Category Archives: Ham Radio

The AirSpy HF+ Discovery and a new era of portable SDR DXing

The following article first appeared in the January 2020 issue of The Spectrum Monitor magazine.


The AirSpy HF+ Discovery and a new era of portable DXing

I admit it: I used to be a bit of an old-fashioned radio curmudgeon. One of those, “I like my radios with knobs and buttons” likely followed by, “…and no other way!”

However, about fifteen years ago, many of my DXing friends started turning to the world of software defined radios (or in common parlance, “SDRs”). I staunchly opposed ever following in their footsteps. One of the reasons I for this––a good one––is that, since I spend the bulk of my day in front of a computer, why would I ever want to use a computer when I’m playing radio?

But then…gradually, I found myself playing around with a few SDRs. And I quickly learned that third-generation SDRs were capable of doing something very impressive (and fun), indeed:  making spectrum recordings.  Using this tool, I found I could record not only the audio of one individual signal, but the audio of entire swathes of radio spectrum.  And even more impressive, I learned that you could later load or “play back” the spectrum recording and tune through the bands as if in real time. Any time you want. Before long, I was hooked: SDRs had become my portal into radio time travel!

I quickly found that I loved many of the other advantages of using an SDR, as well, including visual ones––like the ability to view spectrum. The interactive interface allows one to actually see radio signals across the band in real time. I also found incredible value in waterfall displays, which show signals changing in amplitude and frequency over time. Cool stuff.

I purchased my first dedicated SDR in 2012, a WinRadio Excalibur. It was––and still is––a benchmark receiver, performing circles around my tabletop receivers and general coverage transceivers.

And today, although I own and love a number of legacy radios and still listen to them in the good old-fashioned manner to which I became accustomed, I find I’m now spending the bulk of my time DXing with SDRs.

And then, more recently, two amazing things happened in the world of SDRs. Strong market competition, together with serious innovations, have come into play. Thus, for less than $200 US, you can now purchase an SDR that would have easily cost $1,000 US only ten years ago. And now, in many cases, the $200 SDR of today will outperform the $1,000 SDR of yesteryear. We are, indeed, living in good times.

And now––no more a radio curmudgeon––I’m comfortable with my SDR-user status and time at the computer, and glad I was just curious enough about SDRs to let them into my radio (and computer) world.

Portable SDRs

Since I initially dived into the world of SDRs, I’ve tried to think of a way to take them into the field.

But first, let’s get an obvious question out of the way:

Why would you want to drag an SDR into the field, when a traditional battery-powered radio is so much easier to manage?

After all, you may say, portable and even mobile tabletop receivers require no computer, no hard drive, and are likely more reliable because there are less components to manage or to cause problems for you.

In answer, let’s look at a few scenarios where heading to the field with an SDR system might just make sense.  (Hint: Many of these reasons are rooted in the SDR’s ability to record spectrum).

Good Reason #1:  Your home location is not ideal for playing radio.

Photo by Henry Be

My good friend, London Shortwave, lives in the middle of London, England. He’s an avid radio enthusiast and DXer, but his apartment is almost a perfect storm of radio interference. Listening from his home is challenging, to say the least: he can only use indoor antennas and RFI/QRM simply inundated his local airwaves.

Many years ago, he discovered that the best way to DX was to go to an area that put urban noise and radio interference at a distance.  He found that by visiting large local parks, he could play radio with almost no RFI.

Being a computer guru, he started working on a portable SDR setup so that he could go to a park, set up an antenna, and record radio spectrum while he read a book.  His systems evolved with time, each iteration being more compact less conspicuous that the previous. Later, he could head back home, open the recorded spectrum files, and tune through these “time-shifted” recordings in the comfort of his flat. This allowed London Shortwave to maximize the low-RFI listening experience by reliving the time in the park.

Over the years, he tweaked and adapted his setup, often writing his own code to make small tablets and portable computers purpose-built portable-spectrum-capture devices. If you’re curious, you might like to read about the evolution of his systems on his blog.

Clearly, for London Shortwave, an SDR is the right way to capture spectrum and thus likely the best solution for his DX listening.

Good Reason #2:  Weak-signal workarounds.

Typically radio enthusiasts turn to field operation to work in a lower-noise environment and/or where there are no antenna restrictions, often to log new stations and DX.

