Category Archives: Antennas

The solution for apartment/condo dwellers, perhaps?

By Jock Elliott, KB2GOM

It was research on preselectors that led me to this: Improving HF Reception – The RadioReference Wiki

In that section of the RadioReference Wiki, written by Mike, KA3JJZ, I found the following:

Another way an active preselector could be used is to use it to load a very short dipole – say not more than 1 meter (roughly 3 foot) for each leg. A number of years ago, a company called Datong marketed such an antenna (with a preamp right at the antenna feedpoint) that was popular in Europe and to some lesser extent in the Americas because it’s easy to hide the antenna.

In the magic of my mind, I could picture using the short dipole strung across two windows — or a large window — in an apartment or condo (or anyplace with antenna restrictions) and connected to an MFJ 1020C. I had not yet done the experiment, but I had tested the 1020C and found it to be a worthy piece of gear. So I thought the short dipole/1020C experiment might be worth a shot.

The heart of the short dipole, the LDG 9:1 unun.

So I cut two yard-long lengths of wire and attached them to a 9:1 unun. I created loops at the outer end of each leg of the dipole and hung the whole assembly from a curtain rod covering two windows. A coax links the short dipole to the MFJ 1020C, and a jumper connects the output of the 1020C to my Satellit 800 receiver.

The completed dipole. Not fancy, but it works.

Bottom line: it works. The vast majority of the time, even when the 1020C preselector is in bypass mode, the short horizontal dipole/1020C combo delivers a better signal-to-noise than the Satellit’s vertical telescopic antenna. (In rare cases, they are equal.) And when the preselector amplification circuits are activated and properly tuned, the signal is usually improved, often significantly. The Big Trick is to use the preselector to peak the noise at the frequency you want to hears and then tune slightly to the side of best listening.

Obviously that would be cumbersome for band-scanning, but you could band-scan in bypass mode and then tweak the “hits” with the amplification circuitry. In all, if you are living in an antenna-challenged situation, the short dipole/1020C combo just might make your shortwave listening better.

Final thought: Mike, who wrote the section of Radio Reference wiki that inspired this experiment, said:

You do have to watch your gain otherwise you will get a lot more noise than signal. I did my experiment using an old Palomar preselector. You can also try using a YouLoop as the antenna – it should, in theory, work even better than just a simple whip.

One thing that you could mention in your article is that there is an advantage to having a small dipole like that as the receiving element. Not only is it fairly easy to hide, it can be moved around to find a somewhat quieter location. However the coax should be kept as short as you can, otherwise there is a chance that common mode noise would become an issue – particularly if it runs near computers or other RFI sources

Remember that even a 1 or 2 S unit improvement might make the difference between hearing a signal and not hearing it at all. All we are doing here is trying to improve the signal/noise ratio coming into the unit. That little vertical whip on the 1020c is not likely to be the best choice, and that’s what I am trying to improve upon.

– Mike KA3JJZ

Thanks, Mike!

Spread the radio love

Giuseppe’s latest homemade ferrite antenna for MW and SW

Many thanks to SWLing Post contributor, Giuseppe Morlè (IZ0GZW), who writes:

Dear friends,

I’m Giuseppe Morlè from Formia, central Italy on the Tyrrhenian Sea.

I want to share with you my latest ferrite antenna for listening; it is composed of 3 ferrites of 20 cm each in a tube for electrical systems with 2 separate windings, one for medium waves and one for short waves, 40 turns for medium waves, 4 turns for short waves. I use a 750 pf variable to tune the 2 windings and a switch is used to eliminate a winding.  Since there is only one variable, if you listen to the medium waves I interrupt the winding of the shorts.

On shortwaves it is preferable to place the system on an iron railing which, due to inductive effect, behaves like a really long wire antenna.

For the mediumwaves it is enough to bring the receiver close to the ferrites and also in this case, the induction will have its effect with an excellent increase in signal and modulation.

The range of this portable antenna is:

      • 520 to 1800 kHz
      • 3.500 to 18.000 MHz

Here’s a video from my Youtube channel where I explain how it works:

I had previously built a similar antenna but with 12 cm ferrites–very portable.

