Tag Archives: Radio World

Radio Waves: Radio and Education, Border Blasters, FM Switch Delayed per DCMS, and A Quick Temporary AM Antenna

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!


Can Radio Really Educate? (JSTOR Daily)

In the 1920s, radio was an exciting new mass medium. It was known for providing entertainment, but educators wondered if it could also be used for education.

It was mid-1922 and America was in the midst of the radio craze. Commercial broadcasting had emerged in a handful of cities in 1920, but at that time, few people had a receiving set—except for amateur radio operators, who knew how to build one. It wasn’t even called “radio” back then—newspapers referred to it as “radiophone” or “wireless telephone.” But only two years later, there were several hundred radio stations on the air, and you could purchase a radio in a store—although hobbyists still had fun trying to build their own, with varying degrees of success. Meanwhile, the word “radio” had become the common term for that wonderful new invention that everyone wanted in their home.

Today, we tend to take radio for granted; it is one of many ways to hear music or news or sports. But in 1922, radio was unique: it was the first mass medium to take people to an event in real time, and listeners were amazed by it. Suddenly, they could hear a popular orchestra coming through the radio set. Without leaving their home, they could listen to a baseball game, or an inspirational talk from a preacher; some stations even had the latest news headlines. In an era when traveling from one city to another could take hours (the popular Model T Ford had a top speed of 40-45 mph, and superhighways had not yet come along), listeners could travel by radio, hearing stations from distant cities. Before radio, only the wealthy could attend a concert featuring a famous vocalist, but now, anyone who had a receiving set could hear that singer’s music. And in an America that was still racially segregated, radio gave some musicians of color the opportunity to be heard by thousands of listeners. In magazines and newspapers, radio inspired “utopian hopes and bold predictions.” Writers referred to it as a cure for loneliness—especially for people living in rural areas or on the farm. It was also praised for helping the blind gain greater access to the world around them. More than one writer claimed radio would bring world peace, since everyone would unite around their favorite programs. And of course, as a sign of American progress, it was something no home should be without, not even the White House: President Harding was an enthusiastic radio fan, and had a set installed near his desk, so he could listen whenever he wanted to. [Continue reading…]

Psychics once ruled the airwaves thanks to the Texas-Mexico border and the magic of radio (KUT)

A new book includes details of how powerful radio stations along the border helped former vaudeville actors reach larger audiences.

In the 1920s and ’30s, some of the most popular radio programs in the United States featured radio psychics. The most successful among them made hundreds of thousands of dollars reading the minds and predicting the futures of eager listeners. To do it, they took advantage of a new and mysterious medium: radio. Continue reading

Spread the radio love

Radio Waves: Radio Facsimile from the 1930s, Public Radio Saving Print, Unlicensed Experimental LW Radio, and RIP Tony Middleton & Milburn Butler

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!


A Look Back at the Radio Newspaper of the Air (Radio World)

Radio facsimile technology never fully caught on, but what if it had?

In the beginning, there were newspapers.

And then radio arrived, challenging the newspapers’ journalistic monopoly.

At first, many newspapers fought the new competitor, refusing to print radio news or program schedules. But some went in the opposite direction, deciding to operate their own radio stations to augment their businesses. And finally, a few brave pioneering publications went even farther: They tried to deliver their newspapers via radio facsimile.

In the early 1930s, radio facsimile looked like the dream application for newspapers. They could use their own local radio stations to deliver newspapers directly to consumers during overnight hours. It would eliminate the cost of printing and distribution and shift those costs onto consumers, who would provide their own printers and paper.

This led several radio stations and newspapers to experiment with facsimile transmission during the late 1930s.

THE FINCH SYSTEM

The person most responsible for this technology was William G. H. Finch. He worked for the International News Service and set up their first teletype circuits between New York, Chicago and Havana. He became interested in facsimile machines and eventually amassed hundreds of patents. [Continue reading the full article…]

How public radio is trying to save print (The Verge)

Why Chicago Public Media and the Chicago Sun-Times are exploring a merger

The Chicago Sun-Times needs help. After being bought and sold several times over the last decade, the 73-year-old paper is looking for a more stable home to continue its award-winning reporting — and it may have finally found it in an unexpected place: a radio station.