SDRs afford the DXer top-shelf tools for digging weak signals out of the muck. SDR applications have advanced tools for tweaking AGC settings, synchronous detectors, filters, noise reduction, and even to tailor audio.

The WinRadio Excalibur application even includes a waterfall display which represents the entire HF band (selectable 30 MHz or 50 MHz in width)

On top of that, being able to see a swath of spectrum and waterfall gives one an easier way––a visual way––to pinpoint weak or intermittent signals. This is much harder to do with a legacy radio.

Case in point:  I like listening to pirate radio stations on shortwave. With a spectrum display, I can see when a new station may be tuning up on the band so can position the receiver to listen in from the beginning of the broadcast, and never miss a beat.

Or, in another example, the visual aspect of spectrum display means I can easily locate trans-Atlantic DX on the mediumwave bands by looking for carrier peaks on the spectrum display outside the standard North American 10 kHz spacing. The signals are very easy to spot.

Good Reason #3: DXpeditions both small and large.

Mark Fahey, scanning the bands with his WinRadio Excalibur/Surface Pro 2 combo at our 2015 PARI DXpedition

Whether you’re joining an organized DXpedition or you’re simply enjoying a little vacation DXpedition, SDRs allow you to make the most of your radio time.

Indeed, most of the organized DXpedition these days heavily incorporate the use of SDRs specifically so DXers can record spectrum. Much like example #1 above, doing this allows you to enjoy the noise-free optimal conditions over and over again through spectrum recordings. Most DXpeditioners will have an SDR making recordings while they use another receiver to DX in real time. Later, they take the recording home and dig even more weak signals out of the mix: ones that might have otherwise gone unnoticed.

Good Reason #4: Sharing the spectrum with like-minded listeners.

Earlier this year, Mark gave me this 8TB hard drive chock-full of spectrum recordings.

One of the joys I’ve discovered  in making field spectrum recordings is sharing them with fellow DXers. Most of the time when I go to shortwave radio gatherings (like the Winter SWL Fest), I take a couple hard drives to exchange with other SDR enthusiasts. My friend, Mark Fahey, and I have exchanged some of our favorite spectrum recordings this way. I give him a hard drive chock-full of terabytes of recordings, and he reciprocates. Back home (or on the train or airplane) I open one of his recordings and, boom! there I am in his shack in Freeman’s Reach, Australia, tuning through Pacific stations that are not easily heard here in North America, maybe even turning up some gems Mark himself may have overlooked…just as he is doing with my recordings from the southeast US.

I’ve also acquired DXpedition spectrum recordings this way. It’s great fun to “be there” through the recordings and to enjoy some of the benefits of being on the DXpedition in times when I couldn’t actually make it there in person. For a DXer with a consuming job, busy family life, or maybe health problems that limit their travel, an SDR recording is the way to go.

Good Reason #5: Family time

Photo by David Straight

I’m a husband and father, and no matter how much I like to play radio when we’re on vacation, my family comes first, and our family activities take priority.

Having a field-portable SDR setup means that I can arrange a “set it and forget it” spectrum capture device. Before we head out the door for a family visit, tour of the area, or a hike, I simply set my SDR to record spectrum, then listen to what I “caught” after I return, or after I’m home from vacation.

This practice has allowed me to enjoy radio as much as I like, without interrupting our family adventures. Can’t beat it!

Past challenges

With all of these benefits, one might wonder why many other DXers  haven’t been using portable SDRs in the field for a while now? That’s a good question.

Power

The WinRadio G31DDC, like many SDRs of the era, has separate data and power ports

In prior years, DXers and listeners might have been reluctant to lug an SDR and its requisite apparatus out with them. After all, it’s only been in the past decade or so that SDRs haven’t required a separate custom power supply; some legacy SDRs either required an odd voltage, or as with my WinRadio Excalibur, have very tight voltage tolerances.

Originally, taking an SDR to the field––especially in places without grid mains power––usually meant you also had to take a pricey pure sine wave inverter as well as a battery with enough capacity to run the SDR for hours on end.

Having spent many months in an off-grid cabin on the east coast of Prince Edward Island, Canada, I can confidently say it’s an ideal spot for DXing: I can erect large wire antennas there, it’s on salt water, and there are literally no locally-generated man-man noises to spoil my fun.  Of course, anytime we go to the cottage, I record spectrum, too, as this is truly a honey of a listening spot.

The view from our off-grid cabin on PEI.