Thank you for your attention and I wish you good listening.

73. Giuseppe Morlè iz0gzw.

This is brilliant, Giuseppe! I love how you never stop building and experimenting with various antenna designs! Thank you for sharing this with us!

Spread the radio love

Giuseppe pairs his Kenwood R-1000 & Indoor Cross Loop Antenna

Many thanks to SWLing Post contributor, Giuseppe Morlè (IZ0GZW), who writes:

Dear Thomas and all friends,

This is Giuseppe Morlè, IZ0GZW, from Formia, central Italy on the Tyrrhenian Sea.

I went back to listening with my Kenwood R1000 and indoor homemade cross loops …this time a station in Kuwait, 9k2yd Younes on general call.

I used the 2 loops together and in the last part only the one in the East / West direction and I did not notice any changes. Very strong signals and good evening propagation at 18.00 utc today, 04 June 2022.

Note the absence of electrical noise; the S Meter remains at zero in the absence of modulation and signal.

I am always amazed at my indoor cross loops for the reception quality and they have become the main antenna of my Kenwood R1000.

Giuseppe I hope you enjoy the video
Greeting to all of you from central Italy.

Click here to view on YouTube.

Your cross loop antenna is an amazing QRM-fighter! Thank you for sharing this, Giuseppe. Most impressive and so good to see the R-1000 on the air.

Spread the radio love

Testing the MFJ-1020C Active Antenna/Preselector

By Jock Elliott, KB2GOM

Truth be told, I’ve been curious about the MFJ 1020C for a long time. Back when I wrote for Passport to World Band Radio, over a decade ago, I wondered if the 1020C was a worthwhile device, but then I had a big wire antenna outside connected to a communications receiver, so I didn’t worry so much about squeezing every last erg out of the signals I was receiving. As a result, I never experimented with an MFJ 1020C.

Now, however, I have a 50-foot indoor end-fed wire antenna connected to a Grundig Satellit 800, and I am constantly looking to improve the signal. Feeding the signal through a 9:1 unun and then through coax to the Satellit 800 has boosted the signal-to-noise ratio a bit — https://swling.com/blog/2022/05/the-satellit-800-the-tecsun-pl-880-and-two-indoor-antennas-an-afternoon-of-experimentation/ —  and so has grounding the unun — https://swling.com/blog/2022/05/jock-gets-a-good-grounding/. But is there such a thing as too much signal to noise? Not in my not-so-humble opinion, so the quest for improvement continues.

During a phone call with Thomas (Maximum Leader of SWLing.com), I mentioned my curiosity about the 1020C. Thomas said, “MFJ is a sponsor of SWLing.com, I’ll see if they would like to send you one for testing.” Two days later, a package arrived with the 1020C, a power supply for it, and a short coax jumper.

The Basic Layout

The 1020C is small — 2.5” H x 6.4” W x 3.3” D – and looks well made. It covers 300 KHz to 40 MHz. On the front panel are two knobs, a push button, and a selector switch. The left-most knob controls the gain of the amplifier. Moving to the right, you’ll find a push button that controls the bypass circuit.

To the right of the bypass button, you’ll find the band switch, which controls which frequency range is in use, and to the right of that is the tuning knob which allows you to peak the signal in the frequency range you have selected. We’ll get to how it all works in just a bit.

On the back of the 1020C, you’ll find a coax connector labeled INPUT and another labeled OUTPUT, a grounding post, and a connector for the external power supply.

Setup is easy. Plug the power supply into the wall and into the back of the 1020C. (You can also run the 1020C off a 9-volt battery, which we will discuss in a while.) Connect a coax jumper from the OUTPUT connector on the 1020C to the coax input on your receiver. (If you don’t have a coax connector on your receiver, we’ll deal with that issue shortly).

Finally, you need to make a choice about which antenna you want to use. The 1020C Owner’s Manual says:

You may connect either the telescoping antenna provided or an external wire antenna of your choice. To connect the telescoping antenna; screw the antenna end through the top cover and into the spacer located on the PC board. If you chose to use external wire antenna; plug it into the INPUT SO239 connector located on the back of the unit. (DO NOT HAVE BOTH ANTENNAS CONNECTED AT THE SAME TIME!)

