Category Archives: Reviews

Matt’s Rooftop Receiver Shootout: Round Two!

Many thanks to SWLing Post contributor, Matt Blaze, for the following guest post:


Matt’s Rooftop Receiver Shootout, Round Two.

by Matt Blaze

You may recall that back in April, I dragged eight of my favorite receivers up to the roof, hooked them up to a portable antenna, and compared their abilities to demodulate various signals at the same time. For the most part, the similarities between radios were more striking than their differences. I hinted that there’d be a second installment to come, including more receivers and more challenging signals, to further expose and highlight the practical real-world performance differences between the radios we use.

So, as promised, here we are with Round Two of my Rooftop Receiver Shootout.

This time around, I used approximately the same setup, but with a total of fifteen different radios. And once again, I took advantage of nice weather and brought a multitude of receivers, recording gear, cables, and an antenna up to my roof to listen to and record shortwave signals under the open sky.

Our fifteen receivers included everything from “dream radios” from the 1980’s to current-production desktop models to less expensive modern portables to high-performance bench-top lab measurement gear. I tried to curate samples of a wide range of radios you may be familiar with as well as some you probably aren’t.

The lineup consisted of:

  • Icom R-8600, a current production “DC to Daylight” (or up to 3 GHz, at least) general coverage communications receiver, with highly regarded shortwave performance.
  • AOR AR-ONE, another DC to 3 GHz general coverage radio, less well known due to the high price and limited US availability. Excellent performer, but a counterintuitive and awkward (menu-driven) user interface is less than ideal for shortwave, in my opinion.
  • Reuter RDR Pocket, a very cute, if virtually impossible to get in the US, small production, high performance SDR-based shortwave portable receiver. It’s got an excellent spectrum display and packs near desktop performance into a surprisingly small package.
  • AOR 7030Plus, an extremely well regarded mobile/desktop HF receiver from the late 90’s. Digital but retaining some important analog-era features like mechanical filters. Designed and (mostly) built in the UK, it’s got a quirky menu-driven user interface but is a lot of fun once you get used to it.
  • Drake R8B, the last of the much-beloved Drake receivers. Probably the chief competitor to the 7030+.
  • Drake R7A, an excellent analog communications receiver (but with a digital VFO) from the early 80’s. It still outperforms even many current radios.
  • Sony ICF-6800W, a top of the line “boom box”-style consumer receiver from the early 80’s. Great radio, but hard to use on SSB, as we saw in Round One.
  • Panasonic RF-4900, the main competition for the Sony. Boat-anchor form factor, but (improbably) can run on internal D-cell batteries. Generally impressive performer on AM, but, like the Sony 6800, difficult to tune on SSB.

You may remember the above radios from Round One back in April. The new radios this time were:

  • Tecsun 501x, a larger-format LW/MW/HF/FM portable released last year. As noted below, it’s a generally good performer, but regrettably susceptible to intermod when connected to a wideband external antenna (as we’ll see in Part One).
  • Tecsun PL-990x, a small-format portable (updating the PL880), with many of the same features as the 501x. Like the H501x, good performance as a stand-alone radio, but disappointing susceptibility to intermod when fed with an external antenna.
  • Sangean ATS-909x, a recent LW/MW/HF/FM portable with a good reputation as well as a few quirks, such as only relatively narrow IF bandwidth choices on HF. Excellent performance on an external antenna.
  • Sangean ATS-909×2, an updated, current production version of the ATS-909x that adds air band and a few performance improvements. Overall excellent, though I would prefer an addition wider IF bandwidth choice. My go-to travel receiver if I don’t want to take the Reuter Pocket.
  • Sony ICF-7600GR, a small-format digital LW/MW/SW/FM portable introduced in 2001 and the last of the Sony shortwave receivers. Showing its age, but still competitive in performance.
  • Belka DX, the smallest radio in our lineup, made in Belarus. You’ll either love or hate the minimalist interface (one knob and four buttons). If you’re going to secretly copy numbers stations in your covert spy lair, this is a good radio to use. Can be difficult to obtain right now due to sanctions.
  • Finally, a bit of a ringer: the Narda Signal Shark 3310, a high performance SDR-based 8.5 GHz RF spectrum and signal analyzer. As with most test equipment like this, demodulation (especially of HF modes) is a bit of an afterthought. But it has an excellent front end and dynamic range, intended for identifying, extracting, and analyzing weak signals even in the presence of strong interference. Not cheap, but it’s intended as measurement-grade lab equipment, not consumer gear. Demodulated audio is noticeably delayed (several hundred ms) compared with other receivers due to the multi-stage DSP signal path.


