Shortwave listening and everything radio including reviews, broadcasting, ham radio, field operation, DXing, maker kits, travel, emergency gear, events, and more
Dennis from Bonito kindly sent me a sample megadipol and I’m truly impressed with it. The SNR is amazing right through the shortwave spectrum and really helps pull out weak signals.
I was particularly impressed to be able to pick up World Music radio on 5840 kHz all the way here in Ireland with just 100 watts in the evenings.
It’s also quite excellent on LW/MW.
See for yourself on my KiwiSRR just check out the SNR !!!
The XHDATA D-808 portable is an AM-LW-FM-SW-SSB-AIR band model which has already been the subject of many excellent reviews. Until recently the model was not marketed to North American purchasers, but recently a couple of Chinese sellers have started soliciting North American buyers via eBay listings.
My own interest in the model was in comparing its AM Band performance to that of the best performing Ultralight radios– specifically the CC Skywave and Skywave SSB models. Although the D-808 is slightly larger than the 20 cubic inch limit for Ultralight radios, its size and weight make it very convenient to take along as a “travel portable,” specifically as an SSB-enhanced model capable of checking transoceanic station carrier strength on exotic ocean beaches. The Skywave SSB model can also do that– but at a $169.99 list price, compared to the $112.86 (plus $10 shipping) cost of the D-808. In addition, none of the published D-808 reviews seemed to have any information about internal components like the loopstick, or Si4735 DSP chip.
My first test was to compare the stock Skywave SSB model with the D-808 in fringe AM station reception. The Skywave SSB model has a reputation of being one of the most sensitive Ultralight radios, but the D-808 clearly outperformed it on both low band fringe station (550-KARI) and high band fringe station (1700-City of Auburn TIS) reception. The D-808 couldn’t quite hang with a 7.5″ loopstick Skywave model, but that only made me curious about how the same modification could enhance the D-808. So… it was time to disassemble the D-808, and find out why its loopstick was such a superior performer.
The D-808’s 3 7/8″ (98mm) loopstick is shown adjacent to the 2 3/4″ (70mm) loopstick of the CC Skywave models. The D-808 is much easier to disassemble than the CC Skywave models, though, so enhanced loopstick transplants should prove to be quite popular in the D-808.
The D-808 loopstick is 3.7/8″ (98mm) long, while that of the CC Skywave SSB model is only 2 3/4″ (70mm) long. Other reviewers have noted the excellent performance of the D-808 on the AM band, and this is probably one of the main reasons. The SSB mode operates very similar to that of the Skywave SSB in providing a quick check of carrier strength on weak AM band targets– the LSB mode can be set to +55, and the radio tuned to different frequencies to check fringe station carrier strength. This can provide a real-time check of propagation changes during time-limited propagation openings for live ocean beach DXing with Ultralight radios or other portables (or with the D-808 itself, if desired).
The D-808’s Si4735 DSP chip was initially used in the Eton Traveler III Ultralight radio model, which was fully reviewed in the 2015 Ultralight Radio Shootout (where it won top honors for MW sensitivity). The D-808 augments that capability with a significantly longer loopstick, plus multiple DSP filtering selections. As such, the D-808 in stock form should be a very superb performer.
The Si4735 DSP chip has markings of “3560, DCUL, .738” and provides a wide range of AM bandwidth choices for the Medium Wave DXer (6K, 4K, 3K, 2.5K, 2K, 1.8K and 1K). These perform very well, and as with the other DSP-enhanced portables, the narrowest bandwidth (1K) provides the most sensitive AM band reception.
In construction very similar to that of the CC Skywave, the D-808 separates into two main circuit boards, connected together by a plug-in ribbon cable. One strange quirk is that the Si4735 DSP chip is located on the RF board (close to the center right edge). The Si4735 DSP chip is also used in the Eton Traveler III Ultralight radio, and although that model lacks the multiple DSP filter selections of the D-808, is has been the subject of highly successful 7.5″ loopstick transplant modifications– proving that such enhanced Medium Wave and Longwave loopsticks will perform very well in the new, Si4735 chip- powered D-808.
Disassembly of the D-808 model is fairly straightforward in comparison to the CC Skywave models, and the technician doesn’t need to memorize a detailed reassembly protocol in order to perform a routine loopstick transplant operation. Neither C.Crane nor XHDATA are likely to show any sympathy to someone botching up an antenna transplant, so you need to be confident that that your skills are superior to those of the company technicians before taking the plunge. In the CC Skywave and CC Skywave SSB models various parts fit together like a puzzle, but the D-808 isn’t like that. It should prove to be a fairly popular model for enhanced MW and LW loopsticks.
