the SDR recordings in this comparision and register your opinions.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Digging in the Noise: Weak Signal Audio Recovery with the AirSpy HF+ and Elad FDM-S2

I’m currently spending the better part of a week at Cape Lookout State Park on the Oregon coast, with a great view of the ocean through tall evergreen trees. This is one of my favorite parks in the Pacific Northwest, especially when DXing during the blustery winters from one of the nice cabins at Cape Lookout.

The view from the beach near my cabin; the turbulent waves were a precursor to the gale force winds at the park during the night of the 23rd!

Although I’m at the park for trans-Pacific medium wave DXing, I’m also comparing receivers, both SDRs and portables. This morning I sought out a few weak shortwave signals, pitting the Elad FDM-S2 SDR ($529 USD) against the AirSpy HF+ ($199 USD). I have a pair of the HF+ receivers to cover all of medium wave (as the FDM-S2 easily does). Many SWLing Post readers already know that the upstart HF+ trades bandwidth to gain high performance in order to keep the price reasonable.

My antenna used for the following recordings was a small “Flag” antenna using a Wellbrook Communications FLG100LN module and a 2K ohm variable potentiometer for termination. The design uses crossed tent poles in an “X” formation to support the wire loop. This design travels easily in a compact package; I have Dave Aichelman of Grants Pass, Oregon to thank for this very useful “tent pole loop” implementation of the Wellbrook FLG100LN.

The Wellbrook-based antenna functions superbly, and its low-noise design helps hold down QRM from the nearby cabins (which unfortunately have been “upgraded” recently with noisy cold fluorescent [CFL] light bulbs). The area around the Cape Lookout cabins used to be superbly low noise and suitable for radio listening, but now it is more of a challenge than before. The Wellbrook FLG100LN is perfect for the situation though; Wellbrook ALA1530LN  Pro and ALA1530S+ 1-meter loop antennas work commendably at the park too.

The Wellbrook FLG100LN module with a home brew RFI choke in-line

A 2K ohm variable potentiometer is protected from the elements in a small plastic bag. The “pot” is adjusted for the best nulling of medium wave stations off the back side of the antenna’s reception pattern.

The “tent pole loop” antenna is strapped to a fence railing with ultra-strong Gorilla Tape to keep the 7-ft. square loop vertical.

On with the recordings…

For the FDM-S2 and HF+ comparisons I used the SDR-Console V3 software. Every parameter was identical for the receivers–sampling bandwidth, filter bandwidth, AGC, mode and so on.

Take a critical listen to the weak signals recorded with the SDR receivers, identified as only “Radio A” and “Radio B”. A link to a poll is at the end of this article; please indicate which recording of each pair has the most intelligible audio in your opinion, and submit your choices when you’ve made up your mind on each audio clip. After a week or so I’ll post the results of the voting, and identify the receivers.

9.615 MHz, LSB, Radio A


9.615 MHz, LSB, 
Radio B (note: the same male announcer heard in clip “A” begins at 00:14 in this “B” clip)

 

9.730 MHz, USB, Radio A


9.730 MHz, USB, 
Radio B

 

7.230 MHz, S-AM, Radio A


7.230 MHz, S-AM, 
Radio B

 

9.860 MHz, S-AM, Radio A


9.860 MHz, S-AM, 
Radio  B

 

Note on 7.230 MHz recording: this was an interesting frequency, as the signal was tightly surrounded by a very strong local 40m ham radio LSB station as well as a strong China Radio International signal. There were other strong amateur and broadcast stations within 30-50 kHz of 7.230 MHz, also. This A-B test more than the others may indicate receiver performance in a strong RF environment on a crowded band.

Ready for the poll? Register your votes at the Google Docs form below:

https://tinyurl.com/ya38wj69

In a week to 10 days I’ll post the results in another article. NOTE: I haven’t provided a “both sound the same” choice in the poll to encourage you to ‘dig deep’ into the audio and listen critically–to find something that stands out in one clip versus the other.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Addendum: More Notes on the HF+ SDR on Medium Wave & Long Wave

In my recent post on the AirSpy HF+ vs Elad FDM-S2, I commented on medium wave reception only.

