Category Archives: Radios

Ron approves of the high-gain ferrite bar antenna

Ferrite-Bar-PL-365In response to our post about the high-gain ferrite bar antenna for the Tecsun PL-360/PL-365 and CountyComm GP5/DSP and GP5/SSB, SWLing Post contributor, Ron, writes:

…and it’s worth it.

On MW there is a marked difference on both the low and high ends
of the band, just as the builder said, compared to the stock plugin antenna.

On longwave my local NDB BH went from being barely audible on the stock
plugin to being quite readable–well above the noise.

The seller replied to a question about it being shipped very quickly
since it never did track on USPS.

Good seller, reliable email, good antenna that works as claimed–no problem here.

Click here to view the antenna on eBay.

Thank you so much for the report, Ron!

DX Fiend: Gary DeBock’s guide to building the ultimate FSL antenna for the Tecsun PL-380

Tecsun-PL-380-FSL-1

SWLing Post contributor, Gary DeBock, is an acclaimed innovator in the realm of Ultralight DXing–he’s well-known for constantly pushing the envelop on these inexpensive DX receivers.

This time, Gary has published a detailed home-brew project that can turn your stock Tecsun PL-380 into a Mediumwave DX Fiend!

In Gary’s own words:

This is the “Science Fiction PL-380” model, with the hobby’s first hard-wired FSL antenna in a portable configuration. The radio’s internal Si4734 DSP chip tunes the high sensitivity MW antenna, so there is no need to peak a variable capacitor. For those who can build or obtain this model, it will be a happy new year indeed!

Many thanks to Gary for the following guest post:


3 Inch FSL Tecsun PL-380 Model

Compact Breakthrough in MW Sensitivity, Selectivity and Portability

By Gary DeBock, Puyallup, WA, USA
January 2016

Tecsun-PL-380-FSL-1

Introduction  

Portable radio enthusiasts were astonished when Silicon Labs first introduced their innovative Si4734 DSP chip in 2009—the pocket radios empowered by this new component had amazing DSP-enhanced selectivity. Although the relatively lame stock loopsticks designed by the Kchibo and Tecsun companies seriously limited MW sensitivity there was no shortage of fanatical hobbyists designing upgrade loopsticks in an effort to correct this deficiency. The 7.5” loopstick transplant boosted the MW sensitivity of the PL-380 model up to a much improved level, and it became the most popular modification in our Ultralight radio group.  But in 2011 another huge breakthrough was about to capture the fascination of our DXing niche group—Graham Maynard published his original Ferrite Sleeve article, and the innovative antenna’s sensitivity made our humble pockets radios perform like real transoceanic DXing contenders. This was very thrilling—but was there any possible way that the awesome selectivity from the Si4734 DSP chip and the awesome sensitivity provided by the FSL antenna could somehow be combined in a self-contained breakthrough portable, with lightweight portability as an added bonus?

Tecsun-PL-380-FSL-2

The fact that an Si4734 DSP chip could successfully tune an external antenna was demonstrated by various experimenters (including me) in 2011—a hard-wired 3” Longwave FSL design worked quite well for me in early 2011, and although it was far too heavy to consider attachment to the PL-380 the validity of the hard-wired FSL concept was proven to my satisfaction (see photo at right). The challenge has always been to create a hard-wired FSL that would offer both high MW sensitivity and lightweight portability— a value tradeoff that made this project especially intriguing.

After testing various designs I finally settled on a 3” FSL composed of the lightweight Russian surplus 100mm x 20mm x 3mm ferrite bars. These bars provide a unique balance of high sensitivity and lightweight portability, and the cylindrical shape of the FSL apparently provides the fringe benefit of exceptional nulling capability. The PL-380’s Si4734 chip easily tunes the antenna for breakthrough MW sensitivity from 521-1701 kHz, and provides excellent 1 kHz DSP selectivity as well. The weight of the FSL-enhanced PL-380 is within reason to maintain the concept of easy portability, and its modest size may actually convince airport security agents that it is indeed a radio and antenna combination. Overall the project has been a very satisfying effort to combine the awesome capabilities of both the Si4734 DSP chip and the new FSL antenna– resulting in a breakthrough “travel portable” with astonishing MW-DXing performance.

Project Overview  

This modification procedure will convert the Tecsun PL-380 AM-LW-FM-SW portable from a modest-performing Medium Wave receiver into an exceptional one, with a significant enhancement of Longwave performance as well. The process involves some close-order soldering on a crowded PL-380 circuit board, and should only be attempted by those will good close up eyesight, steady hand coordination and some soldering experience. Certain component parts (such as the 100mm x 20mm x 3mm ferrite bars, the 2.25” Funnoodle inner cores and the orange plastic antenna frames) may be in short supply depending upon current demand, and it is recommended that all these collected prior to starting the project.

Since major portions of this project involve duplication of procedures contained in the PL-380 7.5” Loopstick Transplant article, reference is made to various steps and instructions in that article (posted at

http://www.mediafire.com/view/du3sr5cd9thqvau/7.5inch-LS-PL380.doc ). As such, hobbyists who have successfully completed the 7.5” loopstick transplant project on a PL-380 will find this procedure relatively simple, with only the 3” Bar FSL construction as a new challenge. The resulting FSL-enhanced PL-380 truly provides a quantum leap in MW-DXing performance over the stock model, but reasonable care is necessary to protect the modified portable from sudden drops or mechanical shocks. Completion of the finished radio should provide a great level of satisfaction and hobby enjoyment, especially during travel opportunities where external antennas are impractical or forbidden.