Those considering a purchase of the D-808 should be advised that its type 18650 Li-ion 3.7v battery is not commonly available at most stores, and that Postal regulations supposedly forbid shipping these batteries through the mail. One of the eBay sellers (harelan ecommerce) did manage to ship me two of the standard XHDATA type 18650 batteries through the mail (along with two new D-808 models) but if your seller won’t do this, you can still purchase the batteries on eBay. Some of the 18650 batteries sold on eBay have a flat positive terminal which won’t contact the D-808 cabinet’s positive battery connector terminal, but in such a case you can simply insert a #8 lockwasher in between the two, and the arrangement will be very secure. From that point on you can simply recharge the battery with a USB terminal connector.
Thank you for sharing this technical overview of the XHDATA D-808, Gary! I’m looking forward to the antenna mods you’ll no doubt make to this compact DX machine!
A few days ago, SWLing Post contributor, Robert Gulley (AK3Q), pointed me to an excellent website by Harry Lythall (SM0VPO) which is chock-full of various homebrew radio projects. In particular, we both were impressed with Harry’s 20 Meter Loop Antenna–it’s such a simple project and requires no special order components. In fact, all of the components (save, perhaps, the antenna connector) can be purchased at a DIY store.
I reached out to Harry and he has kindly allowed me to republish this project as a guest post:
20m Loop Antenna
by Harry Lythall – SM0VPO
Introduction
I recently saw that my 80m (3.5MHz) loop (or frame) antenna has been really popular, and that there are loads of other radio amateurs who have taken my design and “ran with it” to produce variations that all have some great improvement. There have been many in-depth tests and simulations, all with exceedingly good results and reports. This is exactly what I am aiming for with my homepages – free information for all and my designs being improved upon. That way we all win 🙂
One small point all variations have in common is the need for an expensive tuning capacitor and a very restricted RF power level. Of course, you can throw money at the problem, but for me this hurts. I got to thinking that there must be a way of adjusting the design a little and finding another technique to tune the antenna, and to make the best use of the little radio transceiver I have in Sweden, given the limited space.
My limited space apartment.
As you can see there is not much opportunity for grand antennas. And to add to this, the equipment I have in Sweden is also limited to a single 5-Watt unit.
My limited equipment – only 5-Watts.
The Design Thoughts
Today I have no area of land to use for antennas. I have a glassed-in balcony on the 4th floor of an apartment block. I really like the 20m (14MHz) band so I will concentrate on that. I am not really interested in the CW end of the band, except perhaps 14.070MHz for the digimodes. So my requirements are:
As efficient as possible (useable)
Small size, also portable so I can use it for field use
No expensive components, everything available locally
No TVI, QRM or interference to stereos or computer sound
Total price less than $2
The antenna I have created is based on my original 3.5MHz loop (or frame) antenna. This time I built it out of scrap components. I cadged (tiggade) some plastic conduit tubes from an electrical contractor at work. The same guy also gave me the remnants of a roll of 2.5mm C.S.A. multi-strand mains cable. That was all I needed.In my junkbox I found no tuning capacitors, but WAIT!! Why do I need to tune the antenna? Once it is tuned I should not need to tune it again, just set the centre-frequency to 14.175MHz. If I can get the Q-factor to around 100 then my useable 3dB bandwidth should be more than 150kHz. That will give me 14.10MHz to 14.25MHz.
Ok, I need a 1-off, preset tuning capacitor. Why not use a Gimmik Capacitor? Just twist two bits of wire together and cut it short to get the resonant frequency I want. So I need to get the coil wound so that there is sufficient cable length and self capacitance to give a resonance of about 14.5MHz without any extra capacitance what-so-ever. That means I need just a few pf. That sounds like a good plan.
Construction
The 15mm Diameter plastic tube I “aquired” were 80cm long. After much trial and error I found that exactly 3 turns, with 2.5cm spacing, gives about 14.9MHz self resonance. The wire support holes are exactly 4cm spaced, beginning 1cm from the end of each tube. The two tubes are fixed into a and X using zip-straps (tie-wraps, buntband). The feed loop is 1/2 turn.
Note the size and position of the feed loop. Also the Gimmik capacitor.
One problem I had with the original loop antenna was that of RF coming back down the cable braid. Using on old FT-101ZD it was possible to feel the RF on the microphone with your lips. The cure for this is to use a balanced feed and at least 5m of RF cable.
