Category Archives: Shortwave Radio

EMP Radio Preparedness Primer: Understanding the Electromagnetic Pulse

Will modern portable radios survive an EMP? Likely not without protection.

Here on the SWLing Post we tend to cover topics related to shortwave radio, ham radio and international broadcasting. We also cover an array of other topics our contributors and readers find appealing.

Lately, I’ve noticed an uptick in one particular question–at least, variations of it–from readers and people who found our site searching for emergency/preparedness radios:

What radio can survive an EMP?”

or

“How could I protect a radio from an EMP?”

What is an EMP?

In case the term EMP is new to you, check out this explanation from Wikipedia:

An electromagnetic pulse (EMP), also sometimes called a transient electromagnetic disturbance, is a short burst of electromagnetic energy. Such a pulse’s origination may be a natural occurrence or man-made and can occur as a radiated, electric, or magnetic field or a conducted electric current, depending on the source.

EMP interference is generally disruptive or damaging to electronic equipment, and at higher energy levels a powerful EMP event such as a lightning strike can damage physical objects such as buildings and aircraft structures. The management of EMP effects is an important branch of electromagnetic compatibility (EMC) engineering.

Weapons have been developed to create the damaging effects of high-energy EMP. Misleading or incorrect information about such weapons, both real and fictional, have become known to the public by means of popular culture and some politicians’ claims. Misleading information includes both exaggeration of EMP effects and downplaying the significance of the EMP threat.

In short? A strategic EMP could cripple our electrical grid and potentially many other electronic and digital devices.

Most of us are concerned with wide-spread disruptions from electromagnetic pulses originating from:

  • Man-made atomic weapons
  • Natural occurrences, like solar flares/storms

A solar flare erupts on the far right side of the sun, in this image captured by NASA’s Solar Dynamics Observatory. (Image: NASA/SDO/Goddard Space)

No doubt, with North Korea testing nuclear weapons and their delivery systems, the latest surge in questions are a reaction to this behavior. Moreover, North Korea’s state news agency has been explicit about their intention to deploy and detonate an EMP weapon over the United States.

I’ve never been as concerned about man-made EMPs…well, until recently. Rather, I’ve been more concerned about the EMP potential of our local star––the Sun.

Whennot if, we receive a strong EMP from a solar storm like that generated in 1859, known as the Carrington Event–our electronic infrastructure could very well be severely crippled, perhaps even for the better part of a decade.

Concerning, isn’t it?

Let’s come back down to Earth…

As the Wikipedia article indicates, there’s a lot of confusing and misleading information out there regarding EMPs.  And while some of this reportage underplays the seriousness of this very real, if rare, concern, a great deal of it, including the fiction about it, is more alarming than it needs to be.

So I turned to a good friend who happens to be an expert on EMPs.

My pal has worked for thirty-five years designing military radar equipment, broadcast transmitters, and automotive electronics.

His profession requires that he knows how to “harden” equipment against all types of EMP threats, and thus is regarded as a specialist in this field. Because of his professional ties he’s asked that I withhold his name.

My EMP expert friend is also very pragmatic. That’s why I asked him to explain how EMPs might affect us both generally and specifically, in terms of communications and the radio world.

I asked him to address what effects an EMP might have, both nuclear and solar originated, and how what practical preventative measures we might take to mitigate the damage to our radio equipment. His reply follows…


Anxiety over EMP seems to recur every time there is a change in the established order. The premise of Mutually Assured Destruction that has kept us ‘safe’ in the nuclear age vanishes when confronted by a suicidal adversary. That _seems_ to be the case at present.

So let’s look at the facts available:

A nuclear EMP has its peak energy in the 1 MHz range, with appreciable energy even in the 1 GHz range. It has field strengths of up to 50 kV/m.

The wiring inside of modern consumer electronics, including PCB traces, is close to GHz wavelengths, so they will be effective [in] receiving that energy and carrying it to any electronics [to which] it is connected.

There was a series of articles in QST 30 years ago by Dennis Bodson (W4PWF) that should be the go-to reference:

[Note: the following links require that you’re logged into the ARRL website and are a current member.]

The author related results of a number of tests on equipment by the US in EMP simulators.