The first year I took an SDR to the cabin, I made a newbie mistake:  it never dawned on me until I arrived and began to put it to use that my Goal Zero portable battery pack didn’t have a pure sine wave inverter; rather, I found it had a modified sine wave inverter built into it. The inverter could easily power my SDR, sure, but it also injected incredibly strong, unavoidable broadband noise into the mix. It rendered my whole setup absolutely useless. I gave up on the SDR on that trip.

Both the Airspy HF+ (top) and FDM-S2 (bottom) use a USB connection for both data transfer and power. Photo by Guy Atkins.

Today, most SDRs actually derive their power from a computer or laptop through a USB cable, one that doubles as a data and power cable. This effectively eliminates the need for a separate power system and inverter.

Of course, your laptop or tablet will need a means of recharging in the field because the attached SDR will drain its battery a little faster. Nowadays it’s possible to find any number of portable power packs/banks and/or DC battery sources to power laptops or tablets, as long as one is cautious that the system doesn’t inject noise. This still requires a little trial and error, but it’s much easier to remedy than having two separate power sources.

Portable computers

Even a Raspberry Pi 3B has enough horsepower to run SDR applications.

An SDR is nothing without a software application to run it. These applications, of course, require some type of computer.

I the past, SDR applications needed some computing horsepower, not necessarily to run the application itself, but to make spectrum recordings.  In addition, they often required extra on-board storage space to make these recordings sufficiently long to be useful.  This almost always meant lugging a full-sized laptop to the field, or else investing in a very pricey tablet with a hefty amount of internal storage to take along.

Today we’re fortunate to have a number of more portable computing devices to run SDR applications in the field: not just laptops or tablets, but mobile phones and even mini computers, like the eminently affordable $46 Raspberry Pi. While you still have to be conscious of your device’s computing horsepower, many small devices are amply equipped to do the job.

Storage

64-128 GB USB flash/thumb drives are affordable, portable storage options.

If you’re making spectrum and audio recordings in the field, you’ll need to store them somehow. Wideband spectrum recordings can use upwards of 2GB of data per minute or two.

Fortunately, even a 64GB USB flash drive can be purchased for as little as $7-10 US. This makes for quick off-loading of spectrum recordings from a device’s internal memory.

My portable SDR setup

It wasn’t until this year that all of the pieces finally came together for me so that I could enjoy a capable (and affordable!) field-portable SDR setup. Two components, in particular, made my setup a reality overnight; here’s what made the difference.

The AirSpy HF+ Discovery

Last year, AirSpy sent me a sample of their new HF+ Discovery SDR to test and evaluate. To be fully transparent, this was at no cost to me.

I set about putting the HF+ Discovery through its paces. Very soon, I reached a conclusion:  the HF+ Discovery is simply one of the best mediumwave and HF SDRs I’ve ever tested. Certainly, it’s the new benchmark for sub-$500 SDRs.

In fact, I was blown away. The diminutive HF+ Discovery even gives some of my other benchmark SDRs a proper run for their money. Performance is DX-grade and uncompromising, sporting impressive dynamic range and superb sensitivity and selectivity. The noise floor is also incredibly low. And I still can’t wrap my mind around the fact that you can purchase this SDR for just $169 US.

The HF+ Discovery compared in size to a DVD

In terms of portability, it’s in a class of its own. It’s tiny and incredibly lightweight. I evaluate and review SDRs all the time, but I’ve never known one that offers this performance in such a tiny package.

Are there any downsides to the HF+ Discovery? The only one I see––and it’s intentional––is that it has a smaller working bandwidth than many other similar SDRs at 768 kHz (although only recently, Airspy announced a firmware update that will increase bandwidth). Keep in mind, however, that the HF+ series SDRs were designed to prevent overload when in the presence of strong local signals. In fairness, that’s a compromise I’ll happily make.

Indeed, the HF+ Discovery maximum bandwidth isn’t a negative in my estimation unless I’m trying to grab the entire mediumwave band, all at once. For shortwave work, it’s fine because it can typically cover an entire broadcast band, allowing me to make useful spectrum recordings.

The HF+ Discovery is so remarkably tiny, that this little SDR, together with a passive loop antenna, can fit in one small travel pouch. Ideal.

The antennas

My homebrew NCPL antenna

Speaking of antennas, one of the primary reasons I’m evaluating the HF+ Discovery is because it has a very high dynamic range and can take advantage of simple antennas, in the form of passive wideband magnetic loop antennas, to achieve serious DX.

