Category Archives: Ham Radio

eBay: Mario considers the Time Out Radio Bench

Time-OutRadio-Bench-001

Many thanks to SWLing Post contributor, Mario Filippi (N2HUN), who writes:

Hi Thomas,

For hams and SWLs that have a lot of clutter, a great idea, reminds me of a foot stool that has been re-purposed for radio buffs. Nice idea, good price, free shipping, what’s not to like? My spending finger’s getting itchy hi hi.

Click here to view on eBay.

I’m with you, Mario: this is not a bad price for a useful and portable shelf that is even made here in the USA (Kentucky). I could see using one on Field Day where horizontal space is often limited on club tables.

It appears that the seller (a ham: Ron, KK4RON) purchased a large number of these in a deal. He writes this in the product description:

These benches are great for setting up a compact ham station or use 3 for a surround set up , They also stack nicely if you only have a narrow space available. Go UP rather than out.

These are very sturdy and well made in the USA by a factory in Kentucky , the surface is a very durable and easy clean kitchen cabinet material (Formica) on 3/4″ wood so screwing on mounting brackets and mike holders and such is very easy

These were intended to sell for $49.95 but the company that ordered them went out of business before they had payed the factory so the factory got stuck with literally thousands of these finished and ready for sale.

We were able to acquire there entire inventory including boxes and packaging at a fantastic price but that is also why we are limited to 8 colors and 2 top colors. But these are very well built from a factory (not home made) and just perfect for mounting several radios to and cleaning up your bench.

Again, many thanks, Mario, for sharing this find (and perhaps it’s time to get yourself an early Christmas gift?)!

Spread the radio love

Scott’s Elecraft KX3 Go-Box

Many thanks to Scott (AK5SD) who shares the following photos and bill of materials for his custom Elecraft KX3 go-box:


IMG_0531 IMG_0534

IMG_0532 IMG_0535 IMG_0537 IMG_0536

Bill of materials

The panel was custom laser cut by Front Panel Express. I have the CAD
file and I’m willing to share it with anyone who wants to reproduce my effort.

Amazon.com
Case B&W Type 1000 Outdoor Case with SI Foam
You won’t use the foam, so you can buy the version without it if you can find it cheaper.

Battery Anker Astro Pro2 20000mAh Multi-Voltage (5V 12V 16V 19V)
Portable Charger External Battery Power Bank
Avoid look alike batteries and the next generation model from Anker. The newer Anker
battery is only capable of delivering 1.5A from the 12V supply. Two look alike batteries
I tried did not have the auto-off feature that the Anker does.

Vetco.net
ACC2 and I/Q Jacks 2 x 2.5mm Stereo Jack Panel Mount (PH-666J-B)
Phone, Key, and ACC1 3 x 3.5mm Stereo Jack Panel Mount (High Quality) (PH-504KB)
Mic Jack 1 x 3.5mm 4 Conductor Jack Panel Mount (PH-70-088B)
12V IN and CHG IN 2 x 2.1mm DC Power Panel Mount Jack (PH-2112)
12V OUT 1 x 2.5mm DC Power Panel Mount Jack (PH-2512)

You also need plugs and wire for interconnects. I bought some 2.5mm (CES-11-5502)
and 3.5mm (PH-44-468 for stereo, PH-44-470 for 4-conductor) audio cables with right
angle plugs and just cut them to use for the signal lines going to the KX3. I did the same
thing for the 2.5mm (PH-TC250) and 2.1mm (PH-TC210) power cables. A couple of
caveats are in order. The Phone, Key, and ACC1 interconnects require low profile
right angle connectors. The cables I listed above won’t work. Vetco part number
VUPN10338 will work. The power cables I’ve listed above use 24 gauge wire. This
is a little light, but the runs are small so I think it is OK. You can use higher gauge
cables if you can find a source.

