Category Archives: Guest Posts

James adds an LM386 amplifier kit to his Heathkit GR-150

Heathkit Explorer Jr. Completed w. screwdriverMany thanks to SWLing Post contributor, James Surprenant (AB1DQ), who shares this update to his review of the Heathkit Explorer Jr. TRF AM radio receiver kit:


With regard to the Heathkit TRF AM receiver kit, I did indeed build my LM386 amplifier.

I was planning on home-brewing it from scratch as the chip is pretty much all you need and there are various proven schematics for the circuit, but in the end I went with a small kit from Nightfire Electronics for $10 plus $5 shipping that I found on Amazon.com.

It was a bit cheaper to buy it in kit form, of course, and then there was the convenience of having all the parts in one place.

Here is a photo of the kit as advertised on Amazon

kit

And here is my build with the Heathkit…

Heathkit + LM 386

I modified the kit to add a 3.5mm input jack, replacing the RCA jack that came with the kit, to make it easier to plug into the Heathkit radio.

I deliberated whether to install the audio amp into the Heathkit cabinet drilling out a couple of holes for the pot shafts. It all would have fit and I could have easily mounted the 3″ 8 ohm speaker to the back panel of the Heathkit radio. In the end, I decided to keep the radio original and mounted the amplifier board on a small piece of wood I found at a hobby store and decided to leave it all exposed. It works well, all things considered.

(Click here to view video on Facebook.)

It worked well and per my original review on SWLing Post, I feel Heathkit should have included such a little amp in the kit – it makes a big difference.


Many thanks for the update, James! That little LM386 amp kit seems like an affordable addition for any receiver lacking an amplifier or adequate audio amplification.

Spread the radio love

Radio Time Travel: Brian’s 1974 shortwave radio recording

Many thanks to SWLing Post and SRAA contributor, Brian D. Smith (W9IND), for the following guest post and recording.

Note that Brian could use your help to ID a few unidentified broadcasters in this recording. If you can help, please comment:


HalliDial

Shortwave Radio 1974: Canada, Argentina, Spain, West Germany, Albania, utility stations

Want to know what shortwave radio sounded like in 1974?

This 55-minute recording, recovered from a cassette, was never intended to be anything but “audio notes”: I was an 18-year-old shortwave listener who collected QSL cards from international stations, and I was tired of using a pen and a notepad to copy down details of the broadcasts. I wanted an easier way to record what I heard, and my cassette tape recorder seemed like the perfect means to accomplish that goal.

But it wasn’t. I soon discovered that it was simpler to just edit my notes as I was jotting them down — not spend time on endless searches for specific information located all over the tape. To make a long story shorter, I abandoned my “audio notes” plan after a single shortwave recording: This one.

Hallicrafters S-108 (Image: DXing.com)

Hallicrafters S-108 (Image: DXing.com)

Still, for those who want to experience the feel of sitting at a shortwave radio in the mid-1970s and slowly spinning the dial, this tape delivers. Nothing great in terms of sound quality; I was using a Hallicrafters S-108 that was outdated even at the time. And my recording “technique” involved placing the cassette microphone next to the radio speaker.
Thus, what you’ll hear is a grab bag of randomness: Major shortwave broadcasting stations from Canada, Argentina, Spain, Germany and Albania; maritime CW and other utility stations; and even a one-sided conversation involving a mobile phone, apparently located at sea. There are lengthy (even boring) programs, theme songs and interval signals, and brief IDs, one in Morse code from an Italian Navy station and another from a Department of Energy station used to track shipments of nuclear materials. And I can’t even identify the station behind every recording, including several Spanish broadcasts (I don’t speak the language) and an interview in English with a UFO book author.

The following is a guide, with approximate Windows Media Player starting times, of the signals on this recording. (Incidentally, the CBC recording was from July 11, 1974 — a date I deduced by researching the Major League Baseball scores of the previous day.)