I robbed the ferrite ring for the balun from an old ATX computer PSU and made a triflar wound torroidal transformer. That is to say, twist together three lengths of 1mm x 7-strand insulated hookup wire together. Use this to make a 7-turn coil and connect the three coils in series, with four connections. Feed connections (numbered in the picture below) 1 and 3 are connected to to the antenna feed loop. Connect the coaxial cable braid to connection 2, and the coax centre to connection 4. My balun is self-supported on the connection leads.
The 1:1 Balun I used.
The coaxial feed cable was found to affect the resonance slightly, so I fed that through an extra bit of tube to make it stay in one place. It works fine.
Feeder cable secured in the support tube.
Testing
Testing is very easy. I used my GDO-2 to check the middle-turn of the loop for a dip. Twist the two tails together to form the Gimmik capacitor and adjust the length of the twist until the centre-frequency is 14.175MHz. With the GDO you can get it within about 100kHz to 200kHz, but then you can check the VSWR using your HF radio. You can also sweep the band for maximum noise and get a very close approximation.
The Gimmick capacitor.
The centre frequency of my 20m Loop antenna is 14.175MHz, and the VSWR is better than 1.05:1 (I can hardly see any movement on my meter). The Q-factor is somewhere approaching 100. The useable bandwidth is just a little narrower than I would have wished, but the antenna certainly works well and meets all the other criteria. But the slightly less useable bandwidth criterion is at the expense of better performance, and it still allows me to use 14.070MHz, although it is a little quieter down there.
The completed antenna.
Conclusion
No-matter how you play with the figures, the best indoor antenna cannot replace a full-size dipole antenna. But the indoor antenna can give some extra features, such as just reaching out your arm and trimming a little, which you cannot do with a long-wire antenna up a tree out in the garden, especially when it is raining.
This antenna gets me on the air on 14MHz, and it has a useable frequency range. The VSWR is almost perfect at the centre-frequency, and this time I don’t burn my lips on the microphone (not that I am likely to do so with just 5-Watts of power). The design uses no expensive components, in fact the only item I bought was the block-connector for the balun. That cost me US$1.50 for a pair of 12-contact screw-terminals. The construction is ridiculously simple and easy to build.
On the air I can hear traffic on 14.070 digimodes, and from 14.130 to 14.220MHz I have a near-perfect VSWR aqnd good clear reception of SSB. I can also rotate the antenna to cut out rubbish, and most of all, using the Gimmik capacitor I don’t need to re-tune it: it seems temperatore-stable. The weight is less than 500g and when I poke it out of the balcony window the reception improves, the VSWR does not change, and I can make myself heard among the big boys.
I hope that you have some fun building and using this antenna. If you have any ideas for further improving it then please use my forum.
Don’t forget to visit my messageboard if you have any questions about this or any other project. I always look forward to receiving feedback, positive or negative.
Very best regards from Harry Lythall
SM0VPO (QRA = JO89WO), Märsta, Sweden.
EA/SM0VPO (QRA = IM86BS), Nerja, Spain.
Many thanks, Harry, for sharing this excellent project on the SWLing Post!
Post Readers: be sure to check out Harry’s website which is loaded with radio projects of all stripes. You’ll easily spend a few hours digging through his tutorials and downloads. Harry also maintains an alternate mirror server located here.
Many thanks to Dennis Walter at Bonito for sharing the following product announcement:
MegaDipole MD300DX wideband active dipole
The MegaDipole 300DX is a broadband active dipole with a maximum upper working frequency of 300 MHz. The dipole reacts to the electrical component (E-Field) of the electromagnetic field and will deliver best results regarding signal strength and SNR (signal -to-noise-ratio) at locations with little or no locally generated interference. Nonetheless, the receiver to be coupled to this antenna should have a high enough dynamic range so that it can effectively process the received signals.
In contrast to simple E-field antennas with only one radiating element, the symmetrical construction of the MegaDipole 300DX, will result in almost no negative resonance effects or reflections caused by the coaxial cable.
First choice for DXer
The MegaDipol MD300DX is the ideal antenna for DXers. Particularly in electrically quiet environments, it can really play to its strength in efficiently amplifying weak signals. In practical operations, a maximum signal-to-noise ratio of 110dB was achieved! (see image )
Wideband
With prodigious broadband capability and constant receive characteristics the MegaDipol MD300DX is ideal for wideband receivers, SDR’s and WEB-SDR such as KiwiSDR etc. The MegaDipol MD300DX can of course also be operated on all other receivers, including lower-end SDRs and portable world receivers.
