Category Archives: Accessories

The new Raspberry Pi 400 All-In-One Keyboard PC Released

On Monday, I received the announcement about the new Raspberry Pi 400 via the Pi Hut.

The Pi 400 is essentially a Raspberry Pi 4 built into a keyboard. Wonderful concept that very much takes me back to my first personal computer.

Of course, in the spirit of all things Raspberry, the complete kit price is pretty reasonable at about $100 US. Here are details via Pi Hut:

The Pi400 has all of the great features of a Raspberry Pi 4 wrapped in a convenient and compact keyboard – it’s the ultimate coding machine!

The keyboard is available as a kit with everything you need in one box (minus a monitor), or on its own.

The Pi400 doesn’t compromise on performance either – in fact, the CPU is clocked to a whopping 1.8GHz which is made possible thanks to the large metal heatsink inside the keyboard.

CPU aside, the Pi400 boasts the same great specs and connectivity as a Raspberry Pi 4 – 4GB RAM, dual-band wireless networking, Gigabit Ethernet, dual-display output and 4K video playback.

USB, power, video, Ethernet and SD ports are located at the rear of the keyboard, including the familiar 40-pin GPIO connector.

The Raspberry Pi 400 is also available in a number of different regional variants (some international variants coming soon!).

Many thanks to SWLing Post contributor, Richard Langley, who shares the following Pi 400 review from Tom’s Hardware:

The Raspberry Pi Model B has seen the same board layout since the Raspberry Pi B+ arrived in 2014. Sure the Raspberry Pi 4 swapped the Ethernet and USB ports around, but the same basic design has persisted. So when we received a parcel from Raspberry Pi Trading and opened the box to find a keyboard, we were somewhat puzzled as to the contents. Inside this compact and well designed keyboard is a Raspberry Pi 400, a variant of the Raspberry Pi 4 4GB designed specifically for this purpose.

Retailing as a single unit for $70 or as a complete $100 kit with mouse, power supply, cables, micro SD card and a copy of the Raspberry Pi Beginner’s Guide, the Raspberry Pi 400 could be the ideal way to introduce the Raspberry Pi to your home.

[…]Despite the change in form factor, this is still a Raspberry Pi 4 4GB and, as such, it behaves in exactly the same manner, with one exception. The Raspberry Pi 400 lacks the CSI and DSI connectors, used for the Camera and Official Touchscreen. Without these connectors there is no way to use those devices. This loss of the touchscreen connector is not such a big deal, but the camera connector is.

The range of Raspberry Pi cameras are cheap and effective add-ons (see our list of best Raspberry Pi accessories) that provide a fun stream of projects. If you want to create camera projects, then the Raspberry Pi 400 is not for you.[…]

Click here to read the full review.

I normally scoop up new Raspberry Pi products as soon as they’re released, but I’m flush with RPi’s at the moment! I do believe, however, I’ll eventually replace out my daughters’ Pi 4s with these all-in-ones.

Spread the radio love

Steve builds a simple SWL antenna tuner that pairs brilliantly with the Belka-DX

Many thanks to SWLing Post contributor, Steve Allen (KZ4TN), who shares the following guest post:


A Simple Antenna Tuner for SWL Radios

by Steve Allen, KZ4TN

After reading 13DKA’s excellent review of the Belka-DSP on SWLing.com a few weeks ago I knew I had to have one! The size, features, and performance of the Belka-DX (latest version of the Belka-DSP) is phenomenal. I won’t go into reviewing the radio as I couldn’t come close to 13DKA extensive review. If you are considering this SWL receiver his review is a must read.

I love bedtime SWLing and have been putting off setting up an outside antenna specifically to feed into the bedroom for too long. Given that the resonant frequency of the antenna would not be broad enough for the tuning range of the Belka-DX I decided to build a small antenna tuner just for SWLing.

After a couple of hours searching the internet for a simple tuner I found just what I was looking for on http://www.hard-core-dx.com/nordicdx/antenna/lab/tuner.html. It’s a simple L match using a single variable capacitor and coil.

For the coil I wound ~100 turns of 26 Ga wire on a one inch diameter wooden dowel. The wire size can be whatever you have on hand. I twisted a tap every 10 turns. I drilled a hole in each end and glued in a machine screw to mount the coil to the bottom of the enclosure. I’ve had this enclosure in my junk box for a long time and have been waiting for just the right project. The variable capacitor I used was one I found on EBay a few years ago that had two sections, 330 pF and 120 pF. I tied them together for 450 pF. For the rotary switch I had to scratch around on eBay for a while until I found a 12 position single pole.

The plans for the tuner suggested adding a fixed value capacitor with a toggle switch to increase the lower end of the tuning range. I found a 510 pF silver mica and wired it into the circuit.

The antenna I put up is a sloper about 30 feet long.The high end is up about 40 feet and the low end is at about 12 feet. I put the antenna and tuner to the test last evening and the reception on the Belka-DX was superb. With the tuner the strength of the signal would peak about 2-3 units when I found the sweet spot.

The tuner also does double duty as an attenuator for very strong signals.