Tecsun-PL-380-FSL-3

Construction Parts Required

A) Tecsun PL-380 AM-LW-FM-SW Receiver (available from many sources, including this eBay listing at $46.99 with free shipping to the USA)  http://www.ebay.com/itm/Tecsun-PL380-DSP-AM-FM-Shortwave-LW-PLL-Radio-Receiver-PL-380-/251783558999?hash=item3a9f783757:g:t0EAAOxylpNTTan7

B) 37 feet of 250/46 Litz wire  http://www.ebay.com/itm/Litz-wire-250-46-0-04-mm-for-crystal-radio-coil-Loop-antenna-100-/160804560511?hash=item2570b2de7f:m:m9fkDfLaAd59_UEmrp1po5w

C) 8 Russian surplus 100mm x 20mm x 3mm ferrite bars (availability currently uncertain– author has a limited supply. An eBay source may reappear for future orders, since many of these bars are presumably still in eastern Europe)

D) 4″ length of 2″ diameter Fun Noodle inner foam core

http://www.amazon.com/Aqua-World-223-Fun-Noodle/dp/B0017QABEQ/

E) Precut orange plastic antenna frame (cut from Ace hardware 48″ plastic level, with 5″ long bottom dimension and 4.5″ top dimension– cutting instructions to follow). NOTE: each Ace Hardware 48” level has enough material to make two FSL antenna frames.

F) Rite Aid 1″ wide waterproof tape (1 roll)

G) Scotch “Extreme” shipping tape (1 roll)

H) Tube of Duro Super Glue (or equivalent), .07 ounce

I) 6 inches of 1/16″ diameter shrink tubing

J) Two 18″ lengths of 125 lb. test plastic tie wraps

K) Two 16″ lengths of 75 lb. test plastic tie wraps

L) Oatey foam pack (4” wide)

M) Two 3/4″ x 1″ strips of 1″ I.D. rubber heater hose

Miscellaneous: Solder, 25w (low heat) soldering iron, hacksaw (or power miter saw), screwdriver set, sandpaper (optional)

PL-380 Preparation

Before voiding the warranty on your new PL-380, it’s a good idea to ensure that it has no existing problems which might require warranty service. (Ha!)

Install batteries in the radio and give it a test run on all four bands, checking the tuning encoder, clock, volume control, speaker, headphone jack, display functions and digital searching modes. Make sure that the radio is working properly in all functions before starting the modification procedure, since the eBay sellers are unlikely to show you any sympathy after you tear out the stock loopstick. It’s also a good idea to check out the Medium Wave weak signal reception with the PL-380 stock loopstick before starting the modification, to establish a benchmark of performance against which the new 3” FSL’s DXing performance will be compared.

Tecsun-PL-380-FSL-4

STEP-BY-STEP CONSTRUCTION

1) Follow the detailed cutting procedures in steps 1-9 of the loopstick transplant article (using either a power miter saw or hacksaw) to prepare the FSL antenna mounting frame, HOWEVER please note that the top section length for this project is 4 ½” (114 mm), NOT 8” as in the loopstick transplant project. The finished precut frame should resemble the picture above, with the top section flat, and the bottom section back edge trimmed to allow full use of the radio’s whip antenna. The frame’s entire bottom section (including the glue surface) is identical in both the loopstick and FSL transplant projects.

2) Follow the detailed procedures in steps 17-22 of the loopstick transplant article to prepare the PL-380 cabinet for the FSL transplant procedure.
Click to enlarge
3) Refer to the photo above. Place the prepared PL-380 cabinet in the vertical position as shown, with a paper roll (or other item) to keep the cabinet in the vertical position. If necessary sand the edges (only) of the antenna frame’s glue surface to ensure that no cutting debris or rough edges will cause an uneven gluing surface. Use a clean, damp cloth or paper towel to remove all dust and debris from both the antenna frame and PL-380 glue surfaces, then wipe them thoroughly dry. Ensure that maximum light shines on the PL-380’s top glue surface (as shown in the photo below), then practice making multiple “dry runs” of placing the antenna frame directly centered on the PL-380’s front top cabinet surface, with its front edge lined up with the PL-380’s beveled front edge. You will only get one chance to place the frame accurately when the super glue is on the PL-380 surface, so make sure that you know exactly what to do! The antenna frame should sit completely flat against the PL-380 cabinet, and slide across it smoothly if such a test is made. If not, sand any rough edges on the antenna frame’s glue surface and repeat the cleaning procedure.<

Tecsun-PL-380-FSL-64) Refer to the photo above. After ensuring that you are fully prepared for accurate placement of the antenna frame on the PL-380 cabinet, place a 4 1/2” x 3/16” bead of super glue (114 mm x 5 mm) on the PL-380’s front top cabinet surface, as shown in the photo. Refer to the photo on the top of the next page. Ensure that the front side of the antenna frame (as shown) is facing you, then place the antenna frame in a centered position flat against the PL-380 cabinet, with its front edge lining up with the front beveled edge of the cabinet, as shown in the photo. Press the antenna frame down firmly against the cabinet for about one minute, scraping away any excess glue from the front and back edges with a small, flat jeweler’s screwdriver. It is especially important to remove any excess glue from the back edge of the antenna frame in order to allow the PL-380’s back cabinet to close normally. After completion of this step place the PL-380 (with the attached antenna frame) in a secure area until the FSL antenna is constructed.Tecsun-PL-380-FSL-7

CONSTRUCTION OF FSL ANTENNA

Tecsun-PL-380-FSL-8

5)   Refer to the photo above. Ensure that the end edges of the 4” Funnoodle inner foam core are perfectly straight before performing this step. Place the inner foam core flat on a table, standing on one of its edges as shown. Take the roll of 1” wide waterproof tape and wrap two turns tightly around the inner foam core as shown in the photo, with the adhesive side out. Ensure that the two turns are wound tight enough so that they will not slide up or down the inner foam core. Take the first 100mm ferrite bar and press it firmly against the waterproof tape with its short edge completely flat on the table, and long edges completely parallel to the edges of the inner foam core (as shown). It is important to place this first bar accurately, in order to start an accurate pattern for the set of 8 bars.

Tecsun-PL-380-FSL-9

6)   Refer to the photo above. Press another of the 100mm ferrite bars against the waterproof tape in a position where it is perfectly flat on the table and perfectly parallel with the first bar, with 1/8” (3 mm) spacing between the bars. Continue to place the other 6 bars on the inner foam core in exactly the same way, ensuring that all 8 bars are flat against the table and parallel with each other, having 1/8” (3 mm) spacing between them. If necessary (after placing all 8 bars on the tape), even out the spacing by moving certain bars slightly so that the gaps between them are all equal. The set of 8 bars will be compressed in the next step to form an octagonal pattern.