USBfirewire.com
USB OUT USB 2.0 Right Angle Extension Cable (RR-AAR04P-20G)

Digikey.com
L Brackets 8 x Bracket Rt Ang Mount 4-40 Steel (612K-ND)
These L brackets are used to mount the KX3 to the panel and the panel to the case.
For mounting the KX3, I use a little piece of stick on felt on the bracket to protect the
KX3’s cabinet from damage. Replace the KX3’s screws with #4-40 Thread Size, 1/4”
Length Steel Pan Head Machine Screw, Black Oxide Finish (see below). For the panel
mounting, use #6-32 Thread Size, 3/16” Length self tapping sheet metal screw. You
may need to cut the tip off in order to not puncture the outside of the case.

RG316 BNC Male Angle to BNC Female SM Bulkhead Coaxial RF Pigtail Cable (6”)
This is not the original interconnect I used for connecting the KX3’s antenna output to
the panel. However, I think it is a better option for new designs. The caveat is that you
will need to verify the hole in the panel matches the bulkhead connector on this cable.
There will be a little loop in the cable when you are done, but that is fine.

Micrfasteners.com
Screws for Sound Card 2 x FMSP2510 – M 2.5 x .45 x 10mm
Screws for KX3 Bracket Mount 4 x MSPPK0404 – 4-40 x 1/4
Screws for Countersunk Panel Holes 8 x FMPPK0403 – 4-40 x 3/16
Screws for USB Connector *** 2 x FMPPK0406 – 4-40 x 3/8

I’m pretty sure these are the right length for the USB connector. I am doing it from memory.

Amazon.com or eBay.com
Soundmatters foxL DASH A Wireless Bluetooth Soundbar (OPTIONAL)

Sonoma Wire Works GJ2USB GuitarJack 2 USB Portable Audio Interface (OPTIONAL)
(Make sure you get the USB model, not the 30-pin model.)

This is optional if you want a built-in sound card interface for a waterfall display using iSDR. Make sure to eliminate the holes in the upper left corner of the panel if you are not installing. You will also need 2.5mm x 10mm screws to mount this to the bottom of the panel (see below).

bhi Compact In-Line Noise Eliminating Module (OPTIONAL)

In my opinion, the KX3’s noise reduction is totally ineffective for SSB communications. This external noise reducing DSP is one solution, albeit an expensive one, to that problem. It is only for SSB, not CW or digital modes. It is also available from GAP Antenna Products.

IMG_0530


Scott: you have done a beautiful job here and have spared no expense to make a wonderfully-engineered and rugged go-box. No doubt, you’re ready to take your KX3 to the field and enjoy world-class performance on a moment’s notice. 

Though I’ve never used them personally, I’ve noticed others who have taken advantage of the Front Panel Express engraving service–certainly makes for a polished and professional front panel.

Again, many thanks for not only sharing your photos, but also your bill of materials which will make it much easier for others to draw inspiration from your design!

AK5SD_QSL_Card

Speaking of designs, when I looked up Scott on QRZ.com, I noticed that he also sports a QSL card (above) designed by my good friend, Jeff Murray (K1NSS). Obviously, Scott is a man with good taste!

Spread the radio love

New kit by NM0S: the 4S-Tuner/Antenna Coupler

4stuner_panelDave Cripe (NM0S) has designed yet another QRP kit for the 4 State QRP Group: the 4S-Tuner/Antenna Coupler.

Description (per Four State QRP Group):

This excellent random wire antenna tuner is the classic T-Match design which is known for wide matching range and smooth operation. Dave has added a nice wrinkle – the SWR indicator employs TWO leds, not the normally seen single red LED. A green one indicates output power with a red one indicating reflected power. The beauty of this arrangement is that the operator sees the output power peaking as the SWR goes down, just like a power meter with dual meters – very intuitive. This makes tuning easier and leaves no doubt that it’s tuned for maximum power output. For a high SWR the red LED is at full brightness and the green LED is off. At 2:1 both are at equal brilliance. At 1:1 the green is full on and the red is off. The small size is perfect for portable operations. Add this dandy little tuner to your portable ops go bag, or use it at home. It’s equally at home on a picnic table, in a tent or camper, as well as on the operating desk in your shack.