AirSpy president and engineer, Youssef Touil, experimented with several passive loop antenna designs and sizes until he found a few combinations ideally matched with the HF+ Discovery.

My good buddy, Vlado (N3CZ) helped me build such an antenna per Youssef’s specifications. Vlado had a length of Wireman Flexi 4XL that was ideal for this project (thanks, Vlad!). The only tricky part was penetrating the shielding and dielectric core at the bottom of the loop, then tapping into both sides of the center conductor for the balun connections.  Being Vlado, he used several lengths of heat shrink tubing to make a nice, clean, snag-free design. I’ll freely admit that, had I constructed this on my own, it wouldn’t have been nearly as elegant!

Click here for a step-by-step guide to building your own NCPL (Noise-Cancelling Passive Loop Antenna.

Youssef also sent me a (then) prototype Youloop passive loop antenna. It’s incredibly compact, made of high quality SMA-fitted coaxial cables. It can be set up in about 30 seconds and coiled to tuck into a jacket pocket.  The AirSpy-built loop has a lower loss transformer than the one in the homemade loop, which translates into a lower noise figure for the system.

Click here to read my review of the Youloop.

Let’s face it: SDR kit simply doesn’t get more portable than this.

The computer

My Microsoft Surface Go tablet on a hotel bed.

In the past, I used an inexpensive, circa 2013 mini Windows laptop with an internal SSD drive.  Everything worked beautifully, save the fact that it was challenging to power in the field and the internal capacity of the hard drive was so small (16GB less the operating system). In addition, it was a few years old, bought used, so the processor speed was quite slow.

This year, on the way back from the Huntsville Hamfest, I stopped by the Unclaimed Baggage Center in Scottsboro, Alabama. This center has a wide variety of used portable electronics at discount prices. I felt pretty lucky when I discovered a like-new condition Microsoft Surface Go tablet and keyboard with original charger for $190. The catch? The only data port on the tablet is a USB-C. But I grabbed a small USB-C to standard USB 3.0 dongle (for $2!) and took a risk that it would work with the HF+ Discovery.

Fortunately, it did! Score!

While the Surface Go is no powerhouse, it’s fast enough to run any of my SDRs and make spectrum recordings up to 2 MHz in width without stuttering. The only noise it seems to inject into the mix is a little RFI when I touch the trackpad on the attached keyboard.

Power

One of my LiFePo batteries

The HF+ Discovery draws power from the Surface Go tablet via the USB port. With no additional power supply, the Surface Go may only power the HF+ Discovery for perhaps an hour at most. Since I like doing fully off-grid operations and needed to avoid RFI from inverters, I needed a portable power solution.

Fortunately, the Surface Go has a dedicated power port, so I immediately ordered a DC power cable with a standard car lighter plug.

At the Huntsville Hamfest I also purchased a small 12V 4.5 Ah Bioenno LiFePo battery and paired it with a compact Powerpole distribution panel kit I purchased in May at the 2019 Dayton Hamvention.

The LiFePo battery is small, lightweight, and can power the tablet /SDR combo for hours on end. Moreover, I have noticed no extra noise injected when the DC power is applied.

My HF+ Discovery-based portable SDR kit

My portable SDR kit on a hotel balcony.

Now I have this kit, I couldn’t be more pleased with it. When all of the components of my SDR system are assembled, they work harmoniously. The entire ensemble is also incredibly compact:  the loop antennas, SDR, Surface Go tablet, battery, and distribution panel all fit in a very small travel pack, perfect for the grab-and-go DX adventure.

The entire kit: SDR, cables, Youloop antenna, connectors and adapters all fit in my Red Oxx Lil’ Roy pack.

In November, I took the kit to the coast of South Carolina and had a blast doing a little mediumwave DXing from our hotel balcony. We were very fortunate in that I had two excellent spots to hang the homemade loop antenna: on the main balcony, and from the mini balcony off the master bedroom. Both spots yielded excellent results.

What impressed me most was the fact that the SDR# spectrum display and waterfall were absolutely chock-full of signals, and there was very little noise, even in the popular resort area where we were staying. I found that my portable radios struggled with some of the RFI emanating from the hotel, but the HF+ Discovery and passive loop combo did a much better job mitigating noise.

Check out the AM broadcast band on the spectrum display.

But no need to take my word for it.  If you would like to experience it first hand, why not download an actual spectrum recording I made using this setup?