Tecsun-PL-380-FSL-10

7)  Refer to the photo above. Place a 75 lb. test plastic tie wrap around one edge of the set of 8 bars as shown, 1/2” (12 mm) from the ends of the bars. Slowly and carefully compress the set of 8 bars as shown, tightening up the slack in the plastic tie wrap gradually as you compress the set of bars. Continue this gradual process until the set of 8 bars forms an octagonal (stop sign) pattern, with the bars barely touching each other on their compressed edges.  At this point take up any remaining slack in the plastic tie wrap, and stop compressing the bars. Repeat this process on the other side of the ferrite bars with another 75 lb. test plastic tie wrap, ensuring that the bars form another octagonal pattern, with their compressed edges barely touching each other. Again take up the slack in the plastic tie wrap, and then use diagonal cutters to trim the excess ends of the plastic tie wraps.

Tecsun-PL-380-FSL-11

8)   Refer to the photo above. Place the prepared set of 8 bars flat on the table on one of its ends, as shown. Take the roll of 1” waterproof tape and tightly wrap two turns of tape around the ferrite bars as shown, with the adhesive side out. Space these two wraps evenly as shown, ensuring that they are tight enough not to slide up and down the bars.

Tecsun-PL-380-FSL-12

9)   Refer to the photo above. Take the Oatey 4” foam pack, remove the center staple and locate a 9” (23 cm) long length of this foam which is free of any holes or imperfections. At the beginning of this 9” (23 cm) long length of foam cut a perfectly straight line perpendicular to the edges of the foam. Press this straight edge of foam down tightly against the waterproof tape as shown, with the edges of the 4” Oatey form lining up with the edges of the bar assembly’s inner foam core. Wrap this Oatey foam tightly around the waterproof tape until the foam touches the plastic tie wrap clamps.

If necessary, re-wrap the foam tightly so that it is centered on the ferrite bar assembly.

Tecsun-PL-380-FSL-1310)   Refer to the photo above. Pull the Oatey foam wrap tightly around the bar assembly, then cut a straight edge to mate evenly with the previously cut straight edge. Before pressing this edge down on the tape cut side notches in the foam where the tie wraps clamps are located, as shown. The press this foam edge tightly down on the tape, mating evenly with the previously cut foam edge. Ensure that there are no gaps or overlaps in the foam edges; if necessary, pull the foam wrap once again all around the bar assembly and cut a new straight edge that will mate evenly, with no gaps or overlaps. Finally, secure this newly cut foam edge with a 2 1/2” (64 mm) strip of waterproof tape, as shown.

Tecsun-PL-380-FSL-14

11)   Refer to the photo above. Support the edges of the prepared bar assembly so that it will be raised off of the table. Wrap two turns of the 1” waterproof tape tightly around the center of the prepared bar assembly, adhesive side out (as shown). When wrapping the second turn, ensure that the inner zigzag edge of the waterproof tape mates evenly with the inner zigzag edge of the first turn of tape, with no overlap or gap.

Tecsun-PL-380-FSL-15

12)   Refer to the photo above. Take your reel of 250/46 Litz wire and measure off 16” (41 cm) of wire from the end. Press this exact point down on the waterproof tape 1/8” (3 mm) from the left edge of the waterproof tape, as shown in the photo. While pressing down this Litz wire point while the wire is in a position parallel to the waterproof tape (as shown) pick up the bar assembly with one hand and the Litz wire reel with the other hand, pulling the Litz wire tightly around the circumference of the bar assembly in a straight, parallel manner to begin the first Litz wire turn. Ensure that this first turn stays 1/8” (3 mm) away from the left edge of the waterproof tape all around the bar assembly, then start the second turn directly adjacent to the first turn, ensuring that no gaps or crossovers occur while winding the turns. Carefully continue this process until 36 total turns have been wound around the bar assembly, which should leave the Litz wire coil in a centered position, similar to the photo below.  NOTE: This coil is designed to provide an inductance of 350 uH.

Tecsun-PL-380-FSL-16

13)   Refer to the photo above. After 36 turns have been wound on the bar assembly, ensure that there is still a 16” (41 cm) length of loose Litz wire leading up to the first coil turn. Then place a strip of Scotch “Extreme” tape along the length of the bar assembly, with the lower edge of the tape along the point where the first Litz wire turn begins (as shown), and with the tie wrap clamps in back of the assembly. Press the tape down firmly to lock the coil into place. In the same manner, turn the bar assembly over and place another strip of “Extreme” tape along the bar assembly, with the lower edge of the tape along the point where the last Litz wire turn ends (where the wire leaves the coil), avoiding the tie wrap clamps. There should be about 2” (51 mm) of space between the two “Extreme” tape strips, and both loose Litz wire ends should be parallel as they come off of the coil. Press the second “Extreme” tape strip down firmly to lock the coil into place. Finally, measure off another 16” (41 cm) of loose Litz wire from the coil, cutting the Litz wire at that point.

Tecsun-PL-380-FSL-17

14)   Refer to the photo above. Cut a 4” (102 mm) length of the 1/16” shrink tubing, and then cut a very short piece off of the ends of the Litz wires to ensure that these ends have the smallest and smoothest possible profile to be run through the shrink tubing. Run one end of the Litz wires through the shrink tubing until about 3 inches of wire extend from the tubing. Carefully insert the other end of the Litz wire through the shrink tubing, and use the procedure (and photo) in Step 30 of the Loopstick Transplant article to run the second Litz wire through the shrink tubing, as shown. The related photo for that procedure is included below.

Tecsun-PL-380-FSL-18

 

Tecsun-PL-380-FSL-19

15)  Place the previously prepared PL-380 and antenna frame assembly flat on the table, with a protective cloth to keep the front panel display from damage.