Specifications and Design Features

  • Wide tuning range: 80 meters thru 10 meters. Tested on EFHW and 100′ wire.
  • Maximum Power Throughput: tested at 10 Watts.
  • Low loss large toroid
  • Twelve taps for small inductance step selection.
  • Low insertion loss when matched.
  • Enclosure Size: 3″x3″x2″.
  • Pittsburg Construction.

Shipped price is $51.00 (US), $55.00 (Canada), $60.00 (Outside US/Canada).

Dave Cripe designs excellent kits for the ham radio community; they’re easy to build, fun and functional.  If this kit is as popular as his past kits, the first run will most likely sell out in short order.

 Click here to check out the 4S-Tuner/Antenna Coupler at the Four State QRP Group website.

Spread the radio love

The BaoFeng UV-5R is tougher than the $25 price tag implies

UV-5R

I’ll admit it: I’m a bit of a handheld radio snob.

I don’t own many HT transceivers, but the ones I do own are manufactured by the “big three”–namely, Yaesu, Kenwood and Icom. For ages, these three companies dominated the handheld radio market.

A few years ago, several Chinese radio manufactures (BaofengWouxun, TDXone and TYT to name a few) started flooding the market with inexpensive handheld transceivers–radios that literally cost a fraction of those produced by the “big three.” Where a Yaesu dual band handheld might cost between $150-250 US, a Baefeng model might cost $25-50 US.

As one might imagine, these inexpensive transceivers gained quite a following in the ham radio community and with preparedness/communications enthusiasts.

I’ve read that many of these ultra-cheap transceivers are difficult to program and I’m sure that’s one of the factors that has kept me from purchasing one.

I also assumed that a $25 radio must be very poorly constructed. Seems I’m incorrect at least on this point.

Many thanks to Dave (K4SV) for sharing the following video from Chris (K5CLC), who put the popular Baofeng UV-5R through an “extreme” field test:

https://youtu.be/kZCDBsBuhmg

The Baofeng UV-5R is available at Amazon.com for a mere $25.80 US shipping included.

UV-5R accessories. Click to enlarge.

UV-5R accessories. Click to enlarge.

The UV-5R even comes with a number of accessories:

  • a ANT5 SMA-J flexible antenna,
  • BL-5 Li-ion battery (7.4V 1800 mAh),
  • belt clip,
  • wrist strap,
  • AC adapter (8.4V 600ma)
  • and drop-in charger.

Frankly, it’s hard to believe you get so much radio for the price.

Curiosity is getting the best of me and I believe I very well may purchase a UV-5R in the coming days. I’ll probably purchase the USB programming cable as well [UPDATE: several readers suggested this proper FTDI cable as a much better option].

Click here to view the Baofeng UV-5R on Amazon: I encourage you to read the numerous reviews–many of which sing its praises, others do not.

Readers: if you have the UV-5R, please post your comments about this little radio. I’m curious if you find it easy to use and if the battery life has held up over time.  Any tricks for programming it?

Spread the radio love

Reminder: Share a photo of your shack or listening post for a chance to win a Grundig G2

Manisha's favorite listening post is her balcony in New Dehli where she listens with her Sony portable.

Manisha’s favorite listening post is her apartment balcony in New Delhi.

The November 1st deadline for our latest Reader Challenge is approaching!

In exchange for sharing a photo of your favorite listening post or your radio shack with the SWLing Post community, you’ll be entered for a chance to win a Grundig G2 portable radio/recorder and player! The choice will be made by random selection, so everyone has an equal chance of winning.

Click here to read a full description of the contest and how you can participate!

Many thanks to our friends at Universal Radio for sponsoring this contest!

Spread the radio love

Guest Post: London Shortwave’s guide to mitigating urban radio interference

London-Urban-CityMany thanks to SWLing Post contributor, London Shortwave, who is kindly sharing this guest post–a brilliant article he recently posted on his own website.