All you’ll need to do is:

  1. Download the 1.7 GB (.wav formatted) spectrum file at this address
  2. Download a copy of SDR# if you don’t already have an SDR application that can read AirSpy spectrum files.
  3. Install SDR#, and run it.
  4. At the top left corner of the SDR# screen, choose “IQ File (.wav)” as the source, then point it to where you downloaded the file.
  5. Press the play button, and experience a little radio time travel!

This particular recording was made on the mediumwave band on November 17, 2019, starting at around 01:55 UTC.

My portable SDR kit capturing spectrum during a hike in Pisgah National Forest.

I’ve also taken this setup to several parks and remote outdoor locations, and truly enjoyed the freedom of taking spectrum recordings back home to dig through the signals.

Conclusion

I finally have a portable SDR system that allows me the flexibility to make spectrum recordings while travelling. The whole setup is compact and can easily be taken in a carry-on bag when flying.

The glory of this is, I can tune through my spectrum recordings in real time and DX when I’m back home, or even on the way back home, in the car, train, or airplane. It’s simply brilliant.

If you don’t already own an SDR, I can highly recommend the AirSpy HF+ Discovery if you’re primarily interested in HF and MW DXing. If you need a wideband SDR, I could also recommend the recently released SDRplay RSPdx, although it’s slightly heavier and larger than the AirSpy.

Thankfully, I am now an SDR enthusiast that can operate in the field, and this radio has had a lot to do with it. I’ll be logging many hours and miles with the AirSpy HF+ Discovery: its incredibly compact footprint, combined with its brilliant performance, is truly a winning combo.

Click here to check out the Airspy HF+ Discovery

Related articles:


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Shiva DX Cluster for broadcast listeners

Many thanks to SWLing Post contributor, Walter Panella (IU2MEH), who writes:

I have written a software that connects to a ham radio dx cluster and repeats the dx spot to its clients while adding spots based on list files.

This to show markers on SDR Console or similar software to see broadcasting stations, for example, based on scheduling day and time.

This software already runs 24h on my server accessible from the internet. If someone helps me I can give him access to it.

You can check out my project  by clicking here and the related Github page by clicking here.

Thanks for sharing, Walter. Connecting SDR Console with a DX cluster would make it even easier to spot DX.

Check out Walter’s Shiva DX Cluister project page here.

Spread the radio love

Taking the Xiegu G90 QRP transceiver to the field!

Earlier this week, I took delivery of a new Xiegu G90 general coverage QRP transceiver. I’m reviewing this portable rig for The Spectrum Monitor magazine. Although this Chinese manufacturer has been around for a few years, this was my first purchase of a Xiegu product.

I’ve had the G90 on the air from home for a couple days, but I feel like the best way to test a QRP transceiver is in the field!

Due to the Covid-19 lock-down and a number of our regional parks either being closed or severely limiting visitors, I haven’t made many POTA (Parks On The Air) activations this year.

Recently, however, North Carolina has been opening state parks and allowing visitor access to hiking trails and picnic areas, but keeping all facilities (stores, cafes, visitor centers, and restrooms) closed to the public.

Yesterday, our family decided to pack a picnic lunch and head to Mt. Mitchell State Park (POTA site K-2747). My wife knew I was chomping at the bit to play radio in the field and actually made the suggestion. (She’s a keeper!) 🙂

There were only a dozen people at the park so we essentially had the place to ourselves. Better yet, it gave me the opportunity to pick out the most ideal picnic site to set up and deploy my EFT Trail-Friendly 40/20/10 antenna.

The G90’s backlit color display was actually quite easy to read in the field. My phone’s camera filter made it look darker than it actually was.

My POTA activation was unannounced and I didn’t have Internet access to self-spot on the POTA website, so I started the activation old school by calling “CQ POTA” until someone happened upon 7286 kHz.

After perhaps 10 minutes of calling CQ, Greg (KE0HTG)–a helpful POTA chaser–finally found me and spotted me on the network.

I worked a few stations in succession, but summer QRN levels were incredibly high and I believed static crashes were cloaking would-be contacts. The G90 has no RF Gain [Actually, thanks to this feedback, I now know the G90 does indeed have an RF Gain control (firmware version 1.73 and higher).] I asked one kind operator if he would hold while I switched over to my trusty Elecraft KX2.