Take the prepared FSL antenna assembly and place it in the position shown, with the Litz wire shrink tubing running along the back side of the antenna frame and the lower edge of the FSL assembly next to the top of the antenna frame. Place the two 3/4” x 1” strips of rubber heater hose in the two positions shown, in between the antenna frame and the FSL antenna and also in between the coil and the FSL edges, with the longer rubber strip dimensions parallel to the FSL edges. Start the two 175 lb. test plastic tie wraps in the positions shown (down the center of the rubber spacer strips), ensuring that the rubber spacer strips remain between the FSL assembly and the antenna frame, and that the spacer strips are centered at the very bottom of the FSL assembly. Also ensure that the Litz wires are in the position shown, with no pinching or binding between the FSL assembly and antenna frame. Slowly and carefully tighten the first plastic tie wrap while ensuring that the rubber spacer strip remains in the proper position. Tighten this plastic tie wrap only enough to securely hold the FSL assembly, and do not tighten it to the point where the ferrite bars’ octagonal pattern begins to distort. In a similar manner, carefully tighten the other plastic tie wrap while ensuring that the rubber spacer strip remains in the centered position, in between the antenna frame and FSL assembly. Once again, tighten this tie wrap only enough to securely hold the FSL assembly, and not to the point where the ferrite bars’ octagonal pattern begins to distort. When this process is complete the large plastic tie wraps’ clamps should be in the position shown, lined up with each other and in a position to support the radio/FSL combination when the model is laying down flat, on a table. Cut off the excess tie wrap lengths.

Tecsun-PL-380-FSL-20

16)   Refer to the photo above. Temporarily place the Litz wires down along the radio’s circuit board in the position shown. Locate the detailed circuit board antenna connection points “AN1” and “AN2” in the close up photo at the top of the next page. After locating these two circuit board connection points (with the Litz wires running in the position shown in the photo at left) place one of the Litz wires over the “AN1” circuit board point, and the other Litz wire over the “AN2” circuit board point. Then measure out about 1” (25 mm) extra

Litz wire past these two circuit board connection points, and after making sure that the Litz  wires are still in the approximate position shown in the photo at the beginning of this step, cut one (shorter) Litz wire 1” (25 mm) past the “AN2” circuit board point, and one (longer) Litz wire 1” (25 mm) past the “AN1” circuit board point.

Tecsun-PL-380-FSL-21

17) Refer to the photo below. Temporarily place the Litz wires outside of the radio as shown, and install a 1 1/2” (38 mm) long section of shrink tubing over both Litz wires, and a 1” (25 mm) long section of shrink tubing over the longer Litz wire. Position both sections of shrink tubing as shown in the photo below.  Place some type of protective material under the Litz wire so that the soldering procedure (in the next step) will not damage your work surface.

NOTE: The proper procedure of tinning the ends of the Litz wires requires that all of the individual Litz wire strands be soldered together at the ends. This requires a clean, shiny solder connection all around the circumference of the Litz wire ends for at least 1/8” (3 mm). When preparing the ends of the Litz wires in the next step, ensure that the ends are tinned in this manner before continuing.

Tecsun-PL-380-FSL-22

18)   Refer to the photo above. Carefully tin the ends of both Litz wires in the manner described above, working around the circumference of the Litz wire ends with a clean soldering iron for at least 1/4” (6 mm). After doing this, cut off the tinned section on both ends to a length of 1/8” (3 mm). When viewing the ends of the Litz wires after tinning, the entire 1/8” (3 mm) length should be bright and shiny all around its circumference, as shown in the photo at the top of the next page. The cut surface of the Litz wire (the circular face) should also be bright and shiny, with one solid surface of melted solder.

Tecsun-PL-380-FSL-23

19)   Refer to the photo above. Take the prepared ends of the Litz wires and route them as shown in the photo above, with the 1 1/2” (38 mm) section of shrink tubing placed in the cabinet clamp as shown, and the end of the 4” (102  mm) section of shrink tubing (coming from the FSL coil) also positioned as shown (where it will be run through the empty wrist strap hole, in the back cabinet side panel). Before placing the 1 1/2” (38 mm) long section of shrink tubing in the cabinet clamp refer to the picture at the top of the next page, and ensure that there will be sufficient slack in the 4” (102 mm) shrink tubing to be run from the FSL coil to the wrist strap hole (3/8” or 9 mm down from the top of the cabinet) without binding.

Ensure that the circuit board points “AN1” and “AN2” still have a small amount of melted solder on them (after removal of the PL-380 stock loopstick, as described in the Loopstick transplant article). Also ensure that there is no excessive length in either of the Litz wires, since these both must be positioned as shown (if necessary, cut one or both to the proper length, and re-tin them as described in the previous step). Place the end of the shorter Litz wire (going to the AN2 circuit board point) down in a horizontal position as shown, and using a MINIMUM of heat (and no additional solder), solder the pre-tinned Litz wire end to the AN2 circuit board point while the wire is in a horizontal position. Carefully observe the connection to ensure that there are no solder bridges to the adjacent circuit board components. After ensuring this, temporarily move the 1” (25 mm) section of shrink tubing away from the end of the longer Litz wire, and following the detailed procedure described for the AN2 connection above, carefully solder the end of the longer Litz wire to the AN1 circuit board point in a horizontal position as shown, using a MINIMUM of heat (and no additional solder). Once again ensure that there are no solder bridges to adjacent components, and that the wire is in a horizontal position, as shown. Then slide the 1” section of shrink tubing down over the Litz wire to the position shown in the photo.

Tecsun-PL-380-FSL-24

20)   Refer to the photo above. After ensuring that your Litz wire connections and the wires’ positions resemble those in the previous photo, take the PL-380’s back cabinet section and carefully bring it close to the radio, as shown in the photo. Ensure that the whip antenna’s lead-in wire is not pinched, and also ensure that the 4” (102 mm) section of shrink tubing is routed is a position close to the empty wrist strap hole in the back cabinet, as shown. As a first step, carefully mate the radio’s back cabinet to the radio’s right side (the one opposite the wrist strap hole) while continuing to guide the shrink tubing through the wrist strap hole. Finally, center the shrink tubing in the wrist strap hole while mating the remaining (left) side of the cabinets together. Ensure that the shrink tubing is not pinched or extremely tight as it is clamped down in this hole. While holding the two cabinet sides together move the whip antenna up and away from the cabinet screw hole underneath, and insert the first cabinet screw, tightening it temporarily to keep the shrink tubing in position. Then insert and tighten the left upper and left lower cabinet screws thoroughly, while snapping the right lower cabinet sections together. Finally, after ensuring that the Litz wires’ shrink tubing is still in the center of the wrist strap hole without any binding or excessive stress, tighten the final cabinet screw near the whip antenna base. Reinstall the two small battery compartment screws and reinsert batteries.