This past weekend I swapped out the Wellbrook ALA1530S+ for another Wellbrook loop, the ALA1530LN Pro. This LN Pro model is less likely to overload receivers at my suburban Tacoma, WA location. Both AirSpy and Elad radios performed admirably with the LN Pro and it was nearly impossible to find any reception differences on medium wave.

Before the antenna swap though I experimented with inline attenuation modules (“bullets”), typically used in cable TV installations. I used the same sample rates on the SDRs as described in the previous article. After some tests with different attenuation levels, I came to the following conclusions during daytime comparisons:

FDM-S2 with ALA1530S+ loop, medium wave: needs a minimum of 6 dB attenuation to avoid overloading. Anything less causes saturation of the spectrum & waterfall, “crunching” overload noises, and minimal or no received signal.

HF+ with ALA1530S+ loop, medium wave: I had to search diligently to find any signs of false signals or overloading, but finally noticed a weak image or spur of a S-9+60 dB (-13.5 dBm) local station on 1560 that was appearing very weakly on 1270 kHz, mixing with the station on that frequency. Sometimes it was there, other times the spur or image would drop down and disappear, leaving the 1270 signal alone. If I added just 3 dB of attenuation in the antenna’s feed line, the interference from the 1560 station was gone for good. The S-9+60 dB station is a very strong signal; it’s impressive that the AirSpy HF+ deals with this and similar powerhouse signals so well.

Long wave: Below are two screen captures from my local long wave reception in the evening, made moments apart with each receiver.

FDM-S2

HF+

As you can tell, there are a half dozen or so additional signals seen on the HF+ below 200 kHz that do not appear on the FDM-S2. These extra spikes are images or spurs from medium wave signals that were missing from the FDM-S2’s reception–bravo Elad! However, the remaining spikes on both radios below 200 kHz seemed to be noise or interference.

Each receiver had roughly equal performance in the bulk of the long wave spectrum, when I did A-B comparisons on the same beacon signals. I’m not a LW or NDB DXer however, so I can’t claim any expertise on these frequencies. In short, though, both radios seem neck-and-neck from about 200 to 500 kHz.

The DXer of LW frequencies may want to look elsewhere for a better performing radio than either the FDM-S2 or HF+. SWLing Post reader Tudor Vedeanu has commented that the SDRPlay RSP1A  and the Eton E1 work very well at long wave.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

Brief Medium Wave Tests of the HF+ and FDM-S2 SDRs in a Suburban Location

The AirSpy HF+ is the new SDR on the block, but how does it compare to the Elad FDM-S2 which is more than 2-1/2 times its $199 price? My main interest is finding out how they compare in a very RF-quiet DXpedition setting, but today I compared the two briefly from my home in Puyallup, Washington (near Seattle).

The receivers were connected via a two-way antenna splitter to the output of a Wellbrook ALA1530S+ loop antenna. I monitored during mid-afternoon local time to ensure that all my MW locals in my suburban location would be at full power, for the best test of the radios’ overload performance. The Wellbrook active antenna is rather “hot” and sometimes overloads receivers during the daytime unless attenuation is added to the signal chain.

I noted there were no truly weak medium wave signals available during the session so comparing sensitivity wasn’t appropriate. However, the band was full of strong daytime MW signals.

It became apparent quickly that the upstart HF+ provides strong competition to the Elad SDR. Clearly, the AirSpy’s trade-off is bandwidth for raw performance at lower cost–approx. 660 kHz alias-free coverage versus about 6 MHz maximum for the Elad.

Using the same center L.O. (local oscillator) frequency, short recordings were made with both receivers on the same receive frequency, same bandwidth, AGC setting, etc.  To approximate the 660 kHz coverage of the HF+, I set the FDM-S2 to its 768 kHz sampling rate, the closest available setting to 660 kHz wide coverage.