The impact on vehicles

One observation was that vehicles were not affected.

As a former automotive engineer, I can attest to the lengths to which designers go to make automotive electronics resistant to damage. A vehicle must be designed to withstand operation with no battery, reverse battery voltage, inductive surges, and other abuse. Automotive electronics are designed to operate under radio and TV transmitters without damage.

There are of course anecdotal accounts of ham equipment causing vehicle computers to go haywire, but if (and that is a BIG IF) the equipment was designed properly, there will not be damage. One area where EMP will cause damage in a vehicle is the car radio. It is tied to an antenna that will conduct the surge directly into the very fragile receiver circuitry.

That said, the amount of electronics in a vehicle is hugely increased since these articles were written in 1986, and even after I left the automotive industry in 2006.

The specs for automotive EMI resistance have not changed in that time, though.

EMP hardening

The way that you keep EMP out of any object is to surround it in conductive metal, so that no gaps exist. Think of a microwave oven that must keep the radiation _in_. The screen in the door window has tiny holes you can see through, but much smaller than the wavelength of the oven. Where microwave leaks are most likely to occur is around the door, where the metal shield is not continuous.

If you want to shield electronics from EMP, the coverage by the metal shield must be continuous. A gap or slit will permit the energy to penetrate.

Sample of reclosable ESD bags.

In the silvered plastic Electrostatic discharge (ESD) bags that are very popular for EMP protection, the zip-lock seam is the weak point in the shielding. You can very easily just use two bags, one inside the other, with the seams in opposite directions, to make a greatly improved shield.

Aluminum foil is a great shielding medium, [and] it’s cheap and plentiful.

Use a big piece, and wrap several overlapping layers. It’s hard to do better.

Many of the solutions used for EMI and RFI lose their effectiveness in the high field strengths of an EMP.

The ferrite snap-on chokes saturate at high magnetic field intensities, and lose their permeability, and the ability to stand off conducted surges.

Use of ammo boxes or file cabinets for EMP protection [a popular method promoted by many on the Internet] is of limited effectiveness because of the large gaps between sheets of metal, and the poor conductivity of steel.

A galvanized trash can is a better solution, because of the conductivity of the zinc galvanization.

The gap around the lid should be covered with adhesive copper tape, available at craft and garden supply stores.

Batteries

Batteries are not affected by EMP. But a battery pack with a built in smart charger may be.

Be aware that LiFePo batteries tend to have built-in smart charge controllers.

Store battery packs safely shielded also––but make sure the terminals cannot contact the metallic shield and cause a short!

Tube/Valve radio equipment

Vintage tube radios will likely survive an EMP, but how do you power them without mains electricity? By modern standards, valve gear is power hungry!

Vacuum tube equipment is very resistant to EMP, as [it] can withstand arcing and surges with no damage.

The bigger question is, how do you power it afterward?

Suppress Surges and Unplug

Much of the damage from an EMP will be conducted, coming in on power lines. Always unplug any critical electronics when not in use. Also, put a surge suppressor on every outlet [into which] you have electronics plugged.

It is cheap insurance. Even of you are not in line-of-sight of an EMP, the conducted surge can wipe out costly appliances. I do this as protection anyway because of my ham antenna. When lightning hit the tree outside my house ten years ago, we only lost two CFL bulbs, while every neighbor on our block lost TVs, microwaves, and washing machines.

Gamma Ray Bursts

EMP radiation should be distinguished from ionizing nuclear radiation. Exposure to a gamma ray burst from near proximity to a nuclear event will disrupt electronics also, but that is an entirely separate topic.

Most Important Communication Medium During Disasters

Photo by Tania Malréchauffé on Unsplash

(Hopping on soap box) The most important form of communication is that which covers the shortest distance. Get to know your neighbors. When bad things happen, they will be the people who will help you out, and be the most grateful when you help them. We’re seeing this happen on a massive scale in Houston [Florida and Puerto Rico] right now. (off soap box).

My Disclaimer

The subject of EMP is very controversial. There is a tremendous amount of misinformation out there. There is disagreement even among the experts.

The problem is that since aboveground nuclear testing…ended a generation ago, there is very little relevant information existing, since semiconductor electronics were in their infancy at that time this occurred. Most information that there is has come from EMP simulators, which are assumed to create waveforms close to that of a nuke. We all know…how risky assumptions can be!