Dual Power Power Supply
The MegaDipol is nominally supplied with 10 – 15V DC (max 40mA), however, it can be operated across a wide variety of supply voltages. The antenna can even be operated with slightly reduced IP values at the same gain with only 5 volts via USB. This offers a significant advantage in that you can supply the MegaDipol on trips away from the radio shack or DX expeditions autonomously, using a low-noise USB power-bank.
The MegaDipol has already attracted a lot of attention with its receive performance at various events such as DX-Camps, field days and in-house exhibitions. In these tests, the MD300DX surpassed the existing antennas usually by 10-15dB in the SNR.
Technical data
Frequency range: 9kHz – 300MHz
IP3: typ. +30dBm (@7.00 & 7.20MHz)
IP2: typ. +78dBm (@7.00 & 7.20MHz)
Size/weight: 98 x 90 x 38mm / 0.12kg
Whats in th Box?
MegaDipol MD300DX
Power Inserter CPI 1000DP
2x 2.5m long radiating elements (PVC-coated, salt-water resistant stainless steel ropes)
2 insulators for installation (weatherproof plastic material with 4.5mm fixing hole)
Many thanks to SWLing Post contributor, Bill Hemphill (WD9EQD) who shares the following:
I went to the Warminster Amateur Radio Club (WARC) hamfest [yesterday] in Bucks County, PA. For some time, I have been thinking about making a loop antenna for AM DXing. It was my lucky day. When I walked to the inside tables, on the very first table was this homemade loop antenna gentleman was selling from an estate.
I snatched it up for $40.
Attached are some photos of it. It’s 25” by 25”, with a swivel base. There are 23 turns of wire and I have no idea what size the capacitor is. I did some preliminary tests and it tunes from 280 kHz to 880 kHz. So it’s the covers the high half of the long wave band and the low half of the AM band.
It’s very well made and I fugue I can modify it to cover the entire AM band.
[…]I hooked the SDRplay RSP2 to it and was getting good signals of major stations all the way to 15 mHz.
That’s with it sitting on my dining room table. Of course the capacitor wouldn’t peak the signals.
So it was a great day at the hamfest!
Indeed that was a great find, Bill! Someone spent a decent amount of time building that furniture-grade loop support. Indeed, it’s very reminiscent of 1920s-30s mediumwave loops!
What I love about your loop (and that of Thomas Cholakov) is that one can see how simple these antennas actually are to build. The only complicated bit is the support, but even that’s simple if you use the shield of a heavy coax or flexible copper tubing.
Thanks for sharing and enjoy logging DX with your new-to-you loop!
Checking out transoceanic DX propagation at an exotic ocean beach site can provide the hobby thrill of a lifetime– if a DXer is lucky enough to choose the ideal time, place and gear to make the chase. All of these fell into place in an amazing way during a 5-day trip to Aitutaki Island (2600 miles due south of Hawaii) with Ultralight radio gear, resulting in the reception of MW stations in India, Bangladesh, Mongolia and Cambodia– all at over 6,800 miles.
Because of extensive QRM from Australia and New Zealand the total number of Asian stations received was limited, but it was definitely a case of quality over quantity. Phenomenal gray line propagation around sunrise shut down Japanese signals almost completely, but boosted up those from the exotic countries in east and south Asia. Korean station reception was limited to the big guns, which was also primarily true for Chinese signals. Except for the ANZ pest QRM, the conditions seemed custom-designed for a west coast DXer to go after the exotic stations which rarely– if ever– show up in BC, Washington or Oregon (even though the Cook Islands’ distance to them is greater).
7.5 inch loopstick C.Crane Skywave SSB Ultralight
Ocean beach propagation at sunrise was strong enough to bring in both 693-Bangladesh and 1431-Mongolia at S9 levels almost every morning on my Ultralight gear, and allow both 657-AIR and 918-Cambodia to break through ANZ QRM on April 12th. No doubt many more of these exotic stations could have been logged except for Australian QRM on 576, 594, 872, 883 and 1566, but this only added to the thrill of the chase. The overall results were exceptional for a DXer using only a 7.5 inch loopstick Ultralight radio and 5 inch “Frequent Flyer” FSL– all designed to fit within hand-carry luggage, and easily pass through airport security inspections. Thanks very much to Alokesh Gupta, Hiroyuki Okamura, Jari Lehtinen, Chuck Hutton and Bruce Portzer, who all assisted in the identification of these stations!