One mod I made to the Belka-DX was the addition of some grip tape to the tuning knob. It makes fine tuning much easier.

I believe we will continue to see a number of innovative receivers coming to market in the near term utilizing SDR technology. The ratio of performance to size of the Belka-DX is truly amazing in my opinion.


Thank you, Steve, for sharing this brilliant weekend project! As always, brilliant craftsmanship!

Click here to read Steve’s other posts and projects.

Spread the radio love

A Tecsun PL-330 features reference sheet

Many thanks to SWLing Post contributor,  Jaap de Goede, who shares the following as an update to his Tecsun PL-330 review. Jack writes:

I discovered several features that are not displayed on the keyboard both on the Internet and by fiddling with the radio. Maybe these features are in the Chinese manual but I simply can’t read that language. What became clear is that the PL-330 resembles the PL-990x. But I couldn’t find if DNR and Muting Threshold are supported in the firmware I have (3302). Here is a table with the features and how to operate:

Click here to download as a PDF.

Many thanks for creating and sharing this excellent reference sheet, Jaap!

Spread the radio love

How to install a mechanical SSB filter on the Yaesu FRG-7

Many thanks to SWLing Post contributor, Kostas (SV3ORA), for sharing the following guest post which originally appeared on his radio website:


How to install a mechanical SSB filter on the Yaesu FRG-7

by Kostas (SV3ORA)

The Yaesu FRG-7 is a general coverage MW/SW receiver that uses the Wadley Loop system for stabilizing the frequency tuning. The receiver has a good sound on AM mode, that reminds me the tube receivers sound. However, on sideband mode, it is pretty much useless. The IF ceramic filter that is used, does not have enough selectivity to reject the opposite sideband. No matter if the front panel mode selector switch states USB/CW and LSB, these just shift the BFO, nothing more. The receiver is a DSB set not SSB. A cheap way you can accomplish single signal sideband reception with the FRG-7 is described in this link. Whereas it works, it increases the audio bandwidth of the signals to the high pitch.

A better approach is to install an additional mechanical filter to the receiver. This of course requires expensive 455KHz mechanical filters, but if you have one in hand or if you are willing to pay for the improvement in performance, then this is the recommended option. But you can’t just desolder the ceramic filter of the receiver and solder a mechanical filter in place. On AM mode, you need wider bandwidth, but on SSB mode you need narrower. So both filters must be in place and a selection must be done in each mode. Thankfully, this modification is pretty easy on the FRG-7 and it does not require any modification of the external appearance of the radio.

The schematic of the FRG-7 is shown above. Everything with red color, are part of the modification. The modification is pretty straight forward. You have to desolder the original ceramic filter from the FRG-7 PCB and install it on a separate PCB along with the new 455KHz mechanical filter. To select between the two filters, a 9-12v DPDT relay can be used and it must be connected as shown in the schematic. The power for the relay coil is derived from one section of the mode switch (S3d). On USB or LSB modes, the BFO is energized and this power is also used to energize the relay, which in turn switches to the narrow mechanical filter on these modes.

A good place for the new PCB that accommodates the filters, is just below the main tuning dial of the receiver. There is a hole there and three screws, which can be used to also hold this PCB in place. I needed to replace these screws in mine with longer ones, because I used spacers to prevent the PCB from touching the chassis. But this is optional.

Two small pieces of coaxial cables are used to connect the new PCB to the pads of the ceramic filter, that has been now removed from the original PCB of the receiver. Ground these cables on both ends.

The power cables for the relay coil (shown with red and black in the picture above), are passed below the PCB to the chassis opening and through a hole to the bottom of the original PCB of the receiver. The ground wire is soldered to the filter ground point and the red wire is soldered to the mode selector switch S3d. S3d is the outer wafer onto the switch. Use a multimeter to find the contact of the switch that has VCC when the mode is switched to USB or LSB. This is the point where you want to connect the red wire.

After installing everything, you should perform an alignment of the TC404 and the T406 in the BFO section as described in the manual. This requires a frequency counter, but I did my alignment by simply adjusting the two controls by ear, until I got roughly the same pitch on LSB and SSB audio bandpass. These controls interact, so you have to do a bit of back and forth in both of them. It is very easy.

After installing the modification and aligning the receiver, the result is pretty obvious. No more DSB reception, SSB signals are received just once in the dial and their bandwidth is limited as it should on SSB. The mechanical filter I had, was a bit narrow (2.1KHz) so I can also hear a bit os “seashell” sound on SSB, but SSB voice signals are perfectly understood. It is interesting that the audio volume between the ceramic filter and the mechanical filter was just about the same, which indicates that there is no additional loss in the newly installed filter. Another interesting thing is that there was no need for any impedance matching using active devices or transformers on the mechanical filter. It worked just by directly connecting it. Neither it’s loss, not it’s response seems to be affected by any possible impedance mismatches.

Note that Collins produced both symmetrical and asymmetrical mechanical filters (yes they used two filters, one for USB and one for SSB in some of their gear). My filter is a symmetrical one (same roll-off response curve on both sides of the filter passband). If you use an asymmetrical filter, expect a bit different pitch when switching from LSB to USB and vice versa. Not a huge problem, but just a note.