But we do know how to make shielding, and we do know what kind of effects will damage electronics, and we can use this knowledge to try to assure that the preparations we make will be sufficient to protect our electronics.

All of these are very hostile EMI/EMC environments, and the specifications for their design are very strict. These designs offer guidance as to how to create EMP resistant electronics. What are offered are opinions, but hopefully well informed opinions. If I’m wrong, I won’t argue about it, there is more at stake than ego.


Answering common questions

Many thanks for these useful insights and explanations. And now, with all of this in mind, let’s re-evaluate questions about EMPs and radios:

“I understand tube/valve radios can survive an EMP. Which model should I buy?”

My answer: You’re correct; as discussed above, vacuum tube equipment is very resistant to EMP, as it can withstand arcing and surges with no damage.

However…without mains power (the most likely result from a strategic EMP) how will you power tube gear––? Many tube radios were never designed to be operated from a battery source. Those that could, require batteries with a fairly exceptional amount of capacity. Vacuum tube radios are not efficient compared with modern solid-state battery-powered radios.

If you have an generator or power source that is hardened to survive an EMP, and you have a plentiful supply of fuel to run it, then you may consider a tube radio. Otherwise––or better yet, additionally––protect a much more efficient portable radio.

“What radio can survive an EMP?”

Any radio that is properly shielded from the effects of EMP should survive an EMP.

“How can I protect a radio or other portable electronics from an EMP?”

After you’ve chosen which radio to protect, take the extra precaution of removing any attached telescopic antenna. Most antennas are held in place with a simple tiny stainless steel screw/bolt. Unscrew it, pull the antenna off, place both pieces in a small bag and keep it with the radio.

Next, place the radio in a container that will act as a “Faraday cage” to exclude an EMP’s electrostatic and electromagnetic influences. There are a number of commercial products specifically designed for this use, but it’s more simple and affordable to adopt one of the procedures our expert outlines above.  Let’s re-cap:

ESD Bags

Find a bag that’s large enough to fit your radio; many of the bags designed for SATA hard drives should fit more compact radio models.

Place the radio (and its detached antenna) into the ESD bag and close the zip seam.

Then, place the ESD bag containing your radio equipment into another ESD bag, making sure the bag seams are on opposite ends.

Aluminum Foil

 

Consider wrapping your radio or electronic device in its box. Not only does it insulate the contents, but it makes an easier surface to wrap in foil.

Wrap the radio in at least three layers of aluminum foil. Make sure all seams are tightly sealed with each layer of foil. Each layer should completely enclose and protect the radio.

I wrapped this radio in three layers of foil, carefully sealing seams on each layer.

Galvanized Trash Can

As mentioned above, items can be placed in a galvanized trash can for protections.

Simply line the inside of the can with a dielectric material (cardboard, thick cloth, foam, or something similar) so the contents cannot touch the sides, bottom, or lid of the can.

It may be overkill, but I might also wrap my electronics in aluminum foil before placing it inside, again making absolutely certain your equipment in its foil wrap is NOT touching the metal of the can.  This would simply serve as a secondary–redundant–layer of protection.

If you live in a humid area, you might put some sort of moisture protection inside as well.

More to come…

In the final part of our primer, we’ll take a look at what sort of radios you should consider packing away for emergency use, discussing selection criteria.

I’ll link to this article once it’s published, so stay tuned for more on this intriguing subject. Follow the tag: EMP

Radio Deals: HRO Superfest 2017 sale includes the SDRplay RSP2

I just received the following sale via an email from Ham Radio Outlet:

All of these are great prices, but I’m especially attracted to the SDRplay RSP2 for $139.95 and the CX-210N for $29.95.  If you’ve been on the fence about purchasing an RSP2, this is the lowest price I’ve seen for one.

Click here to view these deals at Ham Radio Outlet.

Larry’s variation of the W6LVP amplified magnetic loop antenna

Many thanks to SWLing Post contributor, Larry Thompson (WPE8EKM), who writes:

I’ve just finished building a variation of the W6LVP amplified magnetic loop antenna. I was able to purchase the preamplifier, power inserter, and the power supply separately. I then created my own loop antenna using LMR400Max coax and designed my own knock-down PVC support. I wanted something extremely compact and portable to take on sae-kayaking expeditions and to DXpeditions to Africa.