Here are the results on 1540 kHz, just 10 kHz away from a strong signal on 1550:

AirSpy HF+ – 1540 kHz


Elad FDM-S2 – 1540 kHz

What’s wrong with the above audio picture? The FDM-S2 is clearly overwhelmed by the strong RF on the upper end of the MW band. Visually, the spectrum looked like this with the Elad:

Elad FDM-S2 waterfall/spectrum (1540 kHz)

The noise floor rose by approximately 20 dB due to the overloading. The HF+ showed a normal waterfall and spectrum display while tuning 1540 kHz:

AirSpy HF+ waterfall/spectrum (1540 kHz)

Let’s listen to two more audio clips, this time from 720 kHz which is adjacent to very strong 710 KIRO, the ESPN affiliate in Seattle:

AirSpy HF+ – 720 kHz


Elad FDM-S2 – 720 kHz

This time the difference is subtle, but I think you’ll agree there is a greater amount of “crunchy” background distortion noise on the FDM-S2 recording. I found this to be the case in each instance where I compared receivers on frequencies adjacent to strong locals.

I no longer own a Perseus SDR, but that receiver handles the entire MW band at this location without overload using the same Wellbrook ALA1530S+ loop.

I’d like to emphasize that these were brief, somewhat casual AirSpy HF+ vs. Elad FDM-S2 tests. I expect that in a more forgiving RF environment, both receivers will be equally adept and digging out weak weak and challenging DX signals. I plan to investigate this very scenario in a few weeks at a quiet location on the Oregon coast.

Side note: I have two HF+ units and they can operate concurrently without problems for full medium wave band coverage with HSDSR software, even when both are recording IQ WAV files.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.

Spread the radio love

The Airspy HF+ SDR: First impressions

Yesterday, I received a package in the mail containing the new Airspy HF+ software defined radio receiver.

It came as a bit of a surprise.

I’ve been busy lately with humanitarian work, the radio spectrum archive,  product evaluations and travels–not to mention an active family life. I had completely forgotten that about a month ago, I received a message from Airspy telling me that they had dispatched their latest SDR to me for evaluation.

This morning, I unpacked the box to find that the HF+ is a very compact, relatively dense little SDR in a metal alloy case/enclosure. I’m simply floored by the size. The case feels incredibly durable and of excellent quality.

The Airspy HF+ under my business card

In terms of footprint, dimensions are nearly identical to a business card. It’s about as thick as the typical USB memory stick.

The HF+ is so thin and compact compared with the Elad FDM-S2 (which is quite a compact SDR!)

Other than my RTL-SDR dongle, it’s by far the smallest SDR I’ve ever tested.

Though compact, it sports two SMA antenna inputs: one for HF, one for VHF.

The HF port is labeled as “H” and the VHF port as “V”

The Airspy HF+ uses a common micro USB for both data and power

The HF+ is the first AirSpy product I’ve ever put on the air.

I read the HF+ product description this morning while downloading SDR Sharp–it claims the HF+ is “plug and play”.

Turns out, that is no exaggeration.

The HF+ on top of the Elad FDM-S2 and WinRadio Excalibur

In fact, the entire SDR Sharp package downloaded in seconds, installed in seconds and the only thing I had to do after opening the SDR Sharp application was select “AirSpy HF+” from the product drop down menu.

I started the application and *boom* signals all over the place!

SDR applications, in general, have become so much easier to install over the years but I believe SDR Sharp may be the  quickest install I’ve ever experienced. About as easy and lightweight as the WinRadio Excalibur application. True plug and play!

I’ve had no time to properly evaluate performance–I just put this little SDR on the air.

Fortunately, propagation is cooperating this morning–I’m hearing both WWV Fort Collins and WWV Hawaii on 10 MHz. I’m really enjoying playing with the Airspy HF+ and re-familiarizing myself with SDR#. I had forgotten how responsive and intuitive the interface is–great user design.

My first impression?  I’m impressed. More to come…

Click here to read about the HF+ on the Airspy website

Spread the radio love