I’m very grateful: one of the most common questions I’m asked by readers is how to cope with the radio interference so many listeners and amateur radio operators experience in high-density, urban areas. If this is you, you’re in for a treat–just keep reading:


Dealing with Urban Radio Interference on Shortwave

by London Shortwave

Shortwave radio listening is an exciting hobby, but for many of us city dwellers who either got back into it recently or tried it out for the first time not long ago, the first experience was a disappointing one: we could barely hear anything! Station signals, even the supposedly stronger ones, were buried in many different types of static and humming sounds. Why does this happen? The levels of urban radio frequency interference, or RFI, have increased dramatically in the last two decades and the proliferation of poorly engineered electronic gadgets is largely to blame. Plasma televisions, WiFi routers, badly designed switching power adapters and Ethernet Over Powerlines (also known as powerline network technology, or PLT) all severely pollute the shortwave part of the radio spectrum.

Does this mean we should give up trying to enjoy this fascinating medium and revert to using the TuneIn app on our smartphones? Certainly not! There are many angles from which we can attack this problem, and I shall outline a few of them below.

Get a good radio

The old adage “you get what you pay for” certainly holds true even when it comes to such “vintage” technologies as shortwave radio. Believe it or not, a poorly designed receiver can itself be the biggest source of noise on the bands. That is because many modern radios use embedded microprocessors and microcontrollers, which, if poorly installed, can generate interference. If the receiver comes with a badly designed power supply, that too can generate a lot of noise.

So how does one go about choosing a good radio? SWLing.com and eHam.net have fantastic radio review sections, which will help you choose a robust receiver that has withstood the test of time. My personal favourites in the portable category are Tecsun PL310-ET and Tecsun PL680. If you want a desktop radio, investigate the type of power supply it needs and find out whether you can get one that generates a minimal amount of noise.

It is also worth noting that indoor shortwave reception is usually best near windows with at least a partial view of the sky.

Tecsun PL310-ET and Tecsun PL680, my two favourite portable shortwave radios.

Tecsun PL310-ET and Tecsun PL680, my two favourite portable shortwave radios.

Identify and switch off noisy appliances

Many indoor electrical appliances generate significant RFI on the shortwave bands. Examples include:

  • Plasma televisions
  • Laptop, and other switching-type power supplies
  • Mobile phone chargers
  • Dimmer switches
  • Washing machines / dishwashers
  • Amplified television antennas
  • Halogen lighting
  • LED lighting
  • Badly constructed electrical heaters
  • Mains extension leads with LED lights

Identify as many of these as you can and switch them all off. Then turn them back on one by one and monitor the noise situation with your shortwave radio. You will most likely find at least a few offending devices within your home.

Install an outdoor antenna

If you have searched your home for everything you can possibly turn off to make reception less noisy but aren’t satisfied with the results, you might want to look into installing and outdoor antenna. That will be particularly effective if you live in a detached or a semi-detached property and have a garden of some sort. Of course, you will need a radio that has an external antenna input, but as for the antenna itself, a simple copper wire of several metres will do. An important trick is making sure that the noise from inside your home doesn’t travel along your antenna, thus negating the advantage of having the latter installed outside. There are many ways of achieving this, but I will suggest a configuration that has worked well for me in the past.

Fig.1 Schematic for an outdoor dipole antenna.

Fig.1 Schematic for an outdoor dipole antenna.

I have used a three-terminal balun (positioned outdoors), and connected two 6 metre copper wires to its antenna terminals to create a dipole. I then connected the balun to the radio indoors through the feed line terminal using a 50? coaxial cable. In the most general terms, the current that is generated in the antenna wires by the radio waves flows from one end of the dipole into the other, and a portion of this current flows down the feed line into your radio. The balun I have used (Wellbrook UMB130) is engineered in a way that prevents the radio noise current from inside your house flowing into the receiving part of the antenna.

