Category Archives: Portable Radio

Is AM synchronous detection a crucial portable radio feature?

Many thanks to SWLing Post contributor, Mike, who writes with the following question:

How important is AM Sync for a portable radio? Is it essential or a deal breaker?

That’s a great question, Mike, and one I don’t think I’ve directly addressed it here on the SWLing Post oddly enough.

Synchronous detection is actually a fairly deep topic to explore–and everyone has their own opinion–but I get the impression that you’d like a simple answer, so I’ll try to keep this as brief as possible. You might follow the comments section of this post as I’m sure some SWLing Post readers will share their thoughts on synchronous detection and how important it is for them.

So what is Synchronous Detection?

I like this concise Wikipedia answer:

In electronics, a synchronous detector is a device that recovers information from a modulated signal by mixing the signal with a replica of the un-modulated carrier. This can be locally generated at the receiver using a phase-locked loop or other techniques. Synchronous detection preserves any phase information originally present in the modulating signal. Synchronous detection is a necessary component of any analog color television receiver, where it allows recovery of the phase information that conveys hue. Synchronous detectors are also found in some shortwave radio receivers used for audio signals, where they provide better performance on signals that may be affected by fading. To recover baseband signal the synchronous detection technique is used.

How does synchronous detection help shortwave, mediumwave, and longwave listeners?

As the Wikipedia article notes above, sync detection can help “provide better performance on signals that may be affected by fading.”

In short: a solid synchronous detector can help stabilize an AM signal which then can help with overall signal intelligibility.

In some modern portable radios, at least, this could come at the expense of audio fidelity (see caveat below).

I use sync detection when the bands are rough, noisy, and QSB (fading) is affecting signals.

A good sync detector will help clean-up and stabilize the signal so that you can hear voice information with less listener fatigue. Sync detectors are also great tools for grabbing station IDs when propagation is less stable. If you have a receiver with selectable sideband synchronous detection, it can also be used as a tool for eliminating adjacent signal interference.

Caveat? Sync detectors vary in terms of quality.

The PL-880 has a synchronous detection “hidden” function. I’m sure it’s hidden because it’s so ineffective. The PL-880 is a fantastic portable, but don’t bother using the sync detector.

Many modern DSP portables sport synchronous detection, but they’re not terribly stable and the audio fidelity can take a big hit as well. Poor sync detectors can make audio sound “tinny” and narrow.

If a sync detector isn’t effective a providing a stable lock on a signal, then it’s pretty much useless. Why? If it can’t maintain a stable lock, it’ll produce very unstable shifting audio, often with the occasional heterodyne sound popping in as well. In those cases, it’s better to turn off synchronous detection.

Benchmark legacy tabletop receivers and modern Software Defined Radios (SDRs) typically have solid, effective sync detectors. Indeed, I rarely have the AM synchronous detector disengaged on my WinRadio Excalibur–that particular SDR and application enhance audio fidelity through sync detection.

I find that I use sync detection less with my Airspy HF+ Discovery and SDRplay RSPdx, for example, because the OEM applications natively does a brilliant job managing unstable signals.

In terms of portables, I’ve always considered the sync detector of the Sony ICF-2010, Sony ICF-SW7600GR, and PL-660/PL-680 to be pretty solid. I’m sure readers can suggest even more models.

Is sync detection an essential feature on a portable radio?

Not for me. But I do admit that I value the radios I own that sport a good sync detector.

For some SWLs and DXers, however? It might very well be a deal-breaker if a radio doesn’t have a sync detector, or if its sync detector doesn’t function well.

What do you think?

Is the lack of sync detection a deal-breaker for you? When do you employ sync? Please comment!

Looking back at 2020: What radios were in heavy rotation at your home and in the field–?

This morning, I’m looking at the calendar and I see and end in sight for 2020. I think most of us can agree that 2020 will be one for the history books, in large part due to the Covid-19 global pandemic which has had a pretty dramatic affect on many of our lives. It certainly brough my planned travels to a halt. I think many of us are quite happy to show 2020 the door!

As each year comes to a conclusion, I often look back at my radio activities during that year and see how it played out. I especially note the radios I used most heavily throughout the year.

Since I evaluate and test radios, models that are new to the market obviously get a lot of air time. Still, I’m also known to pull radios from the closet and give them some serous air time.

I’m very curious what radios you gave the most air time in 2020?