Attaching the telescoping antenna can take a while since you may have to hunt around to get the antenna centered on top of the screw inside the 1020C’s case.

Operating the MFJ 1020C

Here’s how I operate the 1020C:

  1. With the BYPASS turned ON (the button pressed in), tune the receiver to the frequency you want to hear.
  2. Set the GAIN knob to around 3 or 4.
  3. Set the BAND knob to the band with the MHz that you are tuned to. You will notice that the red PWR indicator on the 1020C lights up.
  4. Press and release the BYPASS button. This turns on the active preselector and amplification circuits.
  5. Slowly turn the TUNE knob back & forth. At some point in its tuning range, you will hear the signal peak. With the 1020C, I often find there is a spot where the noise peaks and a hair to the side of the noise peak is the sweet spot for listening.
  6. Finally, adjust the GAIN knob for maximum intelligibility of the signal.

Note: When the BYPASS button is pushed IN (the ON position), that means you are hearing the signal straight through from the antenna without going through the amplification and preselection circuits of the 1020C . . . it’s like the 1020C isn’t even there. This is true even if the red PWR LED is illuminated. To put the 1020C to work for you, the BYPASS button must be OUT, and a band must be selected.

The Results of My Tests

Bottom line: the 1020C can really help in certain situations.

Initially, I set up the 1020C with its diminutive 20 inch antenna and connected a coax jumper cable between its coax output and the coax input on the back of the Satellit 800. I wanted to see if it would out-perform the four-foot-long telescopic antenna on the Satellit. No way, I thought; the Satellit antenna is twice as long. But I was wrong. On the first day I tested the 1020C, the atmospheric noise was terrible. I could not hear time station CHU on 3.330 MHz at all with the Satellit’s built-in antenna. But with the 1020C properly tuned, I could hear the time “pips” on CHU clearly.

A couple of days later, when SWLing.com announced the Annual Armed Forces Day Crossband Test —  https://swling.com/blog/2022/05/today-14-may-2022-annual-armed-forces-day-crossband-test/ — I set out to see if I could hear some of the stations. I removed the telescopic antenna from the 1020C and connected the 1020C to my indoor end-fed antenna. Putting the unit in bypass mode, I then started punching in the crossband test frequencies on the Satellit 800. At each frequency, I would first listen to the frequency in “barefoot” mode, then activate the 1020C to see if I could bring any intelligible signal up out of the noise. I had no success until I got to 14.487 MHz USB.  With the straight-through indoor end-fed antenna, I heard nothing, but with the 1020C engaged and carefully tuned, I could copy a station sending in CW: CQ CQ CQ. Later I was able to confirm the ID as NSS from Annapolis, Maryland, one of the stations in the crossband test.

On some easier-to-hear signals, the 1020C sounds as if it lowers the noise floor, improving the “listenability,” but the 1020C does not improve all signals. Sometimes the signal processed by the 1020C sounds roughly the same as the bypassed signal. And sometimes the bypassed signal (straight through from the antenna without the 1020C in-line) simply sounds better.

The pigtail.

Testing the 1020C with a Portable

Next, I tried the 1020C with my Tecsun PL-880. Immediately, I was confronted with a problem: how to get the signal from the coax output of the 1020C and into the antenna socket of the 880. Fortunately, a ham friend fabricated a “pigtail” for me that made the connection from the coax connector on the 1020C to the antenna input socket on the PL-880. As soon as I hooked it up, I heard an unpleasant hum that I had not heard on the Satellit 800.

I decided to see if running the 1020C off battery would offer an improvement. This involved another challenge: there is no “hatch” on the 1020C to provide access for plugging-in the 9-volt battery. Instead, you have to take out the screws on either side of the cabinet, remove the cabinet top, find the 9-volt connector hidden in a little plastic sleeve inside the 1020C, plug in the 9 volt battery, slide it into its clip, replace the cabinet top, and run the screws back in. That, in itself, is not difficult to do, but as soon as the battery needs replacing, you have to go through most of the process all over again.