INITIAL TESTING   If you are not familiar with the PL-380, make sure that you study the owner’s manual to find the location of basic operating controls. It is important to initially test the radio in a location free of computer noise or other RF pollution—preferably in an outdoor location where its capabilities can be appreciated. Refer to the photo on the next page. Turn on the radio and select the Medium Wave band (530-1700 kHz in North America) and set the AM bandwidth control to the most selective (1 kHz) position (NOTE: This position also provides maximum MW and LW sensitivity for the model, although the higher audio frequencies are limited somewhat by the sharp DSP filtering). If your FSL antenna transplant is working properly you should notice an EXCEPTIONAL increase in the signal strength of weak fringe stations relative to the stock PL-380 model, and a very significant increase in fringe station strength relative to a 7.5” loopstick PL-380 model. Check fringe station strength across the band, and you should notice MW reception far superior to that of any stock portable in your collection. If you are not receiving any MW signals the problem is usually easy to trace—either one of the PL-380 circuit board connections is shorted to adjacent components because of too much solder, or the physical stress on the Litz wires (because they were not soldered in a horizontal position) has caused the circuit board connections to break off and separate from the board. In the first case you can attempt to remove excess solder by turning the circuit board upside down and melting the excess solder onto the tip of your soldering iron (or using a “solder sucker” in a normal position), but in the second case you will probably need a technician to restore proper function to your radio. Fortunately both of these problems are rare, and can be entirely avoided by carefully following the instructions in Steps 18 and 19.

Tecsun-PL-380-FSL-25

OPERATION

The triple advantage of superior FSL sensitivity, powerful audio amplification and sharp DSP selectivity provide this breakthrough model with exceptional weak-signal performance for a portable—to the extent that after a few DXing sessions the operator may have the impression that the realm of science fiction has been approached. The cylindrical shape of the FSL antenna seems to provide a bonus capability of unusual nulling function as well, so that multiple weak signals can be received adjacent to (or on the same frequencies as) local pests.

During DXing sessions it is a good idea to support both the PL-380 and FSL antenna frame in the same hand (as shown in the photo above), and also to avoid sudden mechanical stress or bumps to the antenna frame. When constructed according to this article the glue bond between the antenna frame and PL-380 is sufficient for routine operations, but the DXer should exercise care to avoid bumps, drops or other stress. The FSL antenna itself is fairly rugged, as constructed.

Refer to the photo on the previous page. The PL-380 has many digital search functions and advanced capabilities for a pocket radio, but some of the functions of particular interest to the transoceanic DXer are described here.  The “AM Bandwidth” switch allows you to choose different levels of DSP filtering to limit splatter from domestic pests, and is usually left in the 1 kHz position for the narrowest filtering while chasing transoceanic DX (although this position does cut off some of the high frequency audio from the desired DX station). The 9/10 kHz switch allows you to change the tuning steps of the radio from the North American (10 kHz) band system to those of the European/ African/ Asian/ Pacific band system (9 kHz), depending upon your preferred DX targets. The MW / LW switch allows you to switch over to Longwave DXing—and you will be pleasantly surprised to discover that your newly installed 3” Bar FSL antenna is FAR more sensitive on the Longwave band than the stock PL-380 loopstick. Finally, the Display switch offers you multiple options while chasing transoceanic DX—you can have a 24 hour clock display,  a display of the alarm time set in the radio, a constantly changing readout of DX signal strength and S/N ratio, or a temperature display (in either Celsius or Fahrenheit).

Because the antenna frame has been trimmed to allow full operation of the PL-380’s whip antenna to receive SW and FM signals, it’s possible to check the Shortwave parallels of Medium Wave DX stations (and switch back and forth) within a couple of seconds. In general, this “science fiction” PL-380 model’s sensitivity and selectivity will allow you to experience the most exciting AM-DXing fun that a portable can offer—and do so at an unbeatable price.

This hard-wired FSL-enhanced PL-380 model is the first in a series of portables designed to be the ultimate “travel radios,” with DXing potential superior to any stock design. It has been a great thrill to design, construct and introduce this model, which is pretty fanatical in both its appearance and DXing capabilities. My hope is that its function will inspire those who build and use it, and help them share my impression that the MW-DXing hobby has a very innovative and exciting future!

73 and Good DX,

Gary DeBock


Gary, I can only imagine the time and patience it took to document this procedure. Once again, thank you so much for doing so! I have a Tecsun PL-380 and I will–some day–make this “science fiction” mod! 

 

Alexander reviews the Avion AV-DR-1410 DRM receiver

81-58a+inIL._SL1500_

Many thanks to SWLing Post contributor, Alexander (DL4NO), for the following review of the new Avion DRM receiver:

A review of the Avion DRM receiver

by Alexander von Obert (DL4NO)

The Avion AV-DR-1401 DRM receiver has appeared on the SWLing Post before in a previous review.

Amazon India does not sell the Avion outside of India. As it happens, I found someone who was willing to buy it for me and bring it with him from India to Germany.

The first impressions were quite disappointing. This feels more like a prototype, not a polished product:

  • The power supply produces lots of interference and runs quite hot. Unless I find another power supply, I can either charge the battery or listen to the radio.
  • The handle rattles. Such things often are symptoms for the whole product.
  • The firmware fails in many ways: update errors of the display, very confusing user interface.
  • No acceptable field strength indicator, especially in DRM until a signal is decoded. If you have a selective antenna you need to switch to AM to tune it. And then you tune it by ear or by numbers. No bar of any kind.
Avion AV-DR-1410 DRM

Radio Romania

Radio Romania produced very good signals this evening in southern Germany on 41m. But with the built-in antenna, DRM reception was impossible even in my shack directly under the roof. A Degen 31MS selective active antenna indoors enabled sketchy reception of Radio Romania and All India Radio on 41m. Reasonable reception was only possible with my external antenna.