Here’s my list based on type/application:

Portable shortwave receivers

Since they’re new to the market, both the Tecsun PL-990 (above) and Belka DX (below) got a lot of air time.

I do like both radios and even took the pair on vacation recently even though packing space was very limited. I see the Belka DX getting much more air time in the future because 1.) it’s a performer (golly–just check out 13dka’s review of the Belka DSP) and 2.) it’s incredibly compact. The Belka now lives in my EDC bag, so is with me for impromptu listening and DXing sessions.

A classic solid-state portable that also got a lot of air time this year was the Panasonic RF-B65. Not only is it a performer, but it has a “cool” factor that’s hard to describe. I love it.

Tabletop portables

In a sense, the C.Crane CCradio3 got more play time than any of my radios.  It sits in a corner of our living area where we tune to FM, AM and weather radio–90% of the time, though, it’s either in AUX mode playing audio piped from my SiriusXM receiver, or in Bluetooth mode playing from one of our phones, tables, or computers. In October, the prototype CCRadio Solar took over SiriusXM duty brilliantly. I’m guessing the CCRadio3 has easily logged 1,600 hours of play time this year.

Of course, the Panasonic RF-2200 is one of my all-time favorite vintage solid-state portables, so it got a significant amount of field time.

Software Defined Radios

While at home the WinRadio Excalibur still gets a large portion of my SDR time, both the AirSpy HF+ Discovery and SDRplay RSP DX dominated this space in 2020.

The HF+ Discovery was my choice receiver for portable SDR DXing and the RSPdx when I wanted make wide bandwidth recordings and venture above VHF frequencies.

Home transceivers

Without a doubt the new Mission RGO One 50 watt HF transceiver got the most air time at home and a great deal of field time as well. It’s such a pleasure to use and is a proper performer to boot!

My new-to-me Icom IC-756 Pro, however, has become my always-connected, always-ready-to-pounce home 100W HF transceiver. It now lives above my computer monitor, so within easy reach. Although it’s capable of 100+ watts out, I rarely take it above 10 watts. The 756 Pro has helped me log hundreds of POTA parks and with it, I snagged a “Clean Sweep” and both bonus stations during the annual 13 Colonies event.

Field transceivers

The new Icom IC-705 has become one of my favorite portable transceivers. Not only is it the most full-featured transceiver I’ve ever owned, but it’s also a brillant SWLing broadcast receiver. With built-in audio recording, it’s a fabulous field radio.

Still, the Elecraft KX2 remains my choice field radio for its portability, versatility and incredibly compact size. This year, in particular, I’ve had a blast pairing the KX2 with the super-portable Elecraft AX1 antenna for quick field activations. I’ve posted a few field reports on QRPer.com and also a real-time video of an impromptu POTA activation with this combo:

How about you?

What radios did use use the most this year and why? Did you purchase a new radio this year? Have you ventured into the closet, dusted off a vintage radio and put it on the air?

Please comment!

Dockside DXing with the super-portable Belka-DX receiver

I’ve been on the coast of South Carolina enjoying a little R&R with my wonderful family.

We rented a vacation home on a tidal river just south of Charleston, SC and it was just what the doctor ordered. The location was gorgeous, the weather was amazing, and there was very little RF interference outside our home.

The best part? We had full access to a private dock.

I took a few portable radios on vacation (ahem…obviously!) but I so thoroughly enjoyed my time with the Belka-DX.

If you haven’t gathered already, I really appreciate simple radios for field operation and it doesn’t get much more simple than the Belka-DX or Belka-DSP.

The radio is so incredibly compact, durable, and a pleasure to operate–especially if cruising the broadcast bands.

On the dock, I didn’t have a place to easily hang a wire antenna, so I used the supplied telescoping whip antenna. It served me well on a number of listening sessions.

As 13dka pointed out in his brilliant review of the Belka-DSP, the Belka radios are so compact, yet pack so much performance, they smack of a little spy radio! On top of that, the chassis is incredibly durable. I can’t tell you how much I love this. My Belka receiver has been living in my EDC bag in a small zippered pouch.

I barely notice it in my bag–it take up almost no space and weighs so little–but in the back of my mind I know I have a portable DXing machine everywhere I go.

I have no fear of being damaged in my bag, either–the chassis protects it so well.

Since London Shortwave has sorted out how to make spectrum recordings using the Belka-DX I/Q out, you’d better believe I’ll be sampling spectrum as I travel the globe post-pandemic!