I spent many years teaching in the DRC Congo and hope to return.

I’ve used a 6’ loop, a 9’ loop, a 12’ loop, and an 18’ loop. All do very well, but the 6’ and the 9’ seem to do the best. I’ve been using the 9’ length of coax doubled into two loops and that seems be be doing extremely well.

The signal strength from the W6LVP variation is equal to my Parr EF-SWL End-Fedz 45’ dipole, but the reduced noise level on the bands is amazing. I live in a central city high-rise with no possibility of an exterior antenna. The EF-SWL is strung out a 5th floor window down the side of the building. It performs well, but with a high degree of noise. My QTH is rampant with QRM and RFI noise. The W6LVP amplified magnetic loop has really resolved that in a big way.

The bands are horrible at the moment, so evaluating the loop antenna is difficult. But the cleaner, stronger signals of CHU Canada on 3339 kHz and 7850 kHz, as well as WWV on 10,000 kHz is impressive.

I’m impressed with the reduced noise level on the bands tuning across them, as well as the noise-free signal once you lock into a station. I’ve heard hams on the 17 mb for the very first time.

So far, I’m very impressed with the performance of this amplified magnetic loop.

Very cool Larry! You’ve build a compact loop that can bring the RFI down to a tolerable level–I’d say that’s a complete success. Thanks for sharing!

Click here to read our previous article about the W6LVP loop.

Limited time Amazon deals on Eton Portables

Many thanks to SWLing Post contributor, Dan Robinson, for noting the following deals on Eton radios via Amazon.com. The Mini, Traveler and Field are all excellent prices. The Executive Satellit is also a good price, but note there may still be non “Executive” versions of the Satellit via the eBay deal we posted earlier ($113 US/$135 CDN).

This appears to be a timed sale, ending around 2:00 AM EDT:

Eton Mini: $24.99

Eton Field: $90.99

Eton Executive Traveler $48.99

Eton Executive Satellit $149.99

North Korea “aggressively” jams new BBC broadcasts

(Source: The Telegraph)

The BBC’s new Korean-language service is being “aggressively targeted” by North Korean jamming of its broadcasts.

The service was launched on Monday and delivers a mixture of global news, sport and radio features to the whole of the Korean Peninsula for a three-hour window that starts at midnight local time.

Broadcasts are going out on two shortwave frequencies, from Taiwan and Tashkent, while the hour-long segment from 1am is relayed on medium wave from Mongolia, according to a report on the 38 North web site, operated by the US-Korea Institute at Johns Hopkins University.

“As listening to foreign radio is illegal, the government makes a great effort to prevent people from doing so”, the report states. “At the most basic level, it modifies radios so they cannot be tuned to anything but state-run channels, although that can be later reverse engineered.

[…]The BBC broadcasts are going out after midnight, which will make it easier for listeners with access to short wave to tune in secretly.

Read the full article at The Telegraph…

eBay Deal: Eton Satellit $139 CDN / $113 US shipped

Many thanks to SWLing Post contributor, Troy Riedel, who notes:

The Eton Satellit [Black Case] is on closeout from Radio World Canada on eBay right now for slightly less than $115 + Free Shipping.

Thank you, Troy. That is an excellent deal for an excellent portable! If you’ve been considering the Eton Satellit, you should grab this deal–I’ve never seen the price lower. The seller has 100% positive feedback and a deep history.

Click here to view on eBay.

A review of the W4OP portable magnetic loop antenna

The following review first appeared in the August 2017 issue of The Spectrum Monitor magazine.


The W4OP Magnetic Loop Antenna (Photo Credit: LnR Precision)

What can one say about portable antennas? They’re up, they’re down, they’re basic in design:  they either work for an intended purpose or they don’t.  But, I wondered, could they provide their service easily and conveniently, even in the field?

Last year, I decided to purchase a portable field antenna, and at the Dayton Hamvention I became the owner of the three-band (40/20/10) EFT Trail-Friendly antenna from LnR Precision.