The antenna was my portable “signal sweeper” Wellbrook FLX-1530 on a rotatable tripod, using a power splitter and a pair of Stridsberg Engineering 8-port HF distribution amplifiers to feed the fifteen radios. So every radio was getting pretty close to exactly the same signal at its RF input. Continue reading

Spread the radio love

Frans compares the BH5HDE QRP, GRAHN SE3, and his home made loop antenna

Many thanks to SWLing Post contributor, Frans Goddijn, who shares the following article and video originally posted on his blog:

I got the little BH5HDE QRP portable QRP loop, assembled it and could not wait to try it out even though it was during that day and signals were sparse and weak.

This new loop performs well, in part thanks to the tuning & impedance knobs. I compare it with the GRAHN SE3 and a big home made loop that I bought second hand. The latter has no tuning but is as directionally sensitive as the others and it delivers an amplified signal to the receiver.

Click here to view on YouTube.

I found a manual for the QRP, not included in the package:

Instructions for use of BH5HDE QRP portable small loop antenna

Welcome to use the BH5HDE QRP portable small loop antenna. This product can easily and quickly set up a short-wave transceiver antenna, allowing you to enjoy the joy of multi-band reception and communication indoors, windows, balconies and outdoors.

Installation:
(BNC mount equipment needs to bring a pair of photography tripods)
Use the right-angle adapter and double male docking to connect the antenna to the m seat at the rear of the radio station or erect the ring body to the connector on both sides of the controller and tighten, then install the tripod to the fastening seat on the back of the tuner Open the tripod, place the antenna body firmly on the tripod, and finally connect the feeder (the feeder is attached with a choke, one end of the choke is placed near the small loop antenna).

use:
Now that the small loop antenna has been connected to your radio station, you can now tune in.
First introduce the function of the tuner panel. The toggle switch on the left is the band selection switch (up: 7MHz, down: 14-30MHz).
The main control knob, the upper knob is the frequency tuning knob, the frequency tuning value does not change due to environmental changes; the lower knob is the impedance matching knob, the impedance matching value will change due to environmental changes. (The tuning range of the two knobs is 180 degrees, and the panel value is 0-60).
When you start using the radio, select the desired frequency, and then turn the band switch to the desired band position, then adjust the impedance matching value of the lower knob to 30, and then adjust the upper knob to tune. At this time, pay attention to listening to the noise floor of the radio station. The more resonance, the louder the noise floor of the radio station (in the environment with extremely low noise floor, the antenna resonance noise floor is almost inaudible. It is recommended to let the radio station observe the standing wave). At this time, let the radio transmit (cw, fm, and am modes are available), pay attention to the standing wave indication, and fine-tune the frequency tuning knob while transmitting. Since the knob of the portable version does not have a deceleration function, the method of fine adjustment must be more delicate, and the smaller the rotation angle, the better.

At this time, you can observe a significant change in the standing wave, but generally the minimum standing wave ratio will not be below 1.5. At this time, you need to adjust the impedance matching knob. It is recommended to adjust the positive and negative 5 scale values randomly, and then repeat the frequency tuning steps and observe The standing wave ratio. Due to the change in the matching value, there are two possibilities before the comparison: 1: the minimum value of the standing wave ratio decreases; 2 the minimum value of the standing wave ratio becomes larger. If the minimum value of the standing wave ratio becomes lower, it means that the impedance matching adjustment approaches the correct value and can be further adjusted. If the minimum value of the standing wave ratio becomes larger, it means that the impedance matching is far from the correct value and must be adjusted in the opposite direction.

Repeat the above steps to adjust the VSWR of the antenna to 1.0.

The VHF and UHF bands are fixed with the upper knob hitting 60 to the end, and the lower knob can adjust the impedance to resonate.

Note: The best effect for outdoor use is to use antennas indoors as close as possible to windows, fully enclosed reinforced concrete, against walls and other environments where the standing wave ratio is not ideal.