I didn’t have time to gather what I needed for making Belka-DX spectrum recordings on this trip, but you can be certain I will when I return!

I should add that one of the little joys about my dockside DXing spot this past week was watching dolphins swim by as I tuned to some of my favorite broadcasters. Bliss.

Post readers: Have you taken your radios on vacation recently? Please comment! Better yet, consider submitting a guest post with photos!

Review Notes: Xiegu GSOC Firmware updated to version 1.1–still a number of issues

For those of you who have been asking about the new Xiegu GSOC controller, I just updated my unit with the latest firmware (version 1.1).

Firmware notes show that it addresses the following items:

Xiegu GSOC FW V1.1
1. Solved the CW sidetone delay problem
2. Solved the problem of unstable system and occasional crash
3. Added RTTY modem
4. Added CW decoder
5. Added SWR scanner
6. Added FFT/Waterfall level adjustment
7. Added FFT line/fill color mixer

The list above was copied directly from the version notes.

I’m currently evaluating the GSOC/G90 pair which were kindly sent to me on loan by Radioddity. I upgraded the GSOC firmware to v1.1 this weekend.

What follows are some of my evaluation notes an observations after performing the upgrade.

Updating firmware

Updating the GSOC firmware is a pretty straight-forward process.

First you must download the GSOC firmware package (about 330 MB!) which includes a disk image and application to flash the image to a MicroSD card.

Yes, you’ll need a dedicated MicroSD card to upgrade the GSOC firmware–meaning, you can’t simply use a MicroSD card with data on it you’d like to keep because the process of flashing the ISO file also includes a full format with multiple partitions.

You’ll also need an SD Card reader/writer if your Windows PC doesn’t include one.

The included firmware application/tool makes it quite easy to flash a disk image on the MicroSD card.

After the MicroSD card has been prepared, simply turn off the GSOC, insert the MicroSD card on the left side of the GSOC, turn it back on and the GSOC will automatically boot from the MicroSD card and install the new OS/firmware.

Once the upgrade has completed, the GSOC will turn itself off and you must remove the MicroSD card.

If you want to restore the MicroSD card to one partition, you’ll need to perform another format and shrink the volumes.

CW sidetone latency (still issues)

After performing the upgrade, I hopped on the air and tried to make a few CW contacts since I noted in the version notes that the CW sidetone latency had been addressed. So far, my evaluation has pretty much been on hold because I’m unable to use CW mode with any sense of sending accuracy.

Unfortunately, I’m still finding that there’s still a bit of sidetone latency or keyer timing interfering with my ability to correctly send words and letters.

To my ear, it sounds like there’s much less latency in the sidetone audio now (compared with v1.0 which was a little insane) but I still struggle sending characters that end in a string of dits or dashes. For example, when I try to send a “D” the radio will often produce a “B” by adding one extra dit. Or if I try to send a “W” it might produce a “J”. I know something is a little bit off because I botched up two CW contacts with POTA stations yesterday as I tried to send my own callsign correctly.  And “73” was even problematic.

I’m guessing that there may still be a bit of audio lag between the G90 body (where the CW key is plugged in) and the GSOC (where the sidetone audio comes out). At the end of the day, the keying information must be sent to the GSOC from the G90 transceiver body and I assume the processor on the G90 is causing a bit of audio latency. Hopefully, Xiegu can sort this out. It’s a serious issue for anyone who wants to operate CW with the GSOC.

If you own the GSOC and operate CW, I’d love your comments and feedback.

Other updates

I tried using the CW decoder yesterday via the “Modem” menu and had limited success decoding a CW rag chew.

My markup in red: You can see at the very end of this conversation, it decoded the call sign, but interpreted “TU” as “TEA”

The decoder seemed to adjust the WPM rate automatically at one point, but as you can see in the image above, almost every dit was interpreted as an “E” and every dash a “T”. I must assume I don’t have it configured properly, but I don’t have an operator’s manual for reference and instruction.  I’ve also tried RTTY decoding, but haven’t been successful so far–I’m pretty sure this is also because I haven’t configured it properly.

SWR Scanner

I tested the new SWR scanner and it seems to work quite well, plotting SWR across a given frequency range. I did note, however, that it doesn’t seem to confine itself to the ham bands at all. It does inject a signal as it scans (I read 1.5 to 2 watts on my CN-801 meter).