657 All India Radio Kolkata, India, 200 kW (8,075 miles/ 12,995 km) Recorded by accident during a sunrise check of the Korean big guns at 1641 on April 12, reception of this longest-distance station went unnoticed until file review after return to the States. The female speaker (in the Bengali language) is the third station in the recording, after the female vocal music from Pyongyang BS and the Irish-accented male preacher from NZ’s Star network. Her speech peaks around 40 to 50 seconds into the recording. The isolation of the Star network at the 55 second point was done by the Ultralight’s loopstick, not by the propagation. Thanks to Alokesh Gupta for the language and station identification:
657 Pyongyang BS Pyongyang, N. Korea, 1500 kW Like most east Asian signals the N.K. big gun sounded pretty anemic in the Cook Islands. Its female vocal music at 1641 on April 12th shared the frequency with NZ’s Star network (Irish-accented preacher) and AIR’s female Bengali speaker:
693 Bangladesh Betar Dhaka, Bangladesh, 1000 kW (7,960 miles/ 12,810 km) Probably the biggest surprise of the DXpedition, with S9 signal peaks on 4 out of 5 sunrise sessions. Frequently snarling with the Oz pest 3AW, it usually managed a few minutes on top of the frequency each morning from 1630-1700 UTC. Exotic South Asian music was the usual format, and was very easy to distinguish from the talk-oriented format of 3AW (and other Oz co-channels). This first appearance at 1652 on 4-10 featured a “Bangladesh Betar” ID by a male speaker at 8 seconds into the recording (thanks to Chuck Hutton for listening):
774 JOUB Akita, Japan, 500 kW Oddly enough, this was the only Japanese signal making it to the island during the entire trip. Mixing with a goofy-sounding 3LO announcer at 1613 on 4-11, the Japanese female speech concerns a “doobutsuen” (a “zoo” in Japanese, similar to what the frequency sounded like with the 3LO announcer):
819 KCBS Pyongyang, N. Korea, 500 kW The N.K. big gun managed a potent signal for its 3+1 pips across its “TOH” at 1630 on 4-12 but never could shake off RNZ’s Tauranga transmitter:
909 CNR6 Quanzhou, China, 300 kW Strong signal with CNR ID (1:08) and Mandarin speech by male and female announcers. NZ’s Star network was apparently off the air at the time, since it was a real blaster when transmitting:
918 RNK Phnom Penh, Cambodia, 600 kW (6823 miles/ 10,981 km) Breaking through the Shandong and Oz QRM at an ideal time to dominate the frequency, its sign off transmission with the National Anthem peaked just before the 1700 TOH on April 12. Female speech in the Khmer language and exotic music are featured just before the anthem (thanks to Hiroyuki Okamura and Jari Lehtinen for listening, and identifying the National Anthem):
918 Shandong RGD Synchros (Multiple) The dominant Asian signal on the frequency, it rarely allowed Cambodia to sneak through. Here it is with female Mandarin speech at 1647 on 4-11:
Shandong RGD’s transmitters were poorly synchronized, resulting in the two-tone time pips at the 1700 TOH on 4-12 (during Cambodia’s National Anthem at 1:40, in the MP3 linked below). Although actually from two different transmitters, the sound effect sounds similar to that of a “cuckoo clock,” resulting in some initial confusion about their source:
972 HLCA Dangjin, S. Korea, 1500 kW The South Korean big gun played the part on most mornings, including this S9+ Korean female speech at 1631 on 4-12:
981 CNR1 Synchros Changchun/ Nanchang, China, 200 kW/ 200 kW The first of three CNR1 frequencies which usually produced strong signals, this music // 1377 was received at 1624 on 4-12:
1377 CNR1 Synchros (Various) Overall this was not only the strongest Chinese frequency on the band, but was the strongest Asian station on the band as well. Awesome S9+ signals were typical each morning, as with this male speech and music at 1622 on 4-12:
1431 Mongolia (Relay Station) Choibalsan, Mongolia, 500 kW This station was easy to receive on the first attempt, with very little competition on the frequency. It typically managed an S9 signal after 1630 daily with the BBC’s Korean service, which seemed to be broadcast during the peak sunrise enhancement time in Aitutaki’s ocean-boosted propagation. Here is BBC’s Korean male announcer at an S9 level at 1632 on 4-11, with the BBC interval signal at 47 seconds into the recording:
1566 HLAZ Jeju, S. Korea, 250 kW A very poor signal was typical during this trip, with the Chinese service barely showing up under 3NE and two other DU English stations (probably 4GM and Norfolk Island). Whenever 3NE was in a fade it had a chance, since other two co-channels were running very low power. Here is the latter situation, with the weak Chinese barely audible under the DU English snarl at 1641 on 4-12:
1593 CNR1 Changzhou, China, 600 kW This was another Chinese blaster, with S9 signals typical every morning. Here it was at 1641 on 4-12 with male Chinese speech and music at 1377:
Amazing, Gary! Thank you for taking us along on your excellent Ultralight DXpedition. With a modest portable radio and a little antenna ingenuity, you’re enjoying some outstanding DX! You’re living proof of the point I was trying to make in a post yesterday!