Advanced technique: when the signal is weak, you can rotate the antenna direction to improve the signal-to-noise ratio, which is conducive to reception. The unique gain lobe of the loop antenna makes the horizontal gain directivity when it is erected, and its characteristics can be used to select multiple signals in the horizontal direction. It can also reduce the co-frequency interference in the horizontal direction. Of course, If the interference signal is extremely strong, much larger than the useful signal that needs to be accepted, the attenuation effect will not be too significant, compared to the whip antenna can still have the attenuation effect.

Spread the radio love

The Icom IC-705: Giuseppe’s pairs his new radio with his homebrew crossloop antenna

Many thanks to SWLing Post contributor, Giuseppe Morlè (IZ0GZW), who shares the following:

Dear Thomas,

I wanted to share my new purchase with all SWLing Post friends: the Icom IC-705.

It is truly a great portable QRP transceiver and a great receiver for broadcast listening.

In this video, shot on my balcony at home, is the first listening test on short waves. Crystal clear audio with cathedral effect. My portable cross loop antenna pairs very well with the IC-705.

It’s a simple video but it brings out all the listening potential of this 705.

Greetings to you and all the friends of our community.

73,

Giuseppe Morlè (IZ0GZW)

Click here to watch on YouTube.

Thank you for sharing this, Giuseppe! I’ve found that the IC-705 has become one of my favorite portable receivers. It’s truly an amazing radio and, I believe, worth the hefty price tag. 

I published a very favorable review of this radio and 13DKA has as well. Also, check out Giuseppe Fisoni’s comparison of the IC-705 and IC-R8600. The IC-705 is a proper enthusiast-grade radio–I would purchase it just for the receiver functionality. Being a ham radio operator, I also take the IC-705 to the field very regularly–I post many of my field reports on QRPer.com. Recently, we’ve posted a number of articles about protecting the IC-705 during travels and in the field.

Thank you again for sharing this, Giuseppe!

Spread the radio love

The Satellit 800, the Tecsun PL-880, and two indoor antennas – an afternoon of experimentation

Many thanks to SWLing Post contributor, Jock Elliott, who shares the following guest post:


The Satellit 800, the Tecsun PL-880, and two indoor antennas – an afternoon of experimentation

By Jock Elliott, KB2GOM

A search for “shortwave listening antennas” on the internet landed me on the page for the Par EndFedz® EF-SWL receive antenna, which is a 45-foot end-fed wire antenna connected to a wideband 9:1 transformer wound on a “binocular core” inside a UV-resistant box. A link on the page invited me to check out the eHam reviews of this antenna, which are here. What struck me is that there are just page after page of 5 star reviews of this antenna. Hams and SWLs apparently just love it. (If you want to buy of these antennas, they are now sold by Vibroplex and can be found here.)

As I reached for my credit card, I remember that I had an LDG 9:1 unun transformer lying around and some wire left over from the Horizontal Room Loop project. Maybe I could create my own end-fed SWL antenna by wrapping the wire around the perimeter of the room, attaching it to the 9:1 unun and then by coax to the back of my Grundig Satellit 800.

So I did exactly that. The wire for new end-fed antenna travels the same route around the perimeter of the room as the horizontal room loop. The main differences between the two antennas are that the end-fed is not a loop, and it terminates in the 9:1 transformer, which, in turn, feeds the Satellit though a coax cable. But in essence, we’re talking about two indoor wire antennas that are the same length and laid out along the same path about 7 feet in the air around the interior of the 8-foot by 12-foot room that serves as a library and radio shack: the horizontal room loop and the indoor end-fed.

 

The Satellit 800 has three possible antenna inputs: the very tall built-in whip antenna, two clips on the back of the 800 where the horizontal room loop attaches, and a pl-239 coax connector where the new end-fed antenna attaches. In addition, there is a three-position switch that allows me to quickly switch from one antenna to another.

Tuning up on the WWV time stations on 5, 10, 15, and 20 MHz and sliding the switch on the back of the Satellit 800 among the three different positions, I quickly found that the whip antenna was the noisiest of the three choices and offered the poorest signal-to-noise ratio. The comparison between the horizontal room loop and the indoor end-fed antenna was very, very close. While the horizontal room loop was quieter, it seemed to me that the signal offered by the indoor end-fed antenna was the tiniest bit easier to hear, so I decided to leave the Satellit 800 hooked up to the indoor end-fed antenna.