All India Radio

All India Radio

Just imagine why I took the trouble to get the receiver! It is a far cry from what I really wanted: a modern replacement of my trusty Sony ICF7600D from the 1980s. I had to retire it for mechanical reasons after it travelled with me for 20 years.

In India, they might not have the industrial infrastructure they have in China or Japan, but an intensive firmware update is urgently needed. Software is something they are good at in India. Many problems could be solved that way:

  • The volume knob has no stop and must be pressed for a few seconds to turn the radio on or off. A short press could be used to switch it between volume and tuning.
  • A reasonable field strength indicator should be introduced.
  • The remote control does not work reliably.
  • With the “mode” switch I can select AM, FM, or DRM. But I have not found anything that the “band” switch could be doing.
  • The “scan” switch works on FM and puts all transmitters found into the favorites. But neither is that the function I would expect it to do nor does it work on other bands.

From my preliminary tests I fear the unit has massive large-signal problems. For example, I heard distorted signals of Radio Romania on bands where they were not transmitting at all. I use an active antenna but this is the same I use for the DX Patrol or SDRplay RSP, therefore I know that my antenna is not to blame. I also see this as an indicator about the DRM signal of Radio Romania.

I could not help but open the Avion receiver: [the internal antenna worked so poorly, I wanted to investigate].

I must say that the rattling handle was an accurate indicator of production quality.

Inside the Avion

Inside the Avion

See “Inside the Avion” image above (click to enlarge). The back side on the left was originally covered by an aluminum shield. I had to remove it as the wires are quite short–one cannot put the two parts flat on the bench otherwise. You see that they tried to improve the shielding on the right.

AVION internal antenna preamp

Avion internal antenna preamp

See “Avion internal antenna preamp” above (click to enlarge). The circuit board at the lower left corner of the first picture is the preamp for the internal antennas. In the lower left corner is the telescopic antenna connection. The wire here was extremely short–either it broke before and made contact by chance or I broke it when I dismounted the circuit board. At least I did not force it (still a bad manufacturing practice).

If you examine the circuitry, you see very bad practices: C2 directly connects the antenna to the base of Q2. It must be a bipolar transistor considering R3/R4. At least there is DN1 which seems to be protection diodes. On the whole board I can find no inductivities at all. There is absolutely no band limiting.

AVION broken shilding wire

Avion broken shilding wire

See “Avion broken shielding wire” above. The shielding wire had broken from the soldering. That was definitely not my fault. At the yellow isolation, a second wire is connected. That is the wire routed around the backside without any connection. This doesn’t make sense to me.

Avion crushed battery holder

Avion crushed battery holder

See “Avion crushed battery holder” above. The battery holder is fixed together with the aluminum shielding. The worker crushed the lug of the battery holder while mounting the shield. A few other threads were torn, too. A typical case of too much strength.

Avion seems to know about the inherent RFI problems of this receiver, but could not solve them. No wonder I have to use an external antenna.

Perhaps I will replace the antenna preamp with something reasonable.

Otherwise this radio will gather dust here.

Thank you for your report, Alexander–I’m sorry to hear about your experiences with the Avion, especially after the trouble you went to obtaining it.

So far, I’ve heard no truly positive reviews of the Avion AV-DR-1410. Sadly, it sounds like a radio to avoid.

James reviews the Heathkit Explorer Jr. GR-150 TRF AM radio receiver kit

HeathkitExplorerJrMany thanks to SWLing Post contributor, James Surprenant (AB1DQ), who shares this review and photos of the new Heathkit Explorer Jr. TRF AM radio receiver kit:


 Heathkit Explorer Jr. Review

I received this Heathkit kit for Xmas from dear old Dad.

Heathkit Explorer Jr. Manual

The Explorer Jr. manual is very nicely done, spiral-bound, and very reminiscent of the old Heathkit manuals in terms of lay-out and detail.

Heathkit Explorer Jr. Retro envelope packaging

The packaging of the parts is also reminiscent of the old Heathkits with parts grouped into envelopes by phase, ie. “Active Components,” “Passive Components,” “Small Parts,” “Knobs,” etc.

The first night, I worked through completion of the circuit board attaching all electronic components and stopped at the step for winding the coil. I thought it would make sense to start fresh on that step since winding coils is generally a pain.

Even on the first night, I had a few criticisms:

  • A couple of the envelopes were ripped open when I unpacked the kit. There were nuts, bolts, spacers and an Allen wrench loose in the outer box. That said, no parts were missing.
  • I found two errors in the manual:
    1. The color code for one of the resistors was incorrect in the manual. With my aging eyes, and the miniaturization of components today, I always use an ohm meter to test all resistors before attaching them to the PCB when I build a kit.

      Incorrect color code in manual.

      Incorrect color code in manual.

    2. The circuit contains 10 resistors and all 10 were included in the kit. But one was completely missing from the step-by-step instructions. After I finished attaching all active and passive components, I had one resistor left over and fortunately there was a matching empty space on the circuit board for the same value resistor. I double and triple checked the instruction manual and I can not find where it calls for this resistor to be attached.
  • My biggest criticism so far is the fact that this kit is “solder-less.” All components are attached to the PCB with screws, lock washers and a nut. You insert the leads for each component through the over-size pass-through holes on the PCB, and bend the leads tight against the edge. Then you insert a screw in from the topside, place a lock washer on the bottom side and fasten with a bolt.
Bottom of the PCB board

Bottom of the PCB board

On the upside, the fact I didn’t need to work with a hot solder iron meant I felt comfortable building the kit at the kitchen table. (My XYL would not be pleased if she found burn marks on the table!) So I had a nicer environment to work in than the basement work bench.