Then, I caught a bug: the National Parks on the Air (NPOTA) bug. And, wow, I caught it in a bad way…! Having activated seven sites during the 2016 Dayton Hamvention with my buddy Eric McFadden (WD8RIF), I found NPOTA the perfect excuse to play radio outdoors. Last year, from August to December, I activated all but that initial seven of my ninety-one NPOTA park activations. All of these activations were QRP and all of them were “field” activations; meaning, I set up my field antenna each time; no activations were made with a mobile (vehicle) HF installation.  And I made 85% of all of my activations using LNR’s EFT Trail-Friendly antenna.

The EFT Trail-Friendly antenna is incredibly compact and quite easy to deploy.

The EFT Trail-Friendly antenna is end-fed and requires some sort of support system to raise the end of the 33’ radiator. Most of the time, I simply hung the lightweight EFT from a sturdy tree branch. On a few occasions, I hung the end on a 31’ or 22’ fiberglass telescoping pole. I was altogether pleased with its performance; indeed, I can’t recommend it enough for someone who wishes to have a simple, roll-up, resonant antenna for QRP field work. But it does have one limitation: it requires that source of external support, which I worried could undermine some NPOTA activations.

In December 2016, my buddy Eric (WD8RIF) and I organized a mini NPOTA DXpedition in Ohio.  I decided that en route to Ohio, I’d make a run through West Virginia and activate some relatively rare parks along West Virginia’s mighty river gorges.

Eric had made the same activation run earlier that year, and had advised me that when I seek permission to activate these parks, I would be asked to apply for and pay at least one, sometimes more, “special use permit” fees merely to drape the lightweight EFT antenna over a tree branch or to stake a fiberglass support pole in the ground. Even if my equipment is less invasive in the great outdoors than the poles and stakes of a basic pup tent, I understood US park trees and shrubs can be delicate, rare, or endangered, and even park soil can be, for example, geologically or archaeologically sensitive, so of course I didn’t want a mere antenna to bring about any harm––however minor––to the parks I was enjoying.

Eric had simplified this step by strapping a fiberglass pole antenna to his vehicle, thus avoiding either penetrating the ground or using park vegetation as a support.  So as not to potentially harm sensitive park environs, nor be obliged to hop through time-consuming (and expensive) administrative hoops, I decided I would adopt an option similar to Eric: I would use a portable antenna that could stand on its own, thus not requiring external support from park property.

Enter the W4OP magnetic loop antenna

LnR precision had only a few weeks before announced their new portable, self-supporting, magnetic loop antenna: the W4OP loop ($329.99 US).

I contacted LnR in November to tell them about my upcoming December NPOTA DXpedition, and inquired whether they thought the W4OP loop would be a good fit? They responded by sending me a loaner unit to both use and review. After all, what better way to evaluate an antenna than by using it in the field?  I said I’d be happy to give it a test drive.

The W4OP loop arrived in early December, about one week before my trip.

Contents of the loop package are straightforward:

  • The main loop assembly and support
  • The coupling loop assembly and clamp
  • The tuning box
  • The support feet assembly
  • An owner’s manual

The main radiator is a sturdy, flexible-yet-rigid shielded cable. The tuning box is a heavy PVC box, and the tuning knob has an appropriate amount of brake and drives a 6:1 reduction drive on the tuning capacitor.  

The overall package feels well-built and of very decent quality. The only piece of the equipment package I didn’t like are the four support feet: these feet attach to the bottom of the tuning box with red thumb screws, a very basic way of supporting the unit, since the red screws are challenging to tighten and almost any movement from the feet loosens the screws.  Since my review, however, LnR has designed a tripod mount for the W4OP loop which promises to make it much, much easier to deploy this antenna in the field. With the tripod mount, one would only need to pack a sturdy (camera) tripod, and then toss out the included stabilizing feet.

The manual is fairly simple and concise, but certainly provides enough information to get you on the air in short order.

On the air with NPOTA

I’m a bit embarrassed to admit that I was something of a newbie when it comes to passive mag loop antennas. I’ve used a number of wideband mag loops over the years––receive-only versions, to be precise––but had never used one specifically designed for amateur radio transmitting.