Chicago Public Media, which owns the radio station WBEZ, is currently in talks with the Sun-Times to merge. A final deal would combine their newsrooms and audiences in hopes of creating a financially stable enterprise for both teams. Similar mergers and acquisitions have become a common way to bolster the struggling print industry, but if radio were to take on a major newspaper, that would be a first.

“Audio is a growth business,” says Jim Friedlich, chief executive of The Lenfest Institute for Journalism, who advised CPM on the potential merger. “Now Chicago Public Media and other media with audio roots have both the wherewithal and the self-confidence to take a bold step like this.”

Since 2004, US newspapers have shut down at a rate of 100 per year, a pace that’s only accelerated since the start of the pandemic. To stay afloat, some smaller newsrooms have given up independence, being bought by news conglomerates or becoming joint entities with other local outlets — and public radio and TV stations have increasingly offered themselves up as partners. New York Public Radio acquiring the website Gothamist was one of nine similar deals in recent years, triggering researchers to document the trend by creating the Public Media Mergers Project. Public radio has been a particularly strong force, holding its ground amid digitization and the podcasting craze (partially because it’s participated in it), and it might be strong enough to help print do the same thing. [Continue reading…]

The low-down on long-wave: Unlicensed experimental radio (Hackaday via the Southgate ARC)

In the 125 years since Marconi made his first radio transmissions, the spectrum has been divvied up into ranges and bands, most of which are reserved for governments and large telecom companies. Amidst all of the corporate greed, the ‘little guys managed to carve out their own small corner of the spectrum, with the help of organizations like the American Radio Relay League (ARRL).

Since 1914, the ARRL has represented the interests of us amateur radio enthusiasts and helped to protect the bands set aside for amateur use. To actually take advantage of the wonderful opportunity to transmit on these bands, you need a license, issued by the FCC. The licenses really aren’t hard to get, and you should get one, but what if you don’t feel like taking a test? Or if you’re just too impatient?

Well, fear not because there’s some space on the radio spectrum for you, too.

Welcome to the wonderful world of (legal!) unlicensed radio experimentation, where anything goes. Okay, not anything but the possibilities are wide open. There are a few experimental radio bands, known as LowFER, MedFER, and HiFER where anyone is welcome to play around. And of the three, LowFER seems the most promising.

LowFER, as the name would suggest, contains the lowest frequency range of the three, falling between 160 kHz and 190 kHz, with a whopping wavelength of around one mile. Also known as the 1750-meter band, this frequency range is well-suited for long transmission paths through ground wave propagation, a mode in which the radio signals move across the surface of the earth. This can easily carry even low-power signals hundreds of miles, and occasionally through some atmospheric black magic, signals have been known to travel thousands of miles. These ground wave signals also travel well across bodies of water, especially salt water.

Read the full Hackaday item at:
https://hackaday.com/2021/10/19/the-low-down-on-long-wave-unlicensed-experimental-radio/

RAE bids farewell to its historic English voice, Tony Middleton (RAE)

We regret to inform our listeners that our colleague Juan Antonio “Tony” Middleton passed away in Buenos Aires due to health complications, at the age of 82. His distinctive British accent is part of the history of RAE, where he hosted the English-language program for almost three decades. English-speaking listeners around the world remember his warmth and clarity on the air, not to mention his classic opening line: “This is the international service of the Argentine Radio”.

Born in Argentina and son of British immigrants, he ventured into acting in the English language with the group “Suburban Players”, while he was engaged in various commercial activities with his family. In 1981 he had the opportunity to join RAE as a substitute, thanks to his impeccable English and his pleasant voice. In 1983 he joined as a regular and went on to become head of the English-language department at the station, until his retirement in 2008. [Continue reading…]

Milburn Garland Butler Dec 1, 1935 – Oct 10, 2021 (Dignity Memorial)