The KX2 did a much better job managing the noise and that same op was easily readable where with the G90 I could barely copy him. I suspect I could have tinkered with the G90’s AGC levels to better mitigate the noise, but I didn’t want to do this in the middle of an activation.

I worked about fifteen stations with the Elecraft KX2 on 40 meters.

One real advantage of the KX2 during a POTA activation on SSB is its voice memory keyer (of course, it also has a CW memory keyer). I simply record my CQ and have the KX2 repeat it until someone replies, then I hit the PTT to stop the recording. Not only does this save my voice, but it also gives me an opportunity to eat my lunch while calling CQ!

I eventually moved up to the 20 meter band and switched back to the Xiegu G90.

On the 20 meter band, the G90 handled conditions like a champ.

Someone eventually spotted me on 20 and I worked a few stations.

The 20 meter band was very fickle and unstable yesterday. For example, I struggled to finish a contact with an operator in Massachusetts, yet got a solid 59 report from Spain with only 20 watts.

No activation is complete without brewing a cup of coffee on the alcohol burner!

I had a great time with the G90 in the field. I can see why it’s become such a popular transceiver as it offers incredible bang-for-buck (it can be purchased new as low as $450 US shipped).

This week, the noise levels on the 40 meter band should be very high here in North America, so I plan to spend more time with the G90 settings and see if I can mitigate the QRN a little better. I’d welcome any tips from G90 owners.

And yes, I’m already eyeing a couple of parks to activate next week!

Post Readers: Please comment if you’re familiar with the Xiegu G90 or any of the other Xiegu transceivers.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

The SDR.hu web SDR portal is no more, but we have several excellent alternatives

In January, András Retzler–owner of the SDR.hu KiwiSDR portal–started requiring registration and a ham radio license in order to access their extensive online database of SDRs.

Today, we learned of the site’s closure.  Here’s the message posted at SDR.hu:

The SDR.hu project has been finished

I’d like to say a big thanks to everyone who joined my journey with this project!

I hope you had a good time listening on the site, and learnt some things about SDR. The purpose of this site was to provide a technological demonstration for amateur radio operators about Software Defined Radio, and I hope this goal has been reached. As this website was a one-person hobby project, with my tasks and responsibilities growing, and my focus moving to other projects at which I hope to make a greater positive impact, I’m unable to further develop SDR.hu and protect it from abuse.

Furthermore, I think this site has some good alternatives now. Nevertheless, in my opinion amateur radio receivers should be shared with strict access control in the future.

If you have more questions, feel free to consult the FAQ.

73!

Andras, HA7ILM

SWLing Post contributor, Mark Fahey, shared the following message sent by Andras to all KiwiSDR owners in the database this morning:

Hello,

You are receiving this e-mail because you were listing a receiver on SDR.hu in the last 3 months.

I wanted to let you know that the SDR.hu project is discontinued.
This is because I have to focus on my PhD and unfortunately I don’t have enough time anymore to maintain the website and protect it from abuse.
If you have questions, there’s a FAQ on the front page: https://sdr.hu/
For KiwiSDR users there is another listing service available on the KiwiSDR website: http://kiwisdr.com/public (I’m not involved with this one.)
Thank you very much for having participated in the project!

VY 73!

Andras, HA7ILM

Alternative KiwiSDR Portals

Fortunately, there are a number of other KiwiSDR portals that do not require registration or a call sign. Here’s a list:

If you prefer another KiwiSDR portal, please comment with a link.  I’ll try to update this post with any new additions!

Spread the radio love

Radio Waves: Free Foundation License Course, More Titanic Radio, CQD, and ARRL Field Day Waivers

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Trevor, Mark Hirst and Ulis Fleming for the following tips:


Register now for free Amateur Radio Foundation Online training course (Southgate ARC)

The next free amateur radio Foundation Online training course run by volunteers from Essex Ham starts on Sunday, June 7

The Coronavirus outbreak and the RSGB’s introduction of online exams that can be taken at home has led to a surge in demand for free online amateur radio training courses such as that run by Essex Ham.

These courses have been very popular and early registration is advised. 313 people took the course that started on May 3 and a further 235 are on the course that started on May 17.

You can find out more about online training and register to join a course at
https://www.essexham.co.uk/train/foundation-online/

Essex Ham
https://www.essexham.co.uk/
https://twitter.com/EssexHam

US court grants permission to recover Marconi telegraph from Titanic wreckage (ARS Technica)

But NOAA is fiercely opposed to the controversial salvage mission.