My first proper NPOTA activation using the loop was on the Blue Ridge Parkway at the Folk Art Center in the mountains of western North Carolina. The loop operates best when raised off the ground and sitting on a dielectric base.

Having no tripod mount at that point, I simply sat the antenna on a plastic storage bin which sat on top of a picnic table where I operated. It’s not ideal to be so close to the antenna, of course, but I thought I’d give it a go.

And go I did.  What truly surprised me was how many contacts I racked up in relatively short order on the twenty and forty meter bands using SSB at QRP levels. I’ve always been a wire antenna guy in the field who believed in getting antennas up as high as possible; it still blows my mind that an antenna so compact, in such a compromised position, could rack up the contacts thousands of miles away.

This first activation was the only chance I had to properly learn the dos and don’ts of this antenna before I had to deploy it in the field on my river run through West Virginia. There, I simply didn’t have the time to worry about the process. I did take a few notes, however:

  • The W4OP loop is high gain and very narrow band; if you move off frequency even a few kHz, you’ll certainly need to re-tune;
  • The bandwidth is so narrow that, if you’re turning the capacitor too quickly in the field–especially in windy conditions– you’ll miss hearing the audio level increase when you make the loop resonant;
  • Sometimes being near the loop while tuning the capacitor can affect the results;
  • Loop antennas are not terribly practical for hunting and scanning for DX across the bands due to frequent re-tuning;
  • For NPOTA or SOTA type activations where you operate on one frequency, the loop performance is downright amazing!

Mini DXpedition

My excursion into the three river gorges of West Virginia––the Bluestone, New River and Gauley––took an amazing amount of planning for such a short trip. Firstly, I only had a limited amount of time to activate each site, yet these were rare sites and I wanted to log as many stations as possible at each site. Secondly, I had to announce my activation times and frequencies well in advance so chasers could find and spot me. Also, I knew a number of west coast chasers who really needed one or more of these sites, so had to plot on-air times to maximize 20 meter propagation. Finally, an actual valid activation site has a lot of requirements and is not easy to find on a map!

Surprise snow started falling well before I even entered West Virginia that morning.

And––oh, yes––the weather was really dodgy.

As soon as I hit the West Virginia state line on I-77, the snow started in earnest. Despite being from the southeast, I’ve no fear of driving in snow, but this was a bit unexpected and no roads had been prepared in advance. Also, I was driving into some pretty remote areas with my least snow-capable vehicle: a minivan. The snow was bad enough that I knew I would not attempt to activate the New River Gorge at the site I originally planned, which required negotiating a very long, steep, and winding road deep into the gorge. Instead, Eric advised me of another New River site option that was more easily accessed. I readily took him up on his suggestion.

And it was at the alternate New River site where the loop antenna truly saved the activation.

The activation site was essentially a one-car off-pavement parking spot next to a river access for small boats. Space was tight, but plenty big for the loop antenna.

It was about 20F with sharp wind, and spitting snow; wind gusts were high. I set up two plastic storage bins with the W4OP antenna on top, only about four feet off the ground; fortunately it did not blow over. I tuned the loop quickly to my pre-announced frequency of 14.312 MHz. I made a couple of calls, was answered by a chaser who spotted me…and whoosh! In less than an hour, as I sat there in the freezing wind, I worked 70+ chasers with 15 watts SSB with my Elecraft KX3. It was exhilarating.

As I packed up my station to move to the next site, I quickly scanned over my log sheet: I found I had worked much of the east coast of North America, almost all of the west coast states, several Canadian provinces, Italy, Slovakia and Croatia.  All with this incredibly modest antenna.

Weather was much better in the New River gorge.

Signal reports were averaging about S7.

Of course, I was a DX target, which, as any ham will tell you, gives you an automatic 30 dB of gain! Still, people could hear me clearly even though I was at a fairly low elevation in a gorge.

Impressive.  I was really beginning to appreciate this antenna.

Problems at Gauley River

My next destination, the Gauley River, was about a seventy-minute drive from the New River and at a much higher altitude. The light rain turned into snow again accompanied by more very strong winds. I was really feeling chuffed about the easy loop setup ahead of me at the site.