The 100-foot indoor end-fed antenna

Then I did something I had wanted to do for quite a while: I disconnected the horizontal room loop from the back of the Satellit 800 and attached one end of the wire to the indoor end-fed. So now, I had a roughly 100-foot end-fed antenna wrapped twice around the room.

Before we proceed any further, you need to understand this: my comprehension of antenna theory is essentially nil. As the old-timers would have it: you could take the entirety of what I understand about antenna theory, put it in a thimble, and it would rattle like a BB in a boxcar.

Ever since the successful creation of the horizontal room loop, I had wondered: if 50 feet of wire wrapped around a room improves the signal, would 100-feet of wire improve the signal even more? Inquiries to several knowledgeable people produced the same result: they didn’t think so.

Guess what? They were right . . . entirely and completely right. Tuning to the time stations and attaching and detaching the extra 50 feet of wire from the indoor end-fed, I saw (on the signal strength meter) and heard no difference in signal strength or signal-to-noise ratio.

The PL-880 and Satellit 800 comparison

So now, the Satellit 800 is attached to the indoor end-fed antenna, and there is an extra 50 feet wire wrapped around the room on the same path as the end-fed. Wouldn’t it be nice if I could find a way to hook that extra wire up to my Tecsun PL-880?

An old auxiliary wind-up wire antenna from a FreePlay radio came to the rescue. It was an annoying piece of gear; the wire was difficult to deploy and even more difficult to wind up again, and it had languished in a drawer for more than a decade. But it had a really nifty clip on the end that was designed to easily snap on and off a whip antenna.

Pulling an arm-spread of wire out of the reel, I cut it off, stripped the wire, attached it to the end of what had been the horizontal room loop, and clipped it to the whip on the PL-880. Tah-dah . . . instant improvement to the signal coming into the PL-880.

Some time ago, a reader had asked whether I found the Satellit 800 a little deaf in comparison to the Tecsun PL-880. Now, with two indoor antennas of approximately the same length and routed along the same path, I could do the comparison on shortwave frequencies. Starting with the time stations and later with hams in single-sideband on the 20-meter band, I alternated between the two radios. Although the PL-880 has more bandwidth choices, and the two radios have a slightly different sound to them (probably, I’m guessing, due to differences in their circuitry), the bottom line is this: anything I could hear with the Satellit 800 I could also hear with the PL-800 . . . and vice versa. (Note: I did not do any comparison between the two on medium wave or FM.)

In my not-so-humble opinion, both offer worthy performance that is improved with the addition of a 50-foot wire antenna, even if it is indoors.

And that brings us to the final point.

A word of caution

If you decide to add a bit of wire to improve the signal coming into your shortwave portable or desktop receiver, do NOT, under any circumstances, EVER deploy the wire where it could come into contact with a powerline or fall onto a power line or where a power line could fall on it.

As Frank P. Hughes, VE3DQB, neatly put it in his wonderful little book Limited Space Shortwave Antenna Solutions: “Make sure no part of any antenna, its support or guy wires can touch a power line before, after, or during construction. This is a matter of life and death!

And when thunder and lightning threaten, make sure your outdoor antenna is disconnected and grounded.

Spread the radio love

Matt’s 2022 Rooftop Receiver Shootout!

Many thanks to SWLing Post contributor, Matt Blaze, for the following guest post:


2022 rooftop receiver shootout

by Matt Blaze

I realized it’s been long past time for me to do another head-to-head receiver comparison “shootout”, where you can compare the audio from multiple radios receiving the same signal at the same time. Long time readers of Thomas’ blog may remember I’ve posted a few of these before.

So I took advantage of the nice weather and brought a bunch of radios, recording gear, and an antenna up to the roof to listen and record signals under an open sky. My neighbors, no doubt, wondered what I must have been up to. (Don’t tell them I’m just a harmless radio nerd.)