I discovered out-of-band scanning when I took the photo above while trying to do a scan of the 30 meter band. It started around 9.6 MHz–well into the 31M broadcast band where it shouldn’t be transmitting. Xiegu needs to limit transmitted signal to the ham bands.

Memory Keying

I had hoped Voice Memory Keying would be added along with TX/RX recording. I do believe this will eventually be included in a future update. It appears via the “Modem” menu that CW Memory Keying has been added, but I can’t sort out how to make it work (again, a operation manual would be quite handy).

Audio recording

I had hoped transmit and received audio recording would be added in this firmware update; I understand this will eventually be added.

Combined current drain

As I mentioned in a previous GSOC update, the GSOC controller and G90 transceiver both need a 12V power source–indeed, each has a dedicated power port. The GSOC does not derive power from the G90.

I was originally told that the G90 and GSOC both pull about .60 amps in receive which would total 1.2 amps combined. My Hardened Power Systems QRP Ranger battery pack displays voltage and current; it’s not a lab-grade measurement device, but it’s pretty accurate. When I operate the GSOC and G90 at a moderate volume levels in receive, it appears to draw 0.95 to 0.97 amps–basically, 1 amp.

At home on a power supply, this is inconsequential, but in the field you’d need to keep this in mind when choosing a battery. It’s on par with a number of 100 watt transceivers.

Spectrum display images

I’m still finding images on the GSOC display that are not present in the received audio. I mentioned this in my initial overview and it doesn’t seem the firmware update addressed this.

I can only assume the spectrum imaging might be due to the I/Q input being too “hot” coming from the G90 via the shielded audio patchcord. Perhaps there’s a function to manually lower the I/Q gain, but I haven’t found that yet.

Spectrum images are most noticeable on the 31 meter band, but found them on the 20 meter ham band as well.

Here are two screen shots that show how images appear when a nearby signal overwhelms the GSOC:

Images are not present all of the time, only when a strong signal intrudes.

Ever-present noise and spurs in portions of spectrum

Perhaps this is related to the issue above, but there are some spurs on the spectrum display that seem to be present whether the G90/GSOC is hooked up to an antenna or dummy load.

Here’s a photo of the GSOC hooked up to an antenna:

And to a dummy load:

I’ve highlighted the spurs in red and as you can see, the intensity is stronger without an antenna thus I’m guessing this is internally-generated. The spurs do not move on the display as you change frequency.

Other notes

Again, I feel like the GSOC firmware isn’t mature and I can’t yet recommend purchasing it. I feel like Xiegu have rushed this unit to market.

I know that, over time, more features will be added and Xiegu certainly has a track record of following up.

When I evaluate a product, I keep a list of notes that I send to the manufacturer and to keep for my own reference. In Alpha and/or Beta testing, I’d share this info only with the manufacturer. Since the GSOC is a product that’s in production and widely available, however, I thought I’d share them here publicly:

  • GSOC volume control scale is 0 to 28. The difference between 0 (muted) to 1 seems to be the biggest increment. Volume 1 is actually a low to moderate volume level (i.e. a bit high).
  • Boot up time for the GSOC is 30 seconds
  • A keyboard and mouse or capacitive stylus are almost required for accurate operation. Many of the touch screen buttons are quite small and difficult to accurately engage with fingertip. The pointer seems to fall slightly below where fingertip makes contact on the screen.
  • Notch Filter seems to have no effect even after the v1.1 upgrade. There is no Auto Notch feature either.
  • I can’t seem to engage split operation even though there are A/B switchable VFOs and a “Split” button above the spectrum display. Using a keyboard and mouse doesn’t engage it either.
  • There are a number of announced features that I haven’t discovered including some WiFi and Bluetooth wireless functionality.
  • For field use, you must pack quite a bit of kit: the transceiver, the controller, CW key cable, microphone, serial cable, I/Q cable, G90 Power cable, and GSOC power cable. It would also be advisable to take a wireless keyboard and mouse especially if you plan to use any advanced functions like CW memory keying.
  • It doesn’t appear that you have CAT control of the GSOC which complicates digital operation. I believe many of us hoped the GSOC would make digital mode operation easier with the G90, but it hasn’t. Indeed, I assumed the GSOC would have an internal sound card for digi modes much like the Icom IC-7300 and IC-705. Use of VOX control is still  the best way to control transmit. I hope this can be upgraded else this would be a missed opportunity.
  • Since the v1.1 upgrade, the GSOC hasn’t crashed (it did frequently with the v1.0 firmware).
  • Not a pro or con, but I wish the AF Gain/Squelch was AF Gain/RF Gain like most HF transceivers. I’ve accidently engaged squelch twice which essentially muted audio. Pressing and holding the PO (Power Output) button opens the RG Gain control function).