Mlburn Garland “Gil” Butler was born December 1, 1935 in Bradenton, Florida. He attended local schools, where his mother was a teacher. He grew up in a community where electrification was still being developed, where the Saturday morning movies were an all-day entertainment for kids, and where families would gather in the town square on Sundays for band music and ice cream. After a brief stint in the Army (serving as a quartermaster at a base near Washington, D.C.), Gil Butler went to college in Colorado, returning to Florida where he graduated from the University of Florida with a degree in radio engineering. Along the way, he met and after a whirlwind courtship married Judith Bunten, who would become his lifelong companion. Gil Butler began working as a DJ at a small radio station in Bradenton, Florida in the early 1950s, spinning disks from the very beginning of Rock and Roll. His love of music of all sorts, from Jazz to Rock to Classical, his collection evolved through several formats (LP, cassette, CD, and MPs), and his special chair was always surrounded by the music he would enjoy while reading in the evening. Professionally, Gil moved up to larger stations and more challenging positions in radio and television; working for radio stations around the Tampa Bay area. His first TV gig was as a general reporter for WTVT in Tampa. From there, he moved to WXYZ in Detroit, Michigan, before moving to Silver Spring in the Washington D.C. where he worked as a White House Correspondent for local CBS affiliate, WTOP, covering Washington politics under presidents Nixon and Ford. During this period, Gil appears briefly in Timothy Crouse’s The Boys on the Bus (a recounting of the White House Press Corps during the Nixon Era). He was one of the six “Knights of the Green Ottoman,” named for an item of furniture in the 1972 White House press complex, where the newsmen would gather and share notes. In one passage, he is described: “Gil Butler… the reporter for TV station WTOP, who was chuckling over a volume of Mencken…” This description will surprise no one who knew him, as Gil was a voracious reader. He was always in the middle of a massive nonfiction volume about politics, military history or the Space Race. After WTOP, in 1978, Gil began his ultimate career at the Voice of America, the United States Information Agency’s international radio network. Over a nearly three decade career with Voice of America, he covered 68 countries, working abroad in Cairo, Egypt, Beiruit Lebanon, Beijing, China, London, England, as well as covering the State Department and Pentagon during his time at home between foreign assignments. At the Voice of America’s 40th Anniversary Celebration, Gil received the Meritorious Honor Award for his work in Cairo covering the assassination and funeral of Egyptian President Sadat and its aftermath. Twenty-seven years later, Voice of America News ran a story looking back at that work and the restraint and integrity he exercised in waiting for confirmation before reporting that Sadat had been killed. [Continue reading…]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: Shortwave is Holding its Own, Solar Storms and Internet Outages, Trust in News, and RSGB Convention Trailer

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Dan Van Hoy, Dennis Dura, Rich Cuff, and the Southgate ARC for the following tips:


Shortwave Radios Keep Up With Tech (Radio World)

There’s still lots to listen to, and new ways to do it

Surprise! Shortwave radio as a broadcast medium is holding its own, despite the intrusion of the internet, transmission cutbacks by major broadcasters such as the BBC World Service and Voice of America and abandonment of the SW bands by other state-owned broadcasters.

Meanwhile, the ways in which people listen to SW radio transmissions are evolving, because SW receiver manufacturers are keeping up with the technological times.

Stayin’ alive

There is no doubt that the variety of stations on the SW bands has declined, due to the end of the Cold War — the propaganda war of which drove the medium in the 1950s and 1960s — and the emergence of the internet.

Continue reading

Spread the radio love

Radio Waves: Solar Radios Help Kenyan Children, Synchronous AM’s History, FM Radio on Jupiter, and New WSJT mode Q65

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Tracy Wood, Richard Langley, and the Southgate ARC for the following tips:


With schools shut by pandemic, solar radios keep Kenyan children learning (Thomson Reuters Foundation)

Solar-powered radios have been distributed to the poorest homes that lack electricity access, with lessons broadcast daily during the COVID-19 crisis – and perhaps beyond

TANA RIVER, Kenya, Dec 23 (Thomson Reuters Foundation) – Deep in Tana River County, in southeastern Kenya, a group of pupils formed a circle around their teacher, jotting down notes as they listened to a Swahili diction lesson coming from the solar-powered radio sitting in their teacher’s lap.

The radio the children from Dida Ade primary school gathered around was one of hundreds distributed for free to the most vulnerable households in the semi-arid region east of Kenya’s capital, Nairobi.

The radios allow children without internet access or electricity at home to continue studying while schools are closed to slow the spread of COVID-19, in a project that could also help children stay in education after the pandemic.