This year, our focus is on eight “dream receivers” from the 1980’s to the present. Each radio is at or near the top of the line in its class at the time of its release. Our radios include, in roughly reverse chronological order:

  • Icom R-8600, a current production “DC to Daylight” (or up to 3 GHz, at least) general coverage communications receiver, with highly regarded shortwave performance.
  • AOR AR-ONE, another DC to Daylight general coverage radio, less well known due to the high price and limited US availability. Excellent performer, but a terrible (menu-driven) user interface for shortwave, in my opinion.
  • Reuter RDR Pocket, a very cute, if virtually impossible to get in the US, small production, high performance SDR-based shortwave portable receiver. It’s got an excellent spectrum display and packs a lot of performance into a surprisingly small package.
  • AOR 7030Plus, an extremely well regarded shortwave receiver from the late 90’s; designed in the UK. It’s got a quirky menu-driven user interface but is a lot of fun to use.
  • Drake R8B, the last of the much-beloved Drake receivers. Probably the chief competitor to the 7030.
  • Drake R7A, an excellent analog communications receiver (but with a digital VFO) from the early 80’s. It still outperforms even many current radios.
  • Sony ICF-6800W, a top of the line “boom box” style consumer receiver from the early 80’s. Great radio, but hard to use on SSB.
  • Panasonic RF-4900, the main competition for the Sony. Boat-anchor form factor, but runs on batteries. Excellent performer, but also hard to use on SSB.

The radios were fed from my portable Wellbrook FLX-1530 antenna, using a Stridsberg Engineering HF distribution amplifier. So every radio was getting pretty close to exactly the same signal at its RF input.

Recordings were taken from the line output, if one was available, or the external speaker/headphone output otherwise. In either case, the audio was then isolated and converted to a balanced signal for recording.

For each signal, I recorded monaural “solo” tracks for each radio, as well as a narrated stereo track in which I compared the audio from each radio (one after the other) against the Icom R8600, with the audio from the R8600 on the left channel and the audio from the other radios on the right channel. This gives you a quick overview of what all the radios sound like.

The stereo recording requires some explanation. For it to make any sense, you MUST listen in stereo, using decent headphones if at all possible. You can switch earpieces back and forth (with your finger on pause and rewind) to get a quick idea of what each radio sounds like compared with a modern receiver, and how they handle things like fades and static.

The solo tracks, on the other hand, consist entirely of the continuous audio from a single radio, with no narration or interruption.

I recorded three different signals, for a three part comparison. (Parts four and up will come, hopefully, soon). I think both the differences and similarities will surprise you.

Part One

Our first signal was the BBC on 9915 KHz, broadcasting from Madagascar to western Africa. This signal was extremely marginal here, intended to show how each receiver can or can’t handle signals down in the noise. It’s definitely not “armchair copy”.

The stereo overview is at:

The individual receiver solo tracks can be found here:

Icom R-8600:

AOR AR-ONE:

Reuter RDR Pocket:

AOR 7030Plus:

Drake R8B:

Drake R7A:

Sony ICF-6800W:

Panasonic RF-4900:

Part Two

Our next signal was the Shannon (Ireland) aviation VOLMET broadcast on 5505 KHz USB. This synthesized voice gives the latest meteorological conditions at airports around Europe. The signal was not strong, but entirely readable. It shows how the radios handle a weak SSB signal. Note that the Sony and Panasonic consumer radios, though equipped with a BFO, were VERY hard to tune properly.

The stereo overview is at:

Receiver solo tracks can be found here:

Icom R-8600:

AOR AR-ONE:

Reuter RDR Pocket:

AOR 7030Plus:

Drake R8B:

Drake R7A:

Sony ICF-6800W:

Panasonic RF-4900:

 

Part Three

Our final signal was a stronger, though occasionally fading, shortwave broadcaster, Radio Romania International on 13650 KHz AM. This gives you a sense of how the receivers performed on a typical “average” signal that you might actually want to enjoy listening to. Because the radios have different filters and other capabilities, I tuned each radio to whatever sounded best; I did not attempt to use comparable settings (since no common settings existed).

The stereo overview can be found at:

And the individual solo tracks are here:

Icom R-8600:

AOR AR-ONE:

Reuter RDR Pocket:

AOR 7030Plus:

Drake R8B:

Drake R7A:

Sony ICF-6800W:

Panasonic RF-4900:

Subsequent comparisons, hopefully soon, will focus on receiver performance on signals in crowded bands and under various kinds of interference and noise.

A quick note on production: The recordings were made with a 12 channel Sound Devices 833 recorder with a Sound Devices SL-16 mixing console. The audio was isolated and converted to balanced output with Switchcraft 318 direct interface boxes (highly recommended for recording radios with pro audio gear).