The GSOC Universal Controller is an interesting accessory for the G90 and I’ve read comments from users that love the interface and added functionality.

If I’m being honest, I feel like I’m Beta testing the GSOC. I’ve yet to find a GSOC operation manual–this makes it very difficult to know if one has correctly configured the controller and engaged features/functions correctly. A quick start guide is included with the product, but it really only helps with connections and starting up the GSOC the first time. If you’re a GSOC early adopter, just be aware of this. Again, I’m pretty confident Xiegu will make refinements and include promised features in future firmware updates. I understand their software engineer closely monitors the GSOC discussion group as well. If you’re considering the purchase of a GSOC, I’d encourage you to join the GSOC group.

Questions? Comments?

As I said, I can’t recommend purchasing the GSOC controller yet. So much can change with firmware updates, however, I would encourage you to bookmark the tag GSOC to follow our updates here on the SWLing Post. I will update the GSOC controller each time a new firmware version is issued and until Radioddity asks for the loaner units to be returned. Again, many thanks to Radioddity for making this GSOC and G90 evaluation possible.

Feel free to comment with any questions you might have and I’ll do my best to answer them!

Matt’s Monster Mediumwave Radio Selectivity Shootout!

Many thanks to SWLing Post contributor, Matt Blaze (WB2SRI), for sharing another brilliant audio comparison featuring benchmark portable radios:


Medium wave selectivity shootout

by Matt Blaze

I did another monster medium wave portable receiver comparison, this time with the aim of comparing receivers’ ability to deal with weak signals in the presence of strong adjacent channels.

Once again, I went up to the roof with eight MW portables with built-in antennas and recorded them simultaneously along with my “reference signal”, from an Icom R-9500 with an active loop on the roof. As before, I recorded a narrated stereo mix with the Icom on the left and the rotation of radios for a minute or two each on the right, but have “solo” tracks available for the full time for each radio. The nine receivers in the lineup this time included:

  • Icom R-9500 (with amplified Wellbrook loop antenna on roof)
  • Potomac Instruments FIM-41 Field Intensity Meter (my personal favorite)
  • Panasonic RF-2200
  • Sony IC-EX5MK2
  • C.Crane Radio 2E
  • Sangean PR-D4W
  • Sangean ATS-909X
  • Tecsun PL-990X
  • XHDATA D-808

I recorded two signals, one at night and one during the day.

Nighttime Signals

The first was at night: WWL New Orleans on 870 KHz. This signal is usually weak to medium strength here, but is a challenge for two reasons: first, it shares the frequency with Cuba’s Radio Reloj, and it is squeezed between two much higher strength signals: Toronto’s CJBC on 860, and NYC’s WCBS on 880. So you need a decent receiver and careful antenna orientation to receive it well here. That said, everything did pretty well, though you can see that some radios did better than others.

The mix

Audio Player

Solo tracks

Icom IC-R9500

Audio Player

Potomac Instruments FIM-41 Field Intensity Meter

Audio Player

Panasonic RF-2200

Audio Player

Sony IC-EX5MK2

Audio Player

C.Crane Radio 2E

Audio Player

Sangean PR-D4W

Audio Player

Sangean ATS-909X

Audio Player

Tecsun PL-990X

Audio Player

XHDATA D-808

Audio Player

Daytime Signals

The second signal was during the day and was MUCH more marginal: WRJR Claremont, VA on 670 KHz. This was real challenge for any receiver and antenna. The signal was weak, and overshadowed by WCBM Baltimore on 680, a 50KW daytimer that is very strong here. (I’m not 100% sure that we were actually listening to WRJR – I never got an ID, but the station format and signal bearing was right). We can really hear some differences between the radios here.