Guide to the Recording

0:00 — CBC (Radio Canada) Northern and Armed Forces Service: News and sports.
7:51 — RAE (Radio Argentina): Sign-off with closing theme
9:14 — Department of Energy station in Belton, Missouri: “This is KRF-265 clear.”
9:17 — Interval signal: Radio Spain.
9:40 — New York Radio, WSY-70 (aviation weather broadcast)
10:22 — Unidentified station (Spanish?): Music.
10:51— Unidentified station (English): Historic drama with mention of Vice President John Adams, plus bell-heavy closing theme.
14:12 — RAI (Italy), male announcer, poor signal strength.
14:20 — Unidentified station (Spanish): Theme music and apparent ID, good signal strength.
15:16 — Unidentified station (foreign-speaking, possibly Spanish): Song, “Chirpy Chirpy Cheep Cheep.”
17:00 — Deutsche Welle (The Voice of West Germany): Announcement of frequencies, theme song.
17:39 — Unidentified station (English): Interview with the Rev. Barry Downing, author of “The Bible and Flying Saucers.”
24:36 — One side of mobile telephone conversation in SSB, possibly from maritime location.
30:37 — Radio Tirana (Albania): Lengthy economic and geopolitical talk (female announcer); bad audio. Theme and ID at 36:23, sign-off at 55:03.
55:11 — Italian Navy, Rome: “VVV IDR3 (and long tone)” in Morse code.

Click here to download an MP3 of the full recording, or simply listen via the embedded player below:


Wow–what an amazing trip back in time, Brian! Thank you for taking the time to digitize and share your recording with us.

Post Readers: If you can help Brian ID the few unidentified stations in his recording, please comment!

Note that Brian is a frequent contributor to the Shortwave Radio Audio Archive. Click here to listen to his contributions. 

Spread the radio love

Guest Post: Listening to 10 Meter Radio Beacons

SX-99-Dial-NarMany thanks to SWLing Post contributor, Mario Filippi (N2HUN) for the following guest post:


Listening in to 10 Meter Radio Beacons

Mario Filippi, N2HUN

(All photos courtesy of author–click to enlarge.)

Radio beacons can be found across the RF spectrum from the LF (low frequency) band all the way up to bands inhabited by satellite signals. If you are a ham, shortwave listener or a QRP (low power) buff then a great place to start is on the 10 meter band, which is included on most table-top shortwave radios and even some portables. Beacon signals come and go with band conditions, emanate from different parts of the globe and provide one with listening challenges and hours of fun. So let’s talk about 10m as it’s a good place to start.

A good indicator of band conditions on 10m is via the 10m beacon band which ranges from 28.1 to around 28.3 MHz. In general, most stateside beacons are found from 28.2 – 28.3 MHz while DX (ex-US) beacons are heard from 28.1 – 28.2 MHz. However, I’ve heard DX beacons as high up as 28.297 MHz. These stations provide hams and SWLs not only with code practice but with the adventure of hearing low power signals from around the globe. To get acquainted with what is on the air, check out the Ten-Ten International Net website which has one of best lists of beacons, along with a plethora of information on the band itself: http://www.ten-ten.org/index.php/resources/ten-meter-beacons . The Ten-Ten club has been around for many decades and is a good resource of information on 10 meters in general; one can even be issued a unique Ten-Ten ID number upon request. Then, when making 10m contacts you can exchange Ten-Ten numbers with fellow operators.

AR-3000A

Let your fingers do the spinning of the VFO on 10m.

Many of these beacon stations have been logged over the years at this QTH simply because they dot the globe with their low powered one-way signals and are a challenge. Hearing a beacons’ very weak CW signal fading in and out with its’ short message, usually starting with a series of “Vs” followed by the call, then by info such as location, wattage, grid square is a timeless source of pleasure. There are literally hundreds of beacons to hear using your shortwave or ham radio, all coming in at different times of the day from places far and near. And there’s no need to be in the shack; check them out using a portable radio because when band conditions are favorable, you’re bound to hear them. And for those of you with RTL-SDR dongles, these miniscule radios are perfectly capable of receiving beacons and have the added feature of “looking” at that portion of the spectrum both via the 2-MHz wide spectrum display and accompanying waterfall image. These dongles are an inexpensive entry into HF/VHF/UHF listening and cover all modes. However they are not a plug ‘n play venture, you’ll need a computer, driver program, software to turn the dongle into an operating wideband receiver, patience learning the software, and a good antenna.