The stereo track narration was done by me in real time, as the signals were being recorded. I made some comments about which receivers I thought sounded best that were not always the same as what I would later conclude after carefully listening to the solo tracks once back inside. But judge for yourself. I used a Coles “lip” microphone, an amazing ribbon mic designed decades ago for the BBC for use in highly noisy environments. It was very effective in reducing the sometimes considerable street noise and other ambient outdoor sounds.

Thanks for listening and 73!

Spread the radio love

Paul is impressed with the HanRongDa HRD-747

Many thanks to SWLing Post contributor, Paul Jamet, who writes:

Hello Thomas,

I have just received the HRD-747 I ordered a fortnight ago.

Of course, I quickly made some tests and I’d like to share two of them with you and the regulars of the SWLing Post:

1 – This is a recording made yesterday (23 March 2022) on 12125 kHz; RFA in Tibetan from Tinian Island; the signal is very stable, very clear.

The HRD-747 is sitting in the grass at the foot of a tree in a park! Nearby a pond. Only 6 of the 7 segments of the telescopic antenna are deployed.

My Locator: JN19cc – Locator Tinian Island: QK25TB – 13225 km

Recording:

2 – My second recording is of Radio Tamazuj in Juba Arabic on 15150 kHz 15h45 from Talata Volonondry. This recording was made in the same conditions as the previous one. Again, only 6 of the 7 segments of the telescopic antenna are deployed. The reception is still quite good, isn’t it?

My Locator: JN19cc – Locator Talata-Volonondry: LH31TF – 8526 km

My first SSB tests also allowed me to listen to Russian or Ukrainian radio amateurs in the 20m band. This little device seems to me really very promising.

3- I also made this recording made ton March 27, 2022 in a small park in my city (L’Isle-Adam – Locator: JN19CC) NW of Paris.

It is a ham radio picked up on 14328.80 kHz at 15h30 UTC. No other antenna; only the telescopic antenna of the receiver! 

The HRD-747 has 100 memories per band; this proved insufficient to store all the stations detected during the scan of the entire spectrum from 3.2 to 30 MHz … The scan stopped in the 19 m band!

First impressions? I am impressed by this tiny receiver (only 108 grams with its battery and strap).

I would like to point out that the first version of the manual which was proposed on the site is particularly useful to me. Indeed, most of the keys are multifunction. It’s a habit to get used to, even if everything seems to have been thought out in a very judicious way.

With my best regards. 73’s

Paul JAMET
Radio Club du Perche

Thank you so much for sharing this, Paul. Those results are promising, indeed! The audio sounds quite good in your recordings–especially for such a compact radio.

Spread the radio love

Guest Post: Comparing the Reuter Pocket and the Icom IC-705 from an SWL’s perspective

Many thanks to SWLing Post contributor, Uli (DK5ZU), who shares the following guest post:


SWL with a Reuter Pocket and the Icom IC-705

by Uli (DK5ZU)

Some time ago I asked how the IC-705 performs on longwave and I got some great feedback. Thanks a lot again. Since the HAM bug bit me again, I wanted to do SWL and HAM Radio portable with one rig. I started with SWL some weeks ago (just before the bug bit). I acquired a second hand Reuter Pocket RDR 51 Version B2. It is a standalone SDR Receiver 0 … 30 MHz / 50 ..71 MHz, and in my B2 version it has also FM (Stereo/RDS) and Digital Audio Broadcasting (DAB). You may find the detailed specs here:
https://www.reuter-elektronik.com/html/pocket.html

The Reuter Pocket could, at one point, be configured as an QRP Transceiver, but it is no longer supported. There is a new RDR 52 small tabletop models, which can be ordered as a transceiver, too. But due to Covid related supply chain problems and price changes for the components, the new model is currently postponed.

The IC-705 is available, though. And for portable HAM operations it is a no brainer; obviously with a high price tag, but comparable with a new Reuter RDR 52 tabletop. And since my budget for the hobby is limited, I thought about funding part of the IC-705 price by selling the Reuter Pocket. But I wanted to do a side-by-side comparison so I ordered the 705 and was able to check them both on one antenna. The goal was to compare their sensitivity and selectivity on the lower bands: BC on AM and HAM bands for SSB. I did not compare CW since I am not a CW operator.

The antenna is a MiniWhip from PA0RDT which works quite well on the lower bands.

This comparison is not at all scientific and reflects just my opinion and what I heard. But anyway, there may be some people out there interested in this. So much for the intro.

Let’s start with my overall findings. Continue reading

Spread the radio love