The good news is that once the 1020C was running off battery, I could detect no hum, and the experience with the 1020C with the PL-880 was much the same as with the Satellit 800. Some signals were improved, some were the same, and sometimes the straight-through (bypassed) signal was better.

I have not tested the 1020C with a large, signal-devouring antenna out in the fresh air. The 2009 edition of Passport to World Band Radio offered that, with an inverted-L antenna longer than, say, 50-75 feet, the 1020C may not provide much benefit. However, my experience with a modest 50-foot indoor end-fed antenna demonstrates that the 1020C can deliver a significant signal boost in some circumstances, and I am glad to have it in my shack.

Bearing in mind that it won’t improve every signal you want to hear, if you live in an antenna-challenged situation, the MFJ 1020C – particularly if you can get 20-50 feet of wire outdoors or run around the perimeter of a room – may be just what the doctor ordered.

Suggestions for MFJ

There are three areas in which MFJ could make life easier for 1020C users: (1) make a pigtail or other device available to get the signal from any wire antenna to the coax input of the 1020C, (2) make a pigtail or other solution to bring a signal from the output of the 1020C to a shortwave portable (possibly a pigtail with an alligator clip to connect to the whip antenna), and (3) offer or provide quick-release pins for the 1020C cabinet for those who wish to operate it off batteries and want to be able to replace them quickly and easily.

Spread the radio love

Tecsun PL-990 Ferrite Rods

Many thanks to SWLing Post contributor, Gareth Buxton, who writes:

Hi Thomas

I see that Anon-co have the Tecsun PL-990 Ferrite rod aerial for sale. It even says in the product description “You can use it for your DIY projects.” I thought it might be of interest to your MW/AM radio constructors, especially if they can build a radio that receives more stations than the Tecsun using the same part!

Click here for the product page at Anon-Co.

Cheers
Gareth

Thanks for the tip, Gareth. This would indeed make it easy to construct an external MW antenna. Thank you for the tip!

Spread the radio love

Frans compares the BH5HDE QRP, GRAHN SE3, and his home made loop antenna

Many thanks to SWLing Post contributor, Frans Goddijn, who shares the following article and video originally posted on his blog:

I got the little BH5HDE QRP portable QRP loop, assembled it and could not wait to try it out even though it was during that day and signals were sparse and weak.

This new loop performs well, in part thanks to the tuning & impedance knobs. I compare it with the GRAHN SE3 and a big home made loop that I bought second hand. The latter has no tuning but is as directionally sensitive as the others and it delivers an amplified signal to the receiver.

Click here to view on YouTube.

I found a manual for the QRP, not included in the package:

Instructions for use of BH5HDE QRP portable small loop antenna

Welcome to use the BH5HDE QRP portable small loop antenna. This product can easily and quickly set up a short-wave transceiver antenna, allowing you to enjoy the joy of multi-band reception and communication indoors, windows, balconies and outdoors.

Installation:
(BNC mount equipment needs to bring a pair of photography tripods)
Use the right-angle adapter and double male docking to connect the antenna to the m seat at the rear of the radio station or erect the ring body to the connector on both sides of the controller and tighten, then install the tripod to the fastening seat on the back of the tuner Open the tripod, place the antenna body firmly on the tripod, and finally connect the feeder (the feeder is attached with a choke, one end of the choke is placed near the small loop antenna).

use:
Now that the small loop antenna has been connected to your radio station, you can now tune in.
First introduce the function of the tuner panel. The toggle switch on the left is the band selection switch (up: 7MHz, down: 14-30MHz).
The main control knob, the upper knob is the frequency tuning knob, the frequency tuning value does not change due to environmental changes; the lower knob is the impedance matching knob, the impedance matching value will change due to environmental changes. (The tuning range of the two knobs is 180 degrees, and the panel value is 0-60).
When you start using the radio, select the desired frequency, and then turn the band switch to the desired band position, then adjust the impedance matching value of the lower knob to 30, and then adjust the upper knob to tune. At this time, pay attention to listening to the noise floor of the radio station. The more resonance, the louder the noise floor of the radio station (in the environment with extremely low noise floor, the antenna resonance noise floor is almost inaudible. It is recommended to let the radio station observe the standing wave). At this time, let the radio transmit (cw, fm, and am modes are available), pay attention to the standing wave indication, and fine-tune the frequency tuning knob while transmitting. Since the knob of the portable version does not have a deceleration function, the method of fine adjustment must be more delicate, and the smaller the rotation angle, the better.