Funded by the Zizi Afrique Foundation, a Kenyan non-governmental organisation that produces research to drive education policy, the solar-powered radios also come with bulbs for household lighting and slots for phone-charging.

When schools across Kenya shut in March to slow the spread of COVID-19, Zizi Afrique did a survey in Tana Delta sub-county and found that just over one-fifth of households owned a radio and only 18% had access to electricity.[]

Synchronous AM’s Long and Tortuous History (Radio World)

AM boosters repeatedly have been proven effective, but the FCC consistently has declined to allow their wide use

With AM improvement on the radars of broadcasters and the FCC, there has been renewed talk in recent years about the subject of AM “boosters,” the carrier frequency synchronization of multiple transmitters. The commission opened a comment period on AM boosters in 2017.

It wasn’t the first time the FCC has explored this topic and failed to act on it. In fact, AM boosters have been proposed and tested dozens of times since the early days of radio. But even though the technology has repeatedly been proven effective, the commission consistently has declined to allow the operation of AM boosters on anything more than an experimental basis, for a variety of reasons.

Let’s take a moment to look back at the history of this beleaguered technology.

BOSTON REPEATER
In 1930, crystal control of transmitter frequencies was still an emerging technology, and the allowable frequency tolerance of a broadcast transmitter was +/- 500 Hz. Two stations operating on the same channel, even if widely geographically separated, could generate a heterodyne beat note of up to 1 kHz, a disconcerting annoyance to listeners.

Consequently, only a few stations were allowed to operate nationwide evenings on any one channel at the same time. Further, there were 40 clear-channel stations, each one having exclusive nationwide use of its frequency. As most of these clear-channel stations were network affiliates, many channels were wastefully duplicating the same programs.

In 1929, the respected radio engineer Frederick Terman proposed that, if all stations of the two networks (NBC and CBS) could synchronize their carrier frequencies within +/- 0.1 Hz to eliminate the heterodyne beat notes, they could all coexist on a single channel per network, freeing up dozens of channels for new stations.

Synchronization was first proved successful by the Westinghouse station WBZ in Springfield, Mass. Broadcasting from the roof of the Westinghouse factory, WBZ failed to cover Boston, so WBZA was opened as a Boston repeater. The two stations were synchronized on the same frequency beginning in 1926, using a tuning fork as a frequency reference.[]

FM Radio on Jupiter, Brought to You by Ganymede (EOS)

Another first from NASA’s Juno spacecraft: the detection of radio emissions from the Moon Ganymede, over a range of about 250 kilometers in the polar region of Jupiter.

Louis et al. [2020] present exciting new observations of radio emissions on Jupiter from the NASA Juno spacecraft – the first direct detection of decametric radio emissions originating from its Moon Ganymede. These observations were made as Juno crossed a polar region of the Giant Planet where the magnetic field lines are connected to Ganymede.

The radio emissions were produced by electrons at relativistic energy (a few thousand electron volts) in a region where the electron’s oscillation frequency (“plasma frequency”) is much lower than its gyration frequency (“cyclotron frequency”). Such electrons can amplify radio waves very close to the electron cyclotron frequency very rapidly, via a physical process called electron cyclotron maser instability (CMI). They can as well produce aurora in the far-ultraviolet – which was also observed by the camera on Juno.

Juno was traveling at a speed of approximately 50 kilometers per second, and it spent at least about 5 seconds crossing the source region of the emission, which was therefore at least about 250 kilometers in size.

The observed decametric radiation on Jupiter is clearly the “shorter cousin” (in wavelength) of the auroral kilometric radiation on both Earth and Saturn: the CMI being responsible for their production on the three planets.

Citation: Louis, C. K., Louarn, P., Allegrini, F., Kurth, W. S., & Szalay, J. R. [2020]. Ganymede?induced decametric radio emission: In situ observations and measurements by Juno. Geophysical Research Letters, 47, e2020GL090021. https://doi.org/10.1029/2020GL090021

Andrew Yau, Editor, Geophysical Research Letters[]

New WSJT mode Q65 (Southgate ARC)

WSJT-X 2.4.0 will introduce Q65, a digital protocol designed for minimal two-way QSOs over especially difficult propagation paths

On paths with Doppler spread more than a few Hz, the weak-signal performance of Q65 is the best among all WSJT-X modes.  Q65 is particularly effective for tropospheric scatter, ionospheric scatter, and EME on VHF and higher bands, as well as other types of fast-fading signals.