When RMS Titanic struck an iceberg on April 14, 1912, crew members sent out numerous distress signals to any other ships in the vicinity using what was then a relatively new technology: a Marconi wireless telegraph system. More than 1,500 passengers and crew perished when the ship sank a few hours later. Now, in what is likely to be a controversial decision, a federal judge has approved a salvage operation to retrieve the telegraph from the deteriorating wreckage, The Boston Globe has reported.

Lawyers for the company RMS Titanic Inc.—which owns more than 5,000 artifacts salvaged from the wreck—filed a request in US District Court in Alexandria, Virginia, arguing that the wireless telegraph should be salvaged because the ship’s remains are likely to collapse sometime in the next several years, rendering “the world’s most famous radio” inaccessible. US District Judge Rebecca Beach Smith concurred in her ruling, noting that salvaging the telegraph “will contribute to the legacy left by the indelible loss of the Titanic, those who survived, and those who gave their lives in the sinking.”

However, the National Oceanic and Atmospheric Administration (NOAA) is fiercely opposed to the salvage mission. The agency argues in court documents that the telegraph should be left undisturbed, since it is likely to be surrounded “by the mortal remains of more than 1500 people.” Judge Smith countered in her decision that the proposed expedition meets international requirements: for instance, it is justified on scientific and cultural grounds and has taken into account any potential damage to the wreck.[]

Why Titanic’s first call for help wasn’t an SOS signal (National Geographic)

When RMS Titanic set sail in 1912, it was blessed and cursed with the latest in communication technology—the wireless telegraph. In the last hours after Titanic hit an iceberg, radio messages sent from the storied sinking ship summoned a rescue vessel that saved hundreds of people, but also sowed confusion with competing distress calls and signal interference. More than 1,500 people died that fateful night.

Now, a recent court ruling may pave the way to the recovery of Titanic’s telegraph, designed by Guglielmo Marconi, a telecommunications pioneer and 1909 Nobel Prize winner in physics who invented the first device to facilitate wireless communications using radio waves.

[…]Despite the limitations of the Marconi telegraph—and the fact that it wasn’t intended to be used as an emergency device—Titanic was outfitted with a radio room and a Marconi-leased telegraph machine. Two young Marconi-employed operators, chief telegraphist Jack Phillips and his assistant Harold Bride, sent Morse code “Marconigrams” on behalf of Titanic’s well-heeled customers 24 hours a day during its maiden voyage in April 1912.

Both Marconi’s technology monopoly and the torrent of personal messages conveyed through Titanic’s telegraph proved fatal on that April night. Phillips was so overwhelmed by a queue of incoming and outgoing guest telegrams —one Titanic passenger wanted to “notify all interested” about an upcoming poker game in Los Angeles—that he didn’t pass on messages about the ice threatening Titanic’s ocean environs. When a nearby vessel, SS Californian, telegraphed that it was already surrounded by ice, Phillips testily responded “Shut up! I am busy.”

Once Titanic hit the iceberg, Phillips tone shifted and he used the Marconi distress signal: “CQD.”[]

Temporary Rule Waivers Announced for 2020 ARRL Field Day (ARRL News)

With one month to go before 2020 ARRL Field Day, June 27 – 28, the ARRL Programs and Services Committee (PSC) has adopted two temporary rule waivers for the event:

1)      For Field Day 2020 only, Class D stations may work all other Field Day stations, including other Class D stations, for points.

Field Day rule 4.6 defines Class D stations as “Home stations,” including stations operating from permanent or licensed station locations using commercial power. Class D stations ordinarily may only count contacts made with Class A, B, C, E, and F Field Day stations, but the temporary rule waiver for 2020 allows Class D stations to count contacts with other Class D stations for QSO credit.

2)      In addition, for 2020 only, an aggregate club score will be published, which will be the sum of all individual entries indicating a specific club (similar to the aggregate score totals used in ARRL affiliated club competitions).

Ordinarily, club names are only published in the results for Class A and Class F entries, but the temporary rule waiver for 2020 allows participants from any Class to optionally include a single club name with their submitted results following Field Day.

For example, if Podunk Hollow Radio Club members Becky, W1BXY, and Hiram, W1AW, both participate in 2020 Field Day — Hiram from his Class D home station, and Becky from her Class C mobile station — both can include the radio club’s name when reporting their individual results. The published results listing will include individual scores for Hiram and Becky, plus a combined score for all entries identified as Podunk Hollow Radio Club.