Wellbrook UMB130 balun with the feed line terminal disconnected

Wellbrook UMB130 balun with the feed line terminal disconnected

Antenna preselectors

There is a catch with using an outdoor antenna described above — the signals coming into your radio will be a lot stronger than what would be picked up by the radio’s built-in “whip” antenna. This can overload the receiver and you will then hear many signals from different parts of the shortwave spectrum “mixing in” with the station you are trying to listen to. An antenna preselector solves this problem by allowing signals from a small yet adjustable part of the spectrum to reach your radio, while blocking the others. You can think of it as an additional tuner that helps your radio reject unwanted frequencies.

Fig.2 Schematic of a preselector inserted between the outdoor antenna and the receiver

Fig.2 Schematic of a preselector inserted between the outdoor antenna and the receiver

There are many antenna preselectors available on the market but I can particularly recommend Global AT-2000. Although no longer manufactured, many used units can be found on eBay.

Global AT-2000 antenna coupler and preselector

Global AT-2000 antenna coupler and preselector

Risk of lightning

lightning

Any outdoor antenna presents the risk of a lightning strike reaching inside your home with devastating and potentially lethal consequences. Always disconnect the antenna from the receiver and leave the feed line cable outside when not listening to the radio or when there is a chance of a thunderstorm in your area.

Get a magnetic loop antenna

A broadband loop antenna (image courtesy of wellbrook.uk.com)

A broadband loop antenna (image courtesy of wellbrook.uk.com)

The outdoor long wire antenna worked well for me when I stayed at a suburban property with access to the garden, but when I moved into an apartment well above the ground floor and without a balcony, I realised that I needed a different solution. Having googled around I found several amateur radio websites talking about the indoor use of magnetic loop receive-only active antennas (in this case, “active” means that the antenna requires an input voltage to work). The claim was that such antennas respond “primarily to the magnetic field and reject locally radiated electric field noise”[*] resulting in lower noise reception than other compact antenna designs suitable for indoor use.


Interlude: signal to noise ratio

In radio reception, the important thing is not the signal strength by itself but the signal to noise ratio, or SNR. A larger antenna (such as a longer copper wire) will pick up more of the desired signal but, if close to RFI sources, will also pick up disproportionately more of the local noise. This will reduce the SNR and make the overall signal reading poorer, which is why it is not advisable to use large antennas indoors.


The other advantage of a loop antenna is that it is directional. By rotating the loop about its vertical axis one can maximise the reception strength of one particular signal over the others, once the antenna is aligned with the direction from which the signal is coming (this is termed “peaking” the signal). Similarly, it is possible to reduce the strength of a particular local noise source, since the loop is minimally sensitive to a given signal once it is perpendicular the latter’s direction (also known as “nulling” the signal).

It is further possible to lower the effect of local noise sources by moving the antenna around. Because of the antenna’s design, the effect of radio signals is mostly confined to the loop itself as opposed to its feed line. Most local noise sources have irregular radiation patterns indoors, meaning that it is possible find a spot inside your property where their effects are minimised.

Many compact shortwave loop antennas require an additional tuning unit to be attached to the loop base (much like the preselector described above) but broadband loops do not. Wellbrook ALA1530S+ is one such antenna that is only 1m in diameter, and it was the one I chose for my current apartment. I was rather impressed with its performance, although I found that I need to use a preselector with it as the loop occasionally overloads some of my receivers when used on its own. Below is a demo video comparing using my Tecsun PL680’s built-in antenna to using the radio with the Wellbrook loop.

As you can hear, there is a significant improvement in the signal’s readability when the loop is used.

Experiment with a phaser

Although the loop antenna dramatically reduces the levels of ambient RFI getting into the radio,  I also have one particular local noise source which is way too strong for the loop’s nulling capability. Ethernet Over Powerlines (PLT) transmits data across domestic electrical circuits using wall socket adapters, as an alternative to wireless networking. It uses the same frequencies as shortwave, which turns the circuits into powerful transmitting antennas, causing massive interference. One of my neighbours has PLT adapters installed at his property, which intermittently become active and transmit data. When this happens,  it is not merely noise that is generated, but a very intense data signal that spreads across the entire shortwave spectrum, obliterating everything but the strongest stations underneath. Fortunately, a mature piece of radio technology called antenna phasing is available to deal with this problem.