The mix

Audio Player

Solo tracks

Icom IC-R9500

Audio Player

Potomac Instruments FIM-41 Field Intensity Meter

Audio Player

Panasonic RF-2200

Audio Player

Sony IC-EX5MK2

Audio Player

C.Crane Radio 2E

Audio Player

Sangean PR-D4W

Audio Player

Sangean ATS-909X

Audio Player

Tecsun PL-990X

Audio Player

XHDATA D-808

Audio Player

Everything (except the Icom) was powered by batteries and used the internal MW wave antenna, oriented for best reception by ear (not just maximizing signal strength, but also nulling any interference). The loop for the Icom was similarly oriented for best intelligibility.

For audio nerds: The recording setup involved a lot of gear, but made it fairly easy to manage capturing so many inputs at once. The portable radios were all connected to a Sound Devices 788T recorder, with levels controlled by a CL-9 linear mixing board control surface. This both recorded the solo tracks for the portables as well as providing a rotating mix signal for each receiver that was sent to the next recorder in the chain, a Sound Devices 833. The 833 received the mix audio from the 788T, which went directly to the right channel. The left channel on the 833 got audio from a Lectrosonics 822 digital wireless receiver, which had the feed from the Icom R-9500 in the shack (via a Lectrosonics DBu transmitter). The center channel on the 833 for narration of the mix, which I did with a Coles 4104B noise-canceling ribbon mic. This let me record fairly clean audio in spite of a fairly noisy environment with some wind.

All the radio tracks were recorded directly off the radios’ audio line outputs, or, if no line out was available, from the speaker/headphone jack through a “direct box” interface. I tried to make the levels as close to equal as I could, but varied band conditions and different receiver AGC characteristics made it difficult to be completely consistent.

Making the recordings was pretty easy once it was set up, but it did involve a turning a lot of knobs and moving faders in real time. I must have looked like some kind of mad scientist DJ to my neighbors, some of whom looked at me oddly from their own roofs.

Happy Thanksgiving weekend!


Thank you, Matt, for another brilliant audio comparison! I appreciate the attention and care you put into setting up and performing these comparisons–not an easy task to say the least. That Potomac Instruments FIM-41 is an impressive machine!

By the way, I consider it a badge of honor when the neighbors look at me as if I’m a mad scientist. I’m willing to bet this wasn’t your first time! 🙂

Post readers: If you like this audio comparison, please check out Matt’s previous posts as well:

Comparing the Icom IC-705 and Icom IC-7300 with the Xiegu GSOC G90 combo

I was recently asked to make a table comparing the basic features and specifications of the new Xiegu GSOC/G90 combo,  and comparing it with the Icom IC-7300 and IC-705.

This is by no means a comprehensive list, and I plan to add to it as I test the GSOC. It doesn’t include some of the digital mode encoding/decoding features yet. I’m currently waiting for the next GSOC firmware upgrade (scheduled for November 20, 2020) before I proceed as it should add mode decoding, audio recording, fix CW mode latency, and add/fix a number of other items/issues.

Comparison table

Click to enlarge

Quick summary of comparison

At the end of the day, these radios are quite different from each other. Here’s a quick list of obvious pros and cons with this comparison in mind:

Xiegu GSOC G90 combo ($975 US)

Pros:

  • The GSOC’s 7″ capacitive touch screen is the biggest of the bunch
  • The GSOC can be paired with the G90 or X5101 transceivers (see cons)
  • The GSOC controller is connected to the transceiver body via a cable, thus giving more options to mount/display in the shack
  • The G90 transceiver (read review) is a good value and solid basic transceiver
  • Upgradability over time (pro) though incomplete at time of posting (con)
  • GSOC can be detached, left at home, and G90 control head replaced on G90 body to keep field kit more simple (see con)

Cons:

  • The GSCO is not stand-alone and must be paired with a Xiegu transceiver like the Xiegu G90 or X5105. The X5105 currently has has limited functionality with the GSOC but I understand this is being addressed. (see pro)
  • I don’t believe the GSOC can act as a sound card interface if directly connected with a computer (I will correct this if I discover otherwise). This means, for digital modes, you may still require an external sound card interface
  • No six meter coverage like the IC-7300 and IC-705
  • Quite a lot of needed cables and connections if operating multiple modes; both GSOC and G90 require separate power connections
  • At time of posting, a number of announced features missing in early units, but this should be addressed with a Nov 20, 2020 firmware upgrade
  • Replacing and removing G90 control head requires replacing four screws to hold in side panels and secure head to transceiver body (see pro)

Icom IC-7300 ($1040 US)

Pros:

  • Built-in sound card interface for for easy digital mode operation
  • Excellent receiver specifications (click here to view via Rob Sherwood’s table)
  • Possibly the most popular transceiver Icom has ever made (thus a massive user base)
  • Well thought-through ergonomics
  • Includes six meter operation and expanded RX frequencies (compared with G90/GSOC); high frequency stability

Cons: 

  • The heaviest of this group (con), but it is a 100 watt transceiver (pro)
  • Smaller display than the GSOC
  • Touch sensitive display (not capacitive like the GSOC)
  • Faceplate not detachable like the G90

Icom IC-705 ($1300 US)

Pros:

  • Built-in sound card interface for for easy digital mode operation
  • Excellent receiver specifications (click here to view via Rob Sherwood’s table)
  • Can use swappable Icom HT battery packs
  • Well thought-through ergonomics, but on that of the IC-7300
  • Includes six meters and VHF/UHF multi-mode operation with high frequency stability
  • Includes D-Star mode
  • Includes wireless LAN, Bluetooth, and built-in GPS
  • Weighs 2.4 lbs/1.1 kg (lightest and most portable of the bunch)

Cons:

  • No internal ATU option
  • Maximum of 10 watts of output power
  • The priciest of this bunch at $1300 US

In short, I’d advise those looking for a 100 watt radio, to grab the Icom IC-7300 without hesitation. It’s a solid choice.

If you’re looking for the most portable of these options, are okay with 10 watts of maximum output power, and don’t mind dropping $1300 on a transceiver, the Icom IC-705 is for you. You might also consider the Elecraft KX3, Elecraft KX2, and lab599 Discovery TX-500 as field-portable radios. None of them, however, sport the IC-705 display, nor do they have native VHF/UHF multimode operation (although there is a limited KX3 2M option). The IC-705 is the only HF QRP radio at present that also has LAN, Bluetooth, and built-in GPS. And, oh yes, even D-star.

If you’re a fan of the Xiegu G90 or already own one, give the GSOC controller some consideration. It offers a more “modular” package than any of the transceivers mentioned above in that the controller and G90 faceplace can be swapped on the G90 body. The GSOC screen is also a pleasure since there are two USB ports that can connect a mouse and keyboard (driver for mine were instantly recognized by the OS).  The GSOC/G90 combo is a bit “awkward” in that a number of cables and connections are needed when configured to operate both SSB and CW: a CW key cable, Microphone cable, I/Q cable, serial control cable, power cable for the GSOC, and a power cable for the G90.  This doesn’t include the cables that might be needed for digital operation. I dislike the fact that the CW cable can only be plugged into the transceiver body instead of the GSOC controller like the microphone. Still: this controller adds functionality to the G90 (including FM mode eventually) that may be worth the investment for some.

Did I miss something?

I’ll update this list with any obvious pros/cons I may have missed–please feel free to comment if you see a glaring omission! Again, these notes are made with a comparison of these three models in mind, not a comprehensive review of each. I hope this might help others make a purchase decision.

BELKA-DX: A Pocket-Sized Radio for Pocket Change

Well, not pocket change for most people, but I couldn’t pass up a clever headline!

I want to alert SWLing Post readers to a lower cost option for the new BELKA-DX than the Mobimax source: the ecommerce web site of Alex Buevky (EU1ME) who designed the radio.

In early February I bought the original BELKA DSP from the designer’s site, for a total of $117 USD. It arrived safely in 10 days to my Washington State address, with free tracked shipping included.

Yesterday I ordered the new BELKA-DX from the same web site, and the grand total was 340 BYN, or in US Dollars, $128, tracked shipping included.

If I had ordered from Mobimax, the total would have been 176.91 Euro, or $205.76 USD. That price includes FedEx shipping, the only available option to the USA.

Purchasing from the BELKA-DX designer’s web site in Belarus saved me nearly $78, and I’m confident I’ll receive this new model in about a week and a half as before (hopefully no COVID-19 related delays).

I had no issues this time or previously with my payment being “flagged” for security concerns. I used my PayPal VISA card and the transaction completed without issues.

For more information on this tiny powerhouse receiver, see Georges Ringotte’s (F6DFZ) brief review here on the SWLing Post.

Guy Atkins is a Sr. Graphic Designer for T-Mobile and lives near Seattle, Washington.  He’s a regular contributor to the SWLing Post.