The temporary rule waivers were adopted by the PSC on May 27, 2020.

ARRL Field Day is one of the biggest events on the amateur radio calendar, with over 36,000 participants in 2019, including entries from 3,113 radio clubs and emergency operations centers. In most years, Field Day is also the largest annual demonstration of ham radio, because many radio clubs organize their participation in public places such as parks and schools.

Due to the COVID-19 pandemic, many radio clubs have made decisions to cancel their group participation in ARRL Field Day this year due to public health recommendations and/or requirements, or to significantly modify their participation for safe social distancing practices. The temporary rule waivers allow greater flexibility in recognizing the value of individual and club participation regardless of entry class.

ARRL is contacting logging program developers about the temporary rule waivers so developers can release updated versions of their software prior to Field Day weekend. Participants are reminded that the preferred method of submitting entries after Field Day is via the web applet. The ARRL Field Day rules include instructions for submitting entries after the event. Entries must be submitted or postmarked by Tuesday, July 28, 2020.

The ARRL Field Day web page includes a series of articles with ideas and advice for adapting participation this year.[]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Christoph’s homebrew custom hotkey pad for SDR applications

Last week, I saw a fascinating post by Christoph Jahn on the SDRplay Facebook page.

Christoph created a custom hotkey pad for use with SDRuno.  The project is actually quite simple and his finished product looks amazing:

The steps involve downloading “LuaMacros” a freeware macros utility that allows you to map macros to an external USB device like a cheap numeric keypad. Christoph then designed the key templates and printed them on a strong adhesive vinyl foil.

I asked Christoph if I could post his project on the SWLing Post and he kindly sent me the followed PDF with step-by-step instructions.

Click here to download the instructions as a PDF (6.71MB).

Christoph also shared the macros file he used for his project (download .XML file 8.77 KB).

Thank you so much for sharing this, Christoph!  Your finished product is so professional, I would have thought it was produced by SDRplay!

This could be a useful tool for a radio friend who is visually-impaired and, of course, could be compatible with a wide range of SDR apps and rig control software that allow keyboard shortcuts.

Readers: Have you done a similar project? Please comment with your experience and any details–especially noting applications and programs you find are compatible with keyboard shortcut mapping. This could be very beneficial for radio enthusiasts with disabilities!

Spread the radio love

Radio technology magazines both online and in print

Many thanks to SWLing Post contributor, Mangosman, who writes:

There used to be magazines like Radio Electronics (USA), Practical Wireless (UK), Radio Television and Hobbies (Australia) and other magazines on electronics were sold in shops and on subscription for money which paid their writers. The internet has killed most of these magazines. There are still a few still in publication that I know of:

There are other Amateur radio magazines as part of membership.

Silicon Chip

Silicon Chip magazine publishes an extensive range of electronics projects every month including many which use Arduino, Raspberry Pi and Australia’s own very popular Micromite/Maximite microcontrollers. These projects are conceived, developed, constructed, written, photographed published and any unusual parts are sold on the magazine’s website by professional people who are paid by sales of the magazine.

Whether you’re into the latest digital electronics or prefer restoring vintage radios, or anywhere in between, we have something to interest you.

Of particular interest to radio enthusiasts are;

New W-I-d-e-b-a-n-d RTL-SDR Modules Part 1  and Part 2 where the performance of the available modules are measured and compared by Jim Rowe. Some modules will not work at all below 30 MHz but will above. Sensitivity dropped off at different frequencies depending on the module. Jim has the testing knowledge because he constructed his own version in 2013. Also check out Using the SiDRADIO to receive DRM30 and More Reception Modes for the SiDRADIO.

More recently they published a touch screen DAB+/FM/AM radio construction project.

The online subscription rate is  $Au 85 (= $US 56.29 = € 51.12 = £ 45.88) at the moment for a year of 12 magazines. Individual articles are also available. GST is an Australian Goods and Services Tax.

The above magazines produce their own content rather than just promote a manufacturers’ product.

Many thanks for the suggestions, Mangosman! I imagine there are a number of electronics magazines still in publication in other languages, too. Readers, please comment if you subscribe to a quality publication not mentioned above.

I would also note that if you would like to read archived/vintage copies of electronics and radio magazines–some dating back to the early 20th century–explore the American Radio History website.

Spread the radio love