Thomas: I know you’re a self-proclaimed pack geek and so am I! You published a photo of your EDC pouch in a post last year. Just a teaser really! What is that pouch and I assume you have a larger carry bag as well? Can you provide more details? I’m ever revising and honing my own EDC pack. Any details would be appreciated.
Thanks for your question Matt! Besides radio, you’re bringing up on one of my favorite topics: packs! You may regret having asked me!
Yesterday evening, I snapped a few photos of my EDC (Everyday Carry) bag and the pouch you’re referring to. Your inquiry is prompting me to consider publishing a more detailed look at my EDC gear–especially since radio is such an important part of it.
I do carry a larger EDC bag at all times. Typically, this is the Tom Bihn Pilot:
For years, I carried a Timbuk2 messenger bag, but it didn’t have the type of organization I prefer in an EDC bag. My EDC bag must be rugged, water resistant and accommodate my 13″ MacBook Air while still having enough depth to comfortably fit the rest of my gear.
I’ve been using the Tom Bihn Pilot for almost a year and have been very pleased. The Pilot is an investment to be sure, but (like Red Oxx) Tom Bihn construction quality is superb and comes with a lifetime warranty.
It’s amazing how much gear will comfortably fit inside without making the bag bulge. The Pilot also has a dedicated water bottle pocket in the middle of the front panel. While I do carry water, it primarily houses my never-leave-home-without-it Zojirushi Stainless Steel Mug (affiliate link) which is filled with piping hot dark roasted coffee!
I also use the water bottle pocket to hold full-sized handled VHF/UHF radios. It accommodates either my Kenwood TH-F6, Yaesu FT2D, or Anytone AT-D868UV perfectly. Indeed, all of the front pockets will accommodate an HT since the zippers terminate at the top of the bag. Long antennas can easily poke out while the zipper still seals 99% of the opening.
The Pilot has one main compartment that houses my 13″ MacBook Air laptop.
The Pilot laptop compartment is spacious and has two built-in pockets opposite the laptop sleeve: one of these pockets (the one on the right in the photo above) holds my EDC pouch, the other holds first aid supplies, an Olight SR1 flashlight and Nitecore LA10 latern (affiliate link). My laptop is in a TSA-friendly Tom Bihn Cache.
Everything has its place. Not only does it hold my Yaesu VX-3R handheld, but also a multi-function knife, a Leatherman Style PS tool, clippers, earphones, multi-bit screwdriver, USB stick, notepad, spare VX-3R battery, a mini first aid kit, titanium spork, and much more! Someday I’ll pull the whole thing apart and note each item.
Why do I choose the Yaesu VX-3R? First of all, it’s compact. This HT is so small it’ll tuck away anywhere. Not only is it dual band, but it’ll also receive the AM broadcast band (even has a little ferrite bar inside), the shortwave bands, and the FM broadcast band.
The mini rubber duck antenna will work in a pinch, but I also carry a flexible Diamond SRH77CA in the floor of the Tom Bihn Pilot’s main compartment.
When I attach the Diamond antenna, it significantly increases the VX-3R’s capabilities.
While the VX-3R does cover the HF bands, don’t expect amazing performance. Selectivity is poor, but sensitivity is adequate. For a shortwave antenna, I carry a short length of coax: one end is terminated with an SMA connector, the other has the center conductor exposed.
I also carry a short alligator clip cable which I clip to the exposed center conductor and then to a length of wire. The end result is a very cheap, flexible and effective portable HF antenna!
Someday, I’ll take everything out of my EDC pack, inventory the contents and publish a post about it. Somehow, that’ll please my inner pack geek! I’m overdue a review of the Tom Bihn PIlot and Synapse 25.
Post readers: Do you have an EDC pack built around a radio? Please comment and include links to your favorite gear!
Spread the radio love
Please support this website by adding us to your whitelist in your ad blocker. Ads are what helps us bring you premium content! Thank you!