Q65 uses 65-tone frequency-shift keying and builds on the demonstrated weak-signal strengths of QRA64, a mode introduced to WSJT-X in 2016.  Q65 differs from QRA64 in the following important ways:
•A new low-rate Q-ary Repeat Accumulate code for forward error correction
•User messages and sequencing identical to those in FT4, FT8, FST4, and MSK144
•A unique tone for time and frequency synchronization.  As with JT65, this “sync tone” is readilyvisible on the waterfall spectral display.  Unlike JT65, synchronization and decoding are effective even when meteor pings or other short signal enhancements are present.
•Optional submodes with T/R sequence lengths 15, 30, 60, 120, and 300 s.
•A new, highly reliable list-decoding technique for messages that contain previously copied message fragments.

Read the new Q65 Quick Start Guide at
https://physics.princeton.edu/pulsar/k1jt/Q65_Quick_Start.pdf


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: New SiriusXM Satellite, Tour of CHU, Icom ID-52 Delay, and Grant’s Prototype Broadcast Receiver

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Mike Terry, Tracy Wood, John Palmer, and Greg Jasionek for the following tips:


SpaceX Launches Latest Satellite For SiriusXM Radio (Spaceflight Insider)

On Sunday December 13, a SpaceX Falcon 9 rocket successfully lifted off from SLC-40 at Cape Canaveral Space Force Station in Florida, carrying the SXM-7 satellite to a geostationary transfer orbit. The flight came two days after SpaceX’s first launch attempt on Friday, which was aborted at t-minus 30 seconds. The company tweeted the reason for the scrub, “Standing down from today’s launch attempt to perform additional ground system checkouts.” While SpaceX did not point to a specific reason for the hold call, it can be assumed that either the onboard computers or ground controllers found something off-nominal in the final seconds before liftoff.

[…]The payload, the SXM-7 satellite, is the latest addition to Sirius XM’s constellation of satellites aimed at delivering an extensive library of music and entertainment to most parts of the world. SXM-7, along with its sister satellite SXM-8 launching in 2021, are aiming to replace the company’s aging XM-3 and XM-4 satellites. Contracted and built by Maxar for Sirius XM, the 7,000 Kilogram satellite is based on the SSL-1300 Bus and utilizes a host of S band transponders to provide satellite radio to customers in North America.

“Maxar and SiriusXM have worked together for more than two decades to build world-class digital audio radio satellites that bring entertainment to almost every new car in America,” said Megan Fitzgerald, Maxar’s Senior Vice President of Space Programs Delivery. “We are proud to have built the latest addition to the SiriusXM constellation and look forward to the launch of their next Maxar-built satellite, SXM-8, next year.”[]

CHU, Canada’s Time Station (Radio World)

Look inside the facility that broadcasts voice time signals in two languages

It is nestled in a farmer’s field in southwestern Ottawa, Canada, in a protected area known as the Greenbelt, surrounded by miles of sprawling suburbia.

It is CHU, Canada’s own automated time station.

Operating from a 1940s-era transmitter building and three vertical antenna towers, CHU broadcasts automated voice time signals in both English and French 24/7.

Its broadcasts are transmitted on 3.33, 7.85 and 14.67 MHz, and are heard through central/eastern Canada and the eastern United States, plus many other areas of the planet on a regular basis.

CHU’s time service is operated by Canada’s National Research Council, with the station being remotely controlled from the NRC’s Montreal Road headquarters central Ottawa some 12 miles away. The time signals are based on CHU’s trio of atomic clocks on-site, which are constantly checked against the atomic clocks at NRC headquarters.

“We are equipped with 1960s-era 10 kW transmitters that have been highly modified over the years,” said Bill Hoger. He is the Research Council officer who maintains the unmanned station as part of his overall duties along with two other off-site technicians.[]

ID-52 Apology and Notice of Production Delay (Icom)

Thank you for your continued patronage of Icom products.