 

After arriving on site, I set up the loop quickly, my Elecraft KX3 quickly followed, and started the tuning process. Unfortunately, I could not get the antenna to find a match on the 20 meter band. No doubt, the cold, the wind, my frozen hands, and a desire to stay on the tight schedule all influenced my ability to tune the antenna.

After ten minutes of trying to tune the loop, I initiated Plan B, pulling out the trusty EFT Trail-Friendly antenna and launching it into a nearby tree. The EFT didn’t fail me: once I was on the air, I worked almost 100 stations in a little over one hour.

I felt a little badly about hanging an antenna in a tree limb since I did not seek permission from the NPS in advance. Still, I was the only person at the park that day. No one in their right mind would have been hanging out by the roadside, save your author. I took comfort in the fact that the mature tree that aided me was entirely unharmed, and by the fact that not only do I strictly adhere to the Leave No Trace philosophy, I also clean up other visitors’  trash in the vicinity of all of my activation areas, as a means of honoring the park. I don’t think even the CSI would be able to find evidence of my activation.

Back to the loop.  When I finally arrived at the QTH of my buddy, Eric, we took the loop out and he hooked his antenna analyser up to it. Again, we were not able to get the excellent match I had on 20 meters earlier that day at the New River. Eric and I both assumed (incorrectly, it turns out) that something had happened to the capacitor inside the tuning box.

Once I returned home, I called Larry with LnR and described what was happening. He quickly identified the problem: the coupling loop wasn’t positioned and clamped correctly. Whoops…I should have considered that.  Once I adjusted the coupling loop an inch or so, it worked fine again.

Summary

Every radio, accessory, and antenna has its pros and cons. When I begin a review of a product, I take notes from the very beginning so that I don’t forget some of my initial impressions. Here is the list I formed over the time I’ve spent evaluating the W4OP.

Note that, since this was my first proper experience with a loop antenna for QRP operations, many of these items are indicative of loops in general, not just the W4OP.

Pros:

  • Excellent build quality and overall value
  • Excellent gain when tuned to a frequency (see bandwidth con)
  • Overall impressive performance in the field and super fast and simple setup
  • Excellent choice for those living in high-density neighborhoods with antenna restrictions
  • LnR telephone customer support is excellent

Cons:

  • Bandwidth is very narrow and the loop requires re-tuning on frequency changes (see gain pro)
  • Supplied support feet are very basic; splurge for the new tripod mount
  • Not always convenient and accessible to tune the antenna on the antenna base (though LnR will soon produce a remote tuning W4OP loop)

LnR Precision has recently released a remote tuning W4OP loop ($354.99) and a 6m kit for the current loop.

The W4OP Remote Loop Antenna (Photo: LnR Precision)

I think a remotely-tuned W4OP loop would make this an excellent antenna for amateur operators who wish to set up the antenna as a semi-permanent home installation; certainly a bonus for those living in restricted neighborhoods. Without a remote tuner, you would need to go to the antenna to make frequency adjustments. Note that LnR even has an upgrade program if you wish to turn your W4OP loop into a remote loop.

Of course, this first version of the W4OP loop isn’t designed as a permanent home antenna; it’s designed for field use.

And am I impressed with the W4OP loop? Absolutely.

Like me, if you’ve never used a mag loop antenna for field operations, spend a little time at home learning how to deploy it and tune it in advance.

Most of the criticisms of the W4OP loop I mention in this review are simply indicative of passive mag loops in general: narrow bandwidth, sensitivity to nearby metal objects, and the need for frequent re-tuning.

I understand that the W4OP may have even narrower bandwidth than other similar field-portable antennas. While some may consider this a disadvantage, I think I prefer it; in fact, I would rather be inconvenienced by re-tuning in exchange for higher overall gain.  After all, even broader bandwidth loops require re-tuning if you move frequency more than a few kHz.

The W4OP antenna meant that my mini NPOTA DXpedition was a success, especially at the super-restrictive New River access point. Though I’ve used it in the field on a number of occasions now, I’m still in awe when such a compact antenna performs so well on such little power.  I unhesitatingly recommend it.  Great job, LnR Precision!

The W4OP is made in the USA by North Carolina manufacturer LnR Precision. The loop, and its accessories, can be ordered directly from LnR:

http://www.lnrprecision.com/loop-antennas/