Heathkit Explorer Jr. sheered off resistor leadsOn the downside, I managed to sheer off the leads on TWO resistors when tightening the screws. Fortunately I was able to replace the busted resistors from my on-hand stock.

The other odd thing about this method of attaching components is that Heathkit included a nifty screwdriver in the kit, but leaves it up to the kit builder to provide a small socket wrench or pliers to hold the nut in place while tightening the screw.

Finally, the instructions call for the kit builder to ‘bend the excess leads back and forth’ until they snap off, rather than instructing the kit builder to snip off the excess leads with nippers. That seemed really strange to me.

Heathkit Explorer Jr. Completed coil

I completed my build of the GR-150 Explorer TRF radio this past weekend. I had no difficulty winding the coil, which involved 56 turns of magnet wire around a ferite core and securing it with transparent tape.

Heathkit provided the black ties, which were too large.

Heathkit provided the black ties, which were too large.

The next problem I encountered was attaching the wound coil to the PCB. The kit came with two zip cords to use as fasteners, but the zip cords were much much too large to fit through the holes drilled in the PCB. So this required a trip to the hardware store.

You can clearly see that the holes are too small for the black cable ties.

You can clearly see that the holes are too small for the black cable ties.

Once I had the coil mounted, I encountered the problem again with the bolts and nuts shearing off the leads – this time, it took me about 4 tries to attach the thin fragile coil wires to the PCB. It’s a very fragile process that again had me wishing this was a solder kit.

Heathkit Explorer Jr. Top of PCB front

The rest of the assembly went well. The only other glitch I encountered was in assembling the cabinet, the kit came with six locking star washers for the cabinet, in fact the parts list indicates that six should have been included in the kit. But then the actual assembly called for 10 star washers.

Heathkit Explorer Jr. Top of PCB

Heathkit Explorer Jr. Nearly finished frontHeathkit Explorer Jr. Completed PCB mounted

So, how did the radio perform? About as expected. It is a single stage TRF receiver without a proper audio amplifier. The instructions say you should use earbuds to listen to the radio, but I found that my standard stereo earbuds to be off too low an impedance for while the radio worked, all stations heard were very faint – about as strong as you’d hear from a typical crystal radio kit.

Heathkit Explorer Jr. 1st run sticker

I hooked the radio up to a set of PC speakers which helped – a lot. Once I could hear the audio output, I was very pleased with the radio’s performance. The tuning cap is geared and it takes a good five turns of the tuning knob to cover the entire broadcast band. The radio was fairly sensitive and not too selective – again, as you’d expect.

So, was it worth it? For me, sure… but it depends on what you are looking for.

It’s a bit pricey for what you get, but if you want to support Heathkit as it attempts to rise from the ashes, and if you have the $$$ to ‘donate’ towards the cause, it may be worth it.

Heathkit Explorer Jr. Completed w. screwdriver

Here is my take:

The good

  • Very nice quality materials….the PCB, tuning cap, and cabinet were of a quality you don’t often see in kits.
  • Nostalgia factor–from the packing to the manuals, the kit really does capture some of the Heath nostalgia.
  • Level of detail in the step-by-step instructions.
  • Documentation. The manual ends with a very nice feature on radio theory and theory of the different stages of the TRF and how to read a schematic. It’s clearly written for a youngster as it’s complete with drawings of smiley-faced electrons moving through the components and circuits.
  • The radio does work and is a joy to tune across the dial.

The bad

  • Quality control is lacking. It’s hard to imagine a kit ever leaving Benton Harbor back in the day with such glaring errors in the manual (wrong color code, missing steps), or with the wrong size zip ties, etc.
  • Price. Even though the materials are high-end, the retail price seems a bit high.

The ugly

  • I really wish Heathkit had included either a built in audio amp circuit (there is plenty of room in the cabinet to add a simple IC-based amp), or would have marketed a separate audio amp kit. Having an amplified speaker would add a lot in terms of pleasure from the completed kit. Another kit vendor, Peebles Originals, peeblesoriginals.com, sells a nice little audio amplifier kit for use with their regen radio kits. I’ve built it, and it’s a simple straight forward kit. Heathkit could have done this and it would have made a big difference. (I think I’ll try my Peebles amp with the Explorer!)

Overall, I really enjoyed the build and I like the radio. I’m looking forward to see what the ‘new” Heathkit does next.

I applaud Heathkit for making a go at a come-back and will continue to support their efforts by buying and building their pricey stuff – yeah, I’m that guy.

73 de AB1DQ
James


James, thank you for not only sharing your experience–along with errors and omissions–but providing excellent, detailed photos. I can’t tell you how many times I’ve been confused by kit instructions and turned to Google to help me find photos and notes from other builders. Your details will help others attempting to build the Heathkit GR-150.

I hope you enjoy your new Heathkit! You’ll have to let us know how that Peebles powered speaker works with the G-150!

The Kaito KA108: a shortwave portable with built-in record function

Kaito-KA108

Many thanks to SWLing Post reader, Ante, who writes:

Looks like Kaito has a new radio in the works. Portable shortwave receiver with record function. It looks very much like some of the Eton portables.

Here’s Universal Radio’s description:

The Kaito KA108 is a great AM, FM shortwave receiver with a very special feature. It has a record function that allows you to record off the air automatically! It can save the audio to a Micro SD Card or USB Thumb Drive (not included) inserted via the top panel. It also features a large backlit display with battery indicator, signal meter and conventional alarm function with two programmable wake up times.

 

There is a Line Input Jack and stereo earphone output jack. Power input is via a USB port. The KA108 comes with: Li-ion battery and USB charging cable. One year limited mfg. warranty.

Thank you for the tip, Ante! Universal has pricing and availability listed as TBA at time of posting.

I noticed that Amazon has the same radio via Kaito for $67.20 (shipped). Interestingly, the Amazon description reads:

“Kaito KA108 Super Sound quality AM FM Shortwave Radio with MP3 Player and Radio Recorder, Radio Time Schedule Recorder,Alarm Clock+ More”

I hope the “Super Sound” part means that the internal speaker is like that of the Melson S8, with an acoustic chamber. Those speakers have amazing fidelity for such a compact size. Checking this morning, the Amazon listing only has one review–a 5 star–but it wasn’t a verified purchase, had few details on performance and, frankly, smacked of shill a little too much for my taste.