By performing this simple modification, you will end up with an FRG-7 receiver that is trully selective, allowing for real SSB reception. Most importantly you do not ruin the appearance of your precious FRG-7, but just improving it’s performance. This modification would probably be appreciated much when deciding to sell your FRG-7 to someone else.


Thank you for sharing this practical and affordable project with us, Kostas!

Post Readers: Check out this project and numerous others on Kostas’ excellent website.

Spread the radio love

A 3D-printed cover for the Mountain Topper MTR-3B QRP transceiver

Many thanks to SWLing Post contributor, Eric McFadden (WD8RIF), who asks:

Thomas, what’s the orange thing on the MTR-3B in the last photo in your post about the Red Oxx Booty Boss? [see photo above]

Glad you asked, Eric! It’s a 3D-printed protective cover.

My daughters have been asking for a 3D printer since they’ve used them at Maker Faires, the Pisgah Astronomical Research Institute, and most recently the Huntsville Hamfest. Both of my girls love designing and creating things, so this year we got them one for their birthday.

After loads of research, I purchased a Creality Ender 3 Pro 3D from Amazon.com (affiliate link) for about $240 US. My daughters were thrilled when they unwrapped the box on their birthday to find a 3D printer inside! We spent the following morning assembling it, calibrating the print bed, and printing a sample file.

Like most, our first prints were fun, simple things we found on Thingiverse.  The girls printed a Saturn V rocket, a cat, and an X-Wing fighter. Those prints gave us an opportunity to learn about slicing 3D files, building support structure, and proper bed calibration.

Covering the MTR-3B

When the printer arrived, I already had the Red Oxx Booty Boss on order and was assembling my field radio kit.

One concern I had about the MTR-3B (in any pack) was that the small band switches could catch on a zipper or pocket mesh and be damaged. I had read a few accounts of this happening to others.

The LnR Precision MTR-3B transceiver

I thought about keeping the MTR-3B in a thick poly bag, but I knew that wouldn’t offer a lot of protection for the switches. Out of curiosity, I searched Thingiverse hoping perhaps someone had designed a small case that could possibly house the MTR-3B.

To my surprise, I discovered an engineer actually designed a snap-on cover for the MTR series of radios. It was then a simple matter of downloading the file, slicing it, and setting it to print while I slept that night.

The next morning, I had a cover sitting on the printer bed.

I purchased a pack of multi-color PLA filament knowing it would give my girls an opportunity to play with color a bit. The printer was already loaded with bright orange filament which I thought would be brilliant for the MTR-3B.

Those of you familiar with 3D printing are probably aware that ABS would be a better, stronger material for the cover since the side clips are certainly the weak points of the structure. We haven’t ordered ABS filament yet, but I think the PLA will actually function well for a while–it’s sturdier than I anticipated. When we have ABS in the house, I’ll plan to re-print it.

I couldn’t be more pleased because the cover fits the MTR-3B like a glove and doesn’t add a lot of bulk to this pocket-size transceiver. It was also a great print for beginners.

And best of all, I know the front switches and buttons are well-protected in my field bag.

I’d like to thank Thingiverse designer CockpitBob for designing this little cover and sharing it!

We’re also super pleased with the Creality Ender 3 Pro 3D printer. Thanks to my friends who helped guide that purchase decision.

Care to share?

3D printers are incredibly useful tools for radio enthusiasts of all stripes. I’m still very new to this world, so I would love to hear about your 3D-printed radio projects. Besides this post, we’ve featured at least one in the past, but I’d love to share more.

Please comment or contact me if you’d like us to feature your 3D project!


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

The $50 tinySA spectrum analyzer is here!

Many thanks to SWLing Post contributor, Paul Evans (W4/VP9KF), who writes:

At last, the tinySA is out and target is $50 (orders at R&L): https://www.tinysa.org/wiki/

tinySA Introduction Video

The following information regarding orders and availability was taken from the tinySA Wiki Page:


Buying the tinySA

There are currently (September 1st, 2020) no clone tinySA. All are genuine and manufactured by hugen.

Various persons bought some small amount of tinySA and are now selling them on various sites. The sellers listed below are official partners and are guaranteed to deliver good service in case of problems.

The tinySA is on pre-order at Alibaba.com
For other payment methods, such as Paypal, hit the “chat now” button and Maggie will help you.

At the right top of the browser window there should be “my messages” where you will have a better overview of your messages

The tinySA is on pre-order at AliExpress

The tinySA is on pre-order at R&L Electronics in the USA

Shipment is expected to restart end of August

An additional re-seller is expected to appear on eBay, Amazon and other platforms, these will also originate from hugen.

How to recognize a genuine tinySA.

  • Look for the tinySA logo. As this is part of our trademark, no others manufacturers may use this logo.
  • Look for the nice black gift box with the golden logo and the accessories as you can see on the First Use page

For more info about the tinySA check out the tinySA Wiki.

Thank you again, Paul, for sharing this tip! I love how the tinySA developers recognize it’s only a matter of time before clones appear on the market. Sadly, a true sign of the times…

Spread the radio love