Fig.3 The principle of antenna phaser operation (adapted from an original illustration in Timewave ANC-4's manual)

Fig.3 The principle of antenna phaser operation (adapted from an original illustration in Timewave ANC-4’s manual)

Signal cancellation using phase difference

A phaser unit has two separate antenna inputs and provides one output to be connected to the radio’s external antenna input. The theory of phase-based signal cancellation goes roughly as follows:

  • The same radio signal will arrive at two different, locally separated antennas at essentially the same time.
  • The phase of the signal received at the first antenna will be different to the phase of the same signal received at the second antenna.
  • This phase difference depends on the direction from which the signal is coming, relative to the two antennas.
  • The phaser unit can shift the phases of all signals received at one antenna by the same variable amount.
  • To get rid of a particular (noise) signal using the phaser unit:
    • the signal’s phase at the first antenna has to be shifted by 180° relative to the signal’s phase at the second antenna (thus producing a “mirror image” of the signal received at the second antenna)
    • its amplitude at the first antenna has to be adjusted so that it is the same as the signal’s amplitude at the second antenna
    • the currents from the two antennas are then combined by the unit, and the signal and its mirror image cancel each other out at the unit’s output, while the other signals are preserved.

Noise sampling antenna considerations

To prevent the possibility of the desired signal being cancelled out together with the noise signal — which can happen if they both come from the same direction relative to the antennas — one can use the set-up illustrated in Figure 3, where one antenna is dedicated to picking up the specific noise signal, while the other is geared towards receiving the desired broadcast. That way, even if the phases of both the noise and the desired signals are offset by the same amount, their relative amplitude differences will not be the same, and thus removing the noise signal will not completely cancel out the desired signal (though it will reduce the latter’s strength to some extent).

It is possible to use any antenna combination for phase-based noise signal cancellation. However, one has to be careful that, in the pursuit of removing a specific noise source, one does not introduce more ambient RFI into the radio system by using a poorly designed noise-sampling antenna. After all, the phaser can only cancel out one signal at a time and will pass through everything else picked up by both antennas. This is particularly relevant in urban settings.

For this reason, I chose my noise sampling antenna to also be a Wellbrook ALA1530S+. The additional advantages of this set-up are:

  • It is possible to move both loops around to minimise the amount of ambient RFI.
  • By utilising the loops’ directionality property, one can rotate the noise sampling loop to maximise the strength of the noise signal relative to the desired signal picked up by the main antenna loop.
Two Wellbrook ALA1530S+ antennas combined through a phaser

Two Wellbrook ALA1530S+ antennas combined through a phaser

And now onto the phaser units themselves.

Phaser units

dxe-upload

DX Engineering NCC-1 (image courtesy of dxengineering.com)

I have experimented at length with two phaser units: the MFJ 1026 (manual) and DX Engineering NCC-1 (manual). Both solve the problem of the PLT noise very well, but the NCC-1 offers amplitude and phase tuning controls that are much more precise, making it a lot easier to identify the right parameter settings. Unfortunately this comes at a price, as the NCC-1 is a lot more expensive than the MFJ unit. As before, a preselector is needed between the phaser and the radio to prevent overloading.

Below is a demo of DX Engineering NCC-1 at work on my neighbour’s PLT noise. I have chosen to use my SDR’s waterfall display to illustrate the nefarious effect of this type of radio interference and to show how well the NCC-1 copes with the challenge.