Regarding the 144 / 430MHz dual band 5W digital transceiver “ID-52” released in October 2020, there is a delay in the supply of parts from external partner companies, and additional production is significantly delayed. We sincerely apologize for the inconvenience caused to customers and retailers who are waiting for ID-52.

We will inform you about the timing of resuming production as soon as it is confirmed.

We are doing our utmost to resume production as soon as possible, and we appreciate your understanding.

New Type of Broadcast Receiver (LinkedIn Post)

There has been a lot of testing over last few month, with the new working prototype AM receiver. It has taking almost two years to get to this point with a lot of testing to find out what works and what does not.

The performance on Long wave and Medium wave is outstanding with the external loop configuration, this has many advantages over a ferrite rod antenna design. The Short wave performance is OK, where the front end RF transformers need to be improved with more testing. It out performs my Tecsun PL-398 that uses Digital Signal Processing (DSP), and comes close to what is possible within the high noise floor that you get in buildup areas.

The adaptive processing works very well, where you can set in software to work based on the signal level and if there is a pilot tone been detected (stereo indicator), this works for both the AM bands and for FM. As with the adaptive processing the noise reduction also works with both AM and FM bands, that has been use with Short wave and Long wave stations. The de-emphasis cave is design for 50 ?s, to pass a wider modulation bandwidth through up to 12.5 kHz.

The Denon TU-680NAB has been the reference receiver throughout all the testing to get to this test point. As this was designed for the high end audio market in the 1990’s, to provide the best possible performance for HiFi systems of the day.

[…]This will be marketed as a high end broadcast receiver, the aim is to stay well clear of low cost products from China, that are all too common these days. This is a Canadian product, showing that there are many new ideas and what possible in this area of development. With all these advancement it possible to provide a high quality music programming using AM radio that sounds as good as FM, with the advantages of larger coverage areas.[…]

Click here to read the full post with specifications.


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Radio Waves: Arecibo Failure Caught on Video, Heathkit Employee Reminisces, Radio at 100 Series, and FCC to Require Email on Applications

Arecibo Observatory’s 305-meter telescope in November 2020 (Credit: University of Central Florida)

Radio Waves:  Stories Making Waves in the World of Radio

Because I keep my ear to the waves, as well as receive many tips from others who do the same, I find myself privy to radio-related stories that might interest SWLing Post readers.  To that end: Welcome to the SWLing Post’s Radio Waves, a collection of links to interesting stories making waves in the world of radio. Enjoy!

Many thanks to SWLing Post contributors Ned Wharton, Pete Eaton, Zack Schindler, and Dave Zantow for the following tips:


NSF releases footage from the moment Arecibo’s cables failed (ARS Technica)

Today, the National Science Foundation released video taken at the moment the Arecibo Radio Observatory’s cables failed, allowing its massive instrument platform to crash into the dish below. In describing the videos, the NSF also talked a bit about the monitoring program that had put the cameras in place, ideas it had been pursuing for stabilizing the structure pre-collapse, and prospects for building something new at the site.

A quick recap of the collapse: the Arecibo dish was designed to reflect incoming radio radiation to collectors that hung from a massive, 900-ton instrument package that was suspended above it. The suspension system was supported by three reinforced concrete towers that held cables that were anchored farther from the dish, looped over the towers, and then continued on to the platform itself. Failure of these cables eventually led to the platform dropping into the dish below it.

[…]The video of that collapse comes from a monitoring system put in place in the wake of the cable failures. Due to the danger of further cable breaks, the NSF had instituted no-go zones around each of the three towers that supported the cables. With no personnel allowed to get close enough to inspect the cables, the staff started monitoring them using daily drone flights, one of which was in progress during the collapse. In addition, a video camera was installed on top of the visitor’s center, which had a clear view of the instrument platform and one of the support towers.

Continue reading full article.

Heathkit: An Employee’s Look Back (Electronic Design)

Lessons of a successful electronic business—an interview with Chas Gilmore, former Heath executive.

For those of you who do not know or remember, Heath Company was the largest kit company in the world. Heath designed and put practically every type of electronic product into kit form. Its products, called Heathkits, were exceptionally popular and many are still in use today.