Typical “dongle” Software Defined Radio covering 24 – 1766 MHz.

Typical “dongle” Software Defined Radio covering 24 – 1766 MHz.

Screenshot of 10m beacon activity in right-half of waterfall on 6/22/15; VA3KAH was heard on 28.168 MHz.

Screenshot of 10m beacon activity in right-half of waterfall on 6/22/15; VA3KAH was heard on 28.168 MHz.

Most 10m beacons operate at low power, anywhere from 100mW to as high as 100W but generally operate in the 1 – 5W range using a variety of antennas, the vertical being the most popular. So in essence these beacons are not what you would classify as“big guns” and that’s the beauty of it all. They are an intriguing and challenging quarry to write into your logbook! While 10m tends to be more active during daylight hours and when sunspot numbers are good, this doesn’t mean that beacons will not be heard; a quick “sweep” of 21.1 – 28.3 MHz while you are in the shack or outside listening on a portable is always worth a check. Having a good pair of headphones will aid in hearing the weak ones.

Yaesu frg-7

My all-time favorite, the Yaesu “Frog 7” performs well for 10m beacon hunting.

To give readers some inspiration, below are some recent morning loggings using an AR-3000A and a 43 foot S9 vertical antenna. Band conditions were not the greatest, with most beacon stations fading in an out and propagation favoring Europe. Using a pair of headphones, logbook and pencil at the ready, it required sitting on some frequencies a few minutes as the beacon of interest faded in an out, until all the information was logged. Most beacons will begin their transmission with a series of “Vs” which helps to identify an active frequency. Some will send a long tone out first, allowing you to fine tune the station, while some start with a series of “dits” to get your attention. As you log these beacons you’ll see that each has its’ own agenda. For example, some only send their call sign. Others will send call sign, grid square, and power. Some even include a website or an address to send QSL information. If your code is rusty, no worries as most beacons send their call at least twice or thrice! 

Recent 10m Beacon Loggings de N2HUN

Date Time (GMT) Frequency Call QTH Comments
2/14/16 1423 28.166 XE2O/B Allende, Mexico 5W, EL05 (grid square), some QSB
2/14/16 1440 28.298 SK7GH Jonkoping, Sweden Very weak, heavy QSB, 5W
2/14/16 1447 28.223 KP3FT/B Ponce, PR Series of five “dits” precedes CW identification
2/14/16 1455 28.205 DL0IGI Hohenpeissenberg, Germany Long tone precedes CW identification, 48W
2/14/16 1500 28.173 IZ1EPM Chivasso, Italy Long tone before and after transmission, 20W
2/14/16 1530 28.242 IZ8DXB Naples, Italy Tone preceding transmission, JN70BU (grid square), 6W

My thanks go out to the Ten-Ten International Net (www.ten-ten.org ) for their excellent website covering the 10 meter band and to all those ham operators worldwide who took the time and energy to construct radio beacons for all of us to enjoy. Now, go forth and check out those beacons; don’t assume the band is dead, check out the beacon section of the band which will give you an indication of propagation conditions. Ten meters is very capricious and can open up at any time of the day, even late at night. And don’t forget to QSL the beacon operator! Good luck hunting down beacons and 73’s!


Thank you so much for this, Mario! Check out Mario’s other excellent guest posts by clicking here.

 

Spread the radio love

Guest post: The future for radio broadcasting in Australia

Many thanks to SWLing Post contributor, Phil Brennan, who shares the following guest post–an article he originally authored for the Australian DX News:


WHKY-AM-Radio-Tower

What Future for Radio Broadcasting in Australia?