Cost considerations

Fig.4 Final urban noise mitigation schematic

Fig.4 Final urban noise mitigation schematic

It would be fair to say that my final urban noise mitigation set-up, shown in Figure 4, is quite expensive: the total cost of two Wellbrook antennas ($288.38 each), a DX Engineering phaser ($599.95) and a Global AT2000 preselector ($80) comes to $1257. That seems like an astronomical price to pay for enjoying shortwave radio in the inner city! However, at this point another old saying comes to mind, “your radio is only as good as your antenna”. There are many high-end shortwave receivers that cost at least this much (e.g. AOR AR7030), but on their own they won’t be of any use in such a noisy environment. Meanwhile, technological progress has brought about many much cheaper radios that rival the older benchmark rigs in terms of performance, with Software Defined Radios (SDRs) being a particularly good example. It seems fair, then, to invest these cost savings into what makes shortwave listening possible. You may also find that your RFI situation is not as dire as mine and you only need some of the above equipment to solve your noise problems.

Filter audio with DSP

If you have implemented the above noise reduction steps but would still like a less noisy listening experience, consider using a Digital Signal Processing (DSP) solution. There are a number of different approaches and products available on the market, and I shall be reviewing some of them in my next post. Meanwhile, below are two demo videos of using DSP while listening to shortwave. The first clip shows the BHI Compact In-Line Noise Elimination Module at work together with a vintage shortwave receiver (Lowe HF-150). The second video compares using a Tecsun PL-660 portable radio indoors on its own and using the entire RFI mitigation set-up shown in Figure 4 together with a DSP noise reduction feature available in the SDR# software package, while using it with a FunCube Dongle Pro+ SDR. As a side note, it is worth remembering that while DSP approaches can make your listening experience more pleasant, they can’t recover what has been lost due to interfering signals or inadequate antenna design.

Set up a wireless audio relay from your radio shack

The above RFI mitigation techniques can result in a rather clunky set-up that is not particularly portable, confining the listener to a specific location within their home. One way to get around this is by creating a wireless audio relay from your radio shack to the other parts of your house. I did this by combining the Nikkai AV sender/receiver pair and the TaoTronics BA01 portable Bluetooth transmitter:

Head for the outdoors!

So you have tried all of the above and none of it helps? As a last resort (for some, but personally I prefer it!), you can go outside to your nearest park with your portable radio. After all, if shortwave listening is causing you more frustration than joy it’s hardly worth it. On the other hand, you might be surprised by what you’ll be able to hear with a good receiver in a noise-free zone.

Acknowledgements

Many of the above tricks and techniques were taught to me by my Twitter contacts. I am particularly grateful to @marcabbiss@SWLingDotCom, @K7al_L3afta and@sdrsharp for their advice and assistance over the years.


Thank you–!

What I love about my buddy, London Shortwave, is that he didn’t give up SWLing just because his home is inundated with radio interference–rather, he saw it as a challenge. As you can see, over the years, he has designed a system that effectively defeats radio interference.

I also love the fact that he uses an even more simple approach to defeating RFI: he takes his radio outdoors. A kindred spirit, indeed.

I encourage all SWLing Post readers to bookmark and search London Shortwave’s website. It’s a treasure trove for the urban SWL. We thank him for allow us to post this article in its entirety.

Spread the radio love

Vibroplex acquires International Radio Corporation

vibro (1)

Many thanks to SWLing Post contributor, Mike (K8RAT) who shares this press release from Vibroplex:

Vibroplex LLC of Knoxville, TN announces the acquisition of International Radio Corporation of Aptos, CA.

inrad-logoThe sale was finalized on September 23. International Radio, commonly referred to as “Inrad”, is the leading manufacturer of aftermarket and OEM crystal filters for Amateur Radio transceivers and receivers with some 250 different models currently available for present day equipment and obsolete gear dating as far back as the 1950’s.

Inrad is presently the OEM roofing filter supplier for the popular Elecraft K3/K3S series of HF transceivers. The last day of operations in California was September 22. Inrad is now up and running at the Vibroplex offices in Tennessee but the backlog of present orders on hand will take several more days to fill.

The former and new owners say thank you to the Amateur Radio community for more than 40 years of Inrad business. Inquiries about Inrad can be directed to the main Vibroplex email address at [email protected] [email protected]

Spread the radio love