At this time, you can observe a significant change in the standing wave, but generally the minimum standing wave ratio will not be below 1.5. At this time, you need to adjust the impedance matching knob. It is recommended to adjust the positive and negative 5 scale values randomly, and then repeat the frequency tuning steps and observe The standing wave ratio. Due to the change in the matching value, there are two possibilities before the comparison: 1: the minimum value of the standing wave ratio decreases; 2 the minimum value of the standing wave ratio becomes larger. If the minimum value of the standing wave ratio becomes lower, it means that the impedance matching adjustment approaches the correct value and can be further adjusted. If the minimum value of the standing wave ratio becomes larger, it means that the impedance matching is far from the correct value and must be adjusted in the opposite direction.

Repeat the above steps to adjust the VSWR of the antenna to 1.0.

The VHF and UHF bands are fixed with the upper knob hitting 60 to the end, and the lower knob can adjust the impedance to resonate.

Note: The best effect for outdoor use is to use antennas indoors as close as possible to windows, fully enclosed reinforced concrete, against walls and other environments where the standing wave ratio is not ideal.

Advanced technique: when the signal is weak, you can rotate the antenna direction to improve the signal-to-noise ratio, which is conducive to reception. The unique gain lobe of the loop antenna makes the horizontal gain directivity when it is erected, and its characteristics can be used to select multiple signals in the horizontal direction. It can also reduce the co-frequency interference in the horizontal direction. Of course, If the interference signal is extremely strong, much larger than the useful signal that needs to be accepted, the attenuation effect will not be too significant, compared to the whip antenna can still have the attenuation effect.

Spread the radio love

Jock gets a good grounding!

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


Getting grounded – at last!

By Jock Elliott, KB2GOM

Readers’ comments are among the best things about writing for the SWLing.com blog. When a reader responds to a post and leaves a comment, it does three things. First, it lets the author know that someone actually read the post. Second, it provides valuable feedback – “I liked it.” “Did you know about this . . .?” “I had a similar experience.” – and so forth. Finally, it provides the author an opportunity to learn something, and that perhaps is the most fun.

A case in point: when I posted this, Andrew (grayhat) said:

“If you want to make an experiment, connect the end-fed to the Satellit high-Z wire input (clamp), then pick a (relatively short) run of insulated wire connect one end of the wire to the high-Z “ground” (clamp) and the other end of that wire to the “gnd” hole in the wall plug

The above being said, I prefer keeping antennas outside and taking care of the feedline, this helps reducing or eliminating noise from indoor appliances like switching PSUs and other things, anyway, if you want, try the above idea and let me know how it works for you”

To which, I responded:

“Thanks for the comments.

Thanks to a tree falling on the powerlines, I now know that the inherent electrical noise in my radio room is basically down to the level of atmospheric noise.

Neverthless, experimenting with a ground is definitely worth trying. A thin wire, sneaked out the window to a ground rod, might do the trick. I’ll report back after I try.”

Andrew (grayhat) came back to me and said:

“I was serious, try the “wall plug ground” I described, it won’t start any “magic smoke” or the like, otherwise, if you can lay out a wire with a length of 5m max, cut to be NON resonant, and connected to a good ground stake, go for it

Then, if you want to discuss this further, just ask Thomas for my e-mail, I agree to share it with you.”

Now, I really appreciated Andrew’s comments, but what I had not told him was that there is just one wall plug in my radio shack; it is really inaccessible, and I am not sure I can get a ground off it. Further, the rest of the power “system” in my shack is a rat’s nest of power bars and extensions, and I have zero confidence that any of them will provide a useful ground.

But – and this is a big but – I did take Andrew’s point: that connecting an actual ground to the ground clip on the back of the Satellit 800 might improve things. Continue reading

Spread the radio love