By Phil Brennan, Darwin, NT

As we witness the worldwide decline in long wave, medium wave , shortwave and indeed FM broadcasting, it can be at times a slightly depressing exercise to ponder the future of our hobby.  As I write, just last week Radio France announced that it will soon cease all LW broadcasting.  There’s an on-line petition to save the service: this morning it had collected 770 signatures after one week. It was 769 until I sent my modest click across the universe L.

On the domestic front we’ve seen the pointy-headed bean counters in Canberra and their political masters take the knife to our national broadcaster to the point where Radio Australia now seems to be little more than a relay station for the ABC with barely any in-house production tailored for its audience.

With all this doom and gloom it was with some trepidation that I spied a recent Australian Government report entitled Digital Radio Report [1] which arrived via my email in-box through the excellent Australian Policy On-line resource.  The report was published in July 2015 by the Department of Communications and was conducted by the Minister for Communications under the Broadcasting Services Act and the Radiocommunications Act. Note: the Minister for Communications then was Malcolm Turnbull who is now Australia’s Prime Minister.

The report makes for an interesting read (for nerds like us) and provides some great insight into the bureaucracy’s thinking on the future of radio broadcasting in this country.  So while the report ostensibly considers the current and potential state of digital radio in Australia, in so doing it looks at the other forms of radio broadcasting and gives us a peek into the future.

The report broadly considers the following issues:

  • The current state of digital broadcasting and alternative forms, eg streaming services through the interwebs
  • Whether Australia should set a digital switchover date and close off analogue services; and
  • The legal and regulatory framework for digital services.

Like you would have dear reader I quickly scrolled through the report to see if it was recommending a full switchover to digital.  The good news is that this won’t happen anytime soon and perhaps not ever.  Phew! It seems Australia’s geography and sparse population works in our favour (for once).  Anyway, more on that later.

So what does the Australian radio broadcasting landscape look like at present?  Well for lovers of analogue radio it’s still looking pretty strong and it’s likely to remain that way for some time to come.  In the five big cities the 2014 average weekly audience for commercial radio services grew by 4.13 per cent to 10.1 million people.  That’s pretty impressive given the quality of the stuff they serve up each day.  Aunty’s (that’s the ABC to foreign folk) radio service reached a record 4.7 million people in 13/14, an increase of 155,000 listeners on the previous year. Well done Aunty!

All up there are 273 analogue commercial radio services (104 on AM, 152 FM and 12 outside the broadcasting service bands.  Community radio is going strong with 357 analogue services (13 AM and 344 FM) plus 244 narrowcasters (33 AM and 211 FM).  There’s lots of stuff still out there it seems.  Perhaps too much as the FM band is becoming very crowded in the major metropolitan areas.

There are 142 commercial digital services in the big capitals plus the two trial sites in Canberra and Darwin.  Interestingly a good proportion of the digital services are simulcast analogue services, for example 11 out 29 of the commercial digitals in Sydney.  Listenership of digital radio is growing slowly and steadily, reaching 25 per cent in the first quarter of 2015, primarily due to the growth of receivers in motor vehicles.

Streaming services are rapidly gaining ground with services like Spotify, Pandora and the new Apple Music picking up new subscribers each week.  The move by Aunty and the Special Broadcasting Service’s (SBS) to mobile apps for streaming content is also showing good growth. It would appear that to some extent this growth has been at the expense of terrestrial digital services, but audience data in this area is pretty sketchy it seems.

So what of the future for digital radio? Well it seems that for the present the public does not show a preference for digital radio over other forms. And while some European countries such as Norway with near total digital coverage are looking to switch off their FM services, some countries such as the UK have postponed their planned switchover to digital due to slow uptake by the listening public.

In Australia there are big interests such as SBS, Commercial Radio Australia and Broadcast Australia pushing for a switchover to digital as soon as possible.   Thankfully the report’s authors have listened to other bodies that advocate for a multi technology approach.  Significantly the report notes that while digital could match FM for coverage with a similar number of transmitters, it will struggle to match the coverage provided by the medium and high powered AM transmitters that reach the remaining population.  Digital Radio Mondiale and satellite digital radio technologies could increase digital’s coverage but are not considered viable.