Over the years, Electronic Design has published many Heathkit-related articles and blogs. Recently, I had a chance to talk with Chas Gilmore, who was a Heath executive. For those of you who fondly remember Heathkit and miss its products, here’s a look back at this amazing company and the lessons it offers.

Chas, what was your affiliation with Heath?

A recent physics graduate, I joined Heath in 1966 as an engineer in the Scientific Instruments department. This was a new group designing laboratory instruments supporting the Malmstadt/Enke, Electronics for Scientists program. The kit business was making great strides.

The audio department was about to introduce the AR-15 FM receiver/amplifier. It had rave reviews, putting Heath in the top tier of the Audio/HiFi market. At the same time, the Ham (amateur radio) department was updating the phenomenally successful SB-line of an HF SSB receiver, transmitter, and transceiver, and modernizing the popular $99 single-band SSB transceiver line[]

Radio at 100 & Roots of Radio Series (Radio World)

Zack writes:

Found this interesting series at Radioworld called “Radio at 100”. It is 29 different articles about the history of broadcasting in the USA. A lot of your readers might enjoy these;
https://www.radioworld.com/tag/radio-at-100

Another great series at Radioworld that your readers might be interested in “Roots of Radio”:

https://www.radioworld.com/columns-and-views/roots-of-radio

ARLB038 FCC to Require Email Addresses on Applications (ARRL Bulletin 38 ARLB038)

Amateur radio licensees and candidates will have to provide the FCC with an email address on applications, effective sometime in mid-2021.

If no email address is included, the FCC may dismiss the application as defective.

The FCC is fully transitioning to electronic correspondence and will no longer print or provide wireless licensees with hard-copy authorizations or registrations by mail.

A Report and Order (R&O) on “Completing the Transition to Electronic Filing, Licenses and Authorizations, and Correspondence in the Wireless Radio Services” in WT Docket 19-212 was adopted on September 16. The new rules will go into effect 6 months after publication in the Federal Register, which hasn’t happened yet, but the FCC is already strongly encouraging applicants to provide an email address.

When an email address is provided, licensees will receive an official electronic copy of their licenses when the application is granted.

The Report and Order can be found in PDF format online at, https://www.fcc.gov/document/fcc-adopts-electronic-licensing-report-and-order

Under Section 97.21 of the new rules, a person holding a valid amateur station license “must apply to the FCC for a modification of the license grant as necessary to show the correct mailing and email address, licensee name, club name, license trustee name, or license
custodian name.” For a club or military recreation station license, the application must be presented in document form to a club station call sign administrator who must submit the information to the FCC in an electronic batch file.

Under new Section 97.23, each license will have to show the grantee’s correct name, mailing address, and email address. “The email address must be an address where the grantee can receive electronic correspondence,” the amended rule will state. “Revocation of the station license or suspension of the operator license may result when correspondence from the FCC is returned as undeliverable because the grantee failed to provide the correct email address.”
NNNN
/EX[]


Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

FCC’s AM digital order did not include DRM

This news item expands on our previous post.

(Source: Radio World)

No Luck for DRM in the AM Digital Order

Digital Radio Mondiale was hoping that the Federal Communications Commission would consider allowing its technology as an all-digital option for AM stations in the United States, along with HD Radio. But the FCC disappointed it.

[…]“Many commenters agree that all-digital AM broadcasting should be allowed but object to HD Radio as the sole authorized transmission technology,” it wrote.

“Specifically, commenters urge us to consider the Digital Radio Mondiale all-digital transmission technology on the grounds that it: (1) offers equal or better sound quality to HD Radio at lower bitrates; (2) can transmit metadata as well as emergency alerts, multicast subchannels, and a data channel; (3) is energy- and spectrum-efficient; (4) uses a superior audio codec; (5) is not susceptible to interference; (6) is not owned or controlled by a single company; and (7) has been used successfully in other countries and is the approved technology for shortwave broadcasting in the United States.”

But the FCC said the request was “beyond the scope of this proceeding.”

It said it needed to move expeditiously on this all-digital proposal; and that if parties believe that it should re-evaluate HD Radio and consider alternative technologies, “we would need to evaluate a fully developed proposal including data such as laboratory and field testing, similar to the petition for rulemaking that formed the basis of this proceeding.”[]

Click here to read the full article at Radio World.

Spread the radio love