I certainly hope this isn’t simply a Melson S8 with a re-designed body. As I mention in this review, the S8 suffered from terrible internal noise, rendering it useless on shortwave.

Kaito-Ka108-side

The Line In, Phone and DC IN 5V jacks are in the same placement and order as the S8–but the S8 also has the power button and MicroSD card on the side panel, the KA108 has the MicroSD card slot on top, along with a USB thumb drive slot.

Kaito-KA108-Top

I have hope that this is not a re-badged Meson S8 because the KA108 has features the Melson S8 did not, including the ability to record and even schedule recordings!

There are so few portables on the market that can record on the shortwave bands. There are no portables currently on the market that have a sensitive/selective receiver and do a good job of recording.  Even if the KA108’s receiver is only average, if it has a clean recording function, it will be a keeper for me.

My fingers are crossed!

Of course, I will certainly review the Kaito KA108 here on the SWLing Post.  I will most likely wait until Universal Radio has the units in stock, which I imagine will be soon.

Vasily discovers an ETM quirk on his GP5/SSB

Vasily-GP5SSB

While doing a little shortwave listening in the field (obviously a very cold field) Vasily Strelnikov noted an anomaly while using the ETM function on his CountyComm GP5/SSB. He posted the following video on the Shortwave Listeners Global Facebook page and on YouTube so that I could share it with Post readers:

https://www.youtube.com/watch?v=XEDvRaXFRks&feature=youtu.be

Click here to view Vasily’s video on YouTube.

I’ve never noticed this on my GP5/SSB. My first thought would be that there’s a strong broadcaster nearby that may be overloading the front end on Vasiliy’s receiver. With that said, it looks like a pretty rural area. Anyone else notice this on the GP5/SSB?

WRTH 2016: A look inside

WRTH-2016

I received my copy of the 2016 World Radio and TV Handbook (WRTH) directly from the publisher on Christmas Eve 2105. As many SWLing Post readers know, I always look forward to receiving this staple radio reference guide each year. This is a special year for the publication, too: it’s their 70th edition!

I should note that it was a special edition of the WRTH for me as well: upon request, I contributed two receiver reviews and a feature article. It was an honor working with the WRTH publication staff and being included in the 70th edition.

WRTH’s team of noted DXers from around the world curate frequencies and broadcaster information by region; while I’m not sure how they orchestrate all of this, the end result is truly a symphony of radio information. In addition to broadcaster listings, WRTH’s radio reviews, feature articles, and annual HF report make for excellent reading.

But the WRTH isn’t just a frequency guide: the publication always devotes the first sixty or so pages to articles relating to various aspects of the radio hobby. Following, I offer a quick overview of these.

The first article always features a WRTH contributor (indeed, it’s this very network of contributors that make WRTH and its listings such a success):  this year, Dave Kenny tells us how he got interested in the hobby and what being a contributor means to him. It’s fascinating to read about how his SWLing hobby turned into a career as he worked for BBC Monitoring for many years.

The second set of articles is always my favorite: WRTH receiver reviews.

AOR-AR-DV1

This year, WRTH reviewed the C.Crane CC Skywave (an update to one of my reviews on the Post).  They also review the new AOR AR-DV-1 (above), the Etón Satellit Grundig Edition (which impressed them favorably), the Tecsun PL-680 (again, an update of one of my Post reviews), and the Nti ML200 Megaloop.

The following article is “A Brief History of World Radio TV Handbook” which traces the publication’s history back to the Nazi occupation of Denmark in World War II. It’s a fascinating read and puts the publication into context as technology, international broadcasting and the WRTH team have evolved over the course of 70 years.

In the next article, UK MW & LW Broadcasting: the first 95 years, WRTH contributor Dave Porter (G4OYX), outlines the history and current use of MW & LW broadcasting. A fascinating history written by a former BBC senior transmitter engineer!

Next is the added feature 70 Years of Reception which looks at receiver technology and innovations that have had an impact over the course of WRTH’s long history. They highlight a few select receivers over the decades like the RCA AR-88, Eddystone 840-A, Eddstone EC-10, Barlow Wadley XCR-30, Kenwood R-1000, Drake R8 and the WinRadio Excalibur Ultra.

Timore-Leste-Map

Following this, WRTH contributor, David Foster, features an article on Radio in Timore-Leste.  Foster has been involved in Timore-Leste for many years–his article gives excellent insight into this part of Southeast Asia. Indeed, I always look forward to David Foster’s articles in WRTH!

This year, WRTH also features an updated and revised article I wrote for them on The Future of Shortwave. Again, I’m honored to have contributed to the 70th edition of WRTH.

WRTH International Editor, Sean Gilbert, also wrote an excellent Guide to SDRs–a brilliant little summary of what SDRs are, how they work, and some common terminology used in reviews.

The final article–a tradition–is the WRTH  HF propagation report/forecast by Ulf-Peter Hoppe. Always an informative read (even if the prediction isn’t positive for DXers).

As expected, the 70th is another great edition of the World Radio TV Handbook.

As I’ve said many times, though I use online frequency databases fairly regularly, there is just no replacement for a good printed frequency guide–especially for all of my off-grid DXing.

For DXers who collect QSL cards, you’ll find that broadcaster contact information in WRTH is often more up-to-date than a broadcaster’s own website. When readers ask me for station contact information, it is the current WRTH I reference.

Not only does WRTH contain more in-depth information on broadcasters and schedules, but it makes for quick reference, and doesn’t require a computer or Internet connection–much like, well, your shortwave radio.

Purchase your copy of WRTH 2015 directly from WRTH’s publishers, or from a distributor like Universal Radio (US) and Amazon.com (US), or Radio HF (Canada).

SWLing Post contributor, Richard Langley (Canada), also noted that  BookDepository.com, a U.K.-based seller, is offering WRTH at a discount and with free worldwide shipping. Thanks for the tip, Richard!