Internet based services are not seen as a realistic alternative in the medium term due to high data costs, restricted wifi coverage, likely interruptions in high traffic areas and poor battery life on mobiles.  It’s likely that this will be a niche medium for some time.

So what does the report conclude and recommend?  Well, digital radio was only ever introduced as a complimentary technology and that will continue to be the case.  In saying that the report makes a series of recommendations to free up the rules so broadcasters can take up the digital option more readily.  DAB+ is the preferred technology so don’t go ordering a DRM set anytime soon.

Perhaps most interestingly, the report makes a major finding that there may be an opportunity to consider how analogue terrestrial radio coverage can be improved pending the roll out of digital radio.  This includes further research into how AM coverage can be improved in metropolitan areas and whether the FM spectrum can be made available in regional areas for new analogue services or switching existing AM services over to FM, potentially in lieu of the rollout of digital services.  For us lovers of analogue radio this is certainly good news, particularly if more high powered AM broadcasters hit the band.

Does this actually mean that analogue radio services are safe?  Well, governments have been very good at ignoring reports advocating for the public good and succumbing to the commercial interests with other agendas, particularly when it comes to media.  That said, it doesn’t make a lot of sense for the government to pull the plug on analogue anytime soon given the coverage issues in regional Australia.  However, when it comes to governments, the sensible thing to do is often viewed as the last option.

[1] © Commonwealth of Australia


Thank you, Phil, for your article and opinions! I agree–in a country with such vast expanses, analog radio still has advantages over other mediums. Comments?

Spread the radio love

DX Fiend: Gary DeBock’s guide to building the PL-380 “Pest Control” FSL antenna

Gary-Debock-Pest Control-FSL-PL-380-1SWLing Post contributor, Gary DeBock, is an acclaimed innovator in the realm of Ultralight DXing–he’s well-known for constantly pushing the envelop on these inexpensive DX receivers.

Gary has published yet another detailed home-brew project that can turn your stock Tecsun PL-380 into a Mediumwave DX Fiend!

Many thanks to Gary for the following guest post:


“Pest Control” 4.25” FSL Tecsun PL-380

Put Your Local Noisemakers Down for the Count with this Breakthrough Model

By Gary DeBock, Puyallup, WA, USA

February 2016

Introduction  

The first portable radio with a transplanted FSL antenna was introduced last month (click here to read), providing breakthrough MW-DXing performance in the pocket radio class. Although this 3” Bar FSL Tecsun PL-380 exceeded expectations in every way, its 100mm ferrite bars were in very short supply.

By coincidence the final eBay seller of these 100mm x 20mm x 3mm Russian surplus bars (in Romania) stopped selling them on the day that the first model was finished, creating an instant rush in demand. After providing twelve sets (of 8 bars each) to various DXers my own stock of these bars was rapidly dwindling, and it became an urgent matter to design a similar model using the plentiful 62mm x 12mm x 4mm ferrite bars. Sensitivity of the new FSL antenna would need to be fully competitive with the original model, and I was hopeful of a design that would offer at least one new DXing advantage.

Gary-Debock-Pest Control-FSL-PL-380-2

With the shorter (62mm bars) it would require a larger diameter FSL antenna to come close to the original model in sensitivity, so by necessity this alternative model would need to have a “short and stubby” FSL coil design. After considering this I recalled that most of the antennas with a reputation for exceptional nulling performance (and direction finding) seemed to have such a “short and stubby” coil design—so why not take this opportunity to design and create a portable radio with breakthrough nulling performance, in addition to its superior sensitivity? Such a combination would hopefully make the new model an innovative performer in urban areas—a portable radio that could not only silence multiple MW “pest” stations, but also provide unusual sensitivity to receive competing stations right on the same frequencies. As the model was developed several technical discoveries were made to improve nulling performance, such as the use of grounded shield foil for the Litz wires, and an ultra-symmetrical FSL coil. But even if you live in a rural area far from any MW stations, you will find that this modified radio has a great deal of performance to offer— a combination of sensitivity, selectivity and nulling ability that has never existed in portable form.

Project Overview  

This modification procedure will convert the Tecsun PL-380 AM-LW-FM-SW portable from a modest-performing Medium Wave receiver into an exceptional one, with a significant enhancement of Longwave performance as well. The process involves some close-order soldering on a crowded PL-380 circuit board, and should only be attempted by those will good close-up eyesight, steady hand coordination and some soldering experience. The process also involves the winding of a highly symmetrical antenna coil, which is essential for optimal nulling performance. Because of this, careful attention to the instructions and the use of the recommended ferrite bars and Litz wire is important for the best performance. Certain component parts may be in short supply depending upon current demand, and it is recommended that all these be collected prior to starting the modification procedure.

Since major portions of this project involve duplication of procedures contained in the PL-380 7.5” Loopstick Transplant article, reference is made to various steps and instructions in that article (posted here). As such, hobbyists who have successfully completed the 7.5” loopstick transplant project on a PL-380 will find this procedure relatively simple, with only the 4.25” Bar FSL construction as a new challenge. The resulting FSL-enhanced PL-380 truly provides a quantum leap in MW-DXing performance over the stock model, but reasonable care is necessary to protect the modified portable from sudden drops or mechanical shocks. Completion of the finished radio should provide a great level of satisfaction and hobby enjoyment, especially during travel opportunities where external antennas are impractical or forbidden.

Gary-Debock-Pest Control-FSL-PL-380-3

Construction Parts Required

A.) Tecsun PL-380 AM-LW-FM-SW Receiver (available from multiple sources on eBay)

B.) Precut section of Ace Hardware 48″ orange plastic carpenter’s level (dimensions to follow)

C.) 2.6″ long section of the 3.5″ diameter “Big Boss Noodle

D.) 22 Russian surplus 62mm x 12mm x 4mm ferrite bars

E.) Tube of Duro Super Glue, .07 ounce (or equivalent)

F.) Two 1″ x 1/2″ strips of 1″ I.D. rubber heater hose

G.) 7 1/2″ of 1/8″ diameter shrink tubing

H.) Two 18″ long plastic tie wraps, 125 lb. test

I.) Oatey 4″ x 4″ foam closet spacer pack

J.) Roll of Rite Aid 1″ wide waterproof tape

K.) 40 feet of 250/46 Litz wire

L.) Roll of Scotch “Extreme” shipping tape (any size)

Miscellanious:

  • 8 1/2” x ¾” strip of heavy duty aluminum foil (Reynolds or equivalent)
  • 3” long #18 hookup wire
  • 25w pencil-type soldering iron
  • solder
  • hacksaw (or power miter saw)
  • hand tools

PL-380 Preparation  

Before voiding the warranty on your new PL-380, it’s a good idea to ensure that it has no existing problems which might require warranty service J Install batteries in the radio and give it a test run on all four bands, checking the tuning encoder, clock, volume control, speaker, headphone jack, display functions and digital searching modes. Make sure that the radio is working properly in all functions before starting the modification procedure, since the eBay sellers are unlikely to show you any sympathy after you tear out the stock loopstick. It’s also a good idea to check out the Medium Wave weak signal reception with the PL-380 stock loopstick before starting the modification, to establish a benchmark of performance against which the new 4.25” FSL’s DXing performance will be compared.

Gary-Debock-Pest Control-FSL-PL-380-4

Step-By-Step Construction

1) Follow the detailed cutting procedures in steps 1-9 of the loopstick transplant article (using either a power miter saw or hacksaw) to prepare the FSL antenna mounting frame, HOWEVER please note that the top section length for this project is 3 1/4” (82 mm), NOT 8” as in the loopstick transplant project. The finished precut frame should resemble the picture to the left, with the top section flat, and the bottom section back edge trimmed to allow full use of the radio’s whip antenna. The frame’s entire bottom section (including the glue surface) is identical in both the loopstick and FSL transplant projects.

2) Follow the detailed procedures in steps 17-22 of the loopstick transplant article to prepare the PL-380 cabinet for the FSL transplant procedure.

Gary-Debock-Pest Control-FSL-PL-380-5

3) Refer to the photo above (NOTE: These photos show the original FSL frame cut for the longer 100mm bars, which has a longer top section length than the 3 1/4” on this project’s FSL frame. Ignore this aspect). Place the prepared PL-380 cabinet in the vertical position as shown, with a paper roll (or other item) to keep the cabinet in the vertical position. If necessary sand the edges (only) of the antenna frame’s glue surface to ensure that no cutting debris or rough edges will cause an uneven gluing surface. Use a clean, damp cloth or paper towel to remove all dust and debris from both the antenna frame and PL-380 glue surfaces, then wipe them thoroughly dry. Ensure that maximum light shines on the PL-380’s top glue surface (as shown in the photo below), then practice making multiple “dry runs” of placing the antenna frame directly centered on the PL-380’s front top cabinet surface, with its front edge lined up with the PL-380’s beveled front edge. You will only get one chance to place the frame accurately when the super glue is on the PL-380 surface, so make sure that you know exactly what to do! The antenna frame should sit completely flat against the PL-380 cabinet, and slide across it smoothly if such a test is made. If not, sand any rough edges on the antenna frame’s glue surface and repeat the cleaning procedure.

Gary-Debock-Pest Control-FSL-PL-380-6

4) Refer to the photo above. After ensuring that you are fully prepared for accurate placement of the antenna frame on the PL-380 cabinet, place a 4 1/2” x 3/16” bead of super glue (114 mm x 5 mm) on the PL-380’s front top cabinet surface, as shown in the photo. Refer to the photo on the top of the next page. Ensure that the front side of the antenna frame (as shown) is facing you, then place the antenna frame in a centered position flat against the PL-380 cabinet, with its front edge lining up with the front beveled edge of the cabinet, as shown in the photo. Press the antenna frame down firmly against the cabinet for about one minute, scraping away any excess glue from the front and back edges with a small, flat jeweler’s screwdriver. It is especially important to remove any excess glue from the back edge of the antenna frame in order to allow the PL-380’s back cabinet to close normally. After completion of this step place the PL-380 (with the attached antenna frame) in a secure area until the FSL antenna is constructed.

Construction of FSL Antenna

Gary-Debock-Pest Control-FSL-PL-380-7

5) Refer to the photo at right. Take the precut section of “Big Boss Noodle,” and ensure that the top and bottom cut faces are perfectly straight. Place the section flat on the table as shown, and carefully wrap two lengths of the 1” waterproof tape tightly around the noodle’s circumference, adhesive side out (as shown). Ensure that these tape strips are parallel, and tight enough not to slide up or down. Take a perfectly straight 62 mm bar and press it tightly up against the tape as shown, with its lower edge flat on the table and its longer edges parallel to the noodle’s edges.

Gary-Debock-Pest Control-FSL-PL-380-86) Refer to the photo at right. Carefully press the remaining 21 bars against the waterproof tape, ensuring that their lower edges are flat against the table, and that there are no major gaps in between any bars. (NOTE: These bars occasionally have slightly curved edges, and it may be necessary to turn them upside down or backwards in order for them to fit in well with the adjacent bars. When all of the bars are carefully placed, 22 of them will fit exactly on the noodle’s circumference. If necessary, pull certain bars off of the tape and reposition them for a better fit).

When all 22 bars are positioned in a tidy pattern, wrap two strips of the waterproof tape tightly around them as shown, with the adhesive side out. It is OK if the two tape strips slightly overlap (as shown in the photo), but the two strips should be tight enough so that they don’t slide up or down, and also tight enough to secure the ferrite bar assembly in a circular pattern.

Gary-Debock-Pest Control-FSL-PL-380-97) Refer to the photo at right. Remove the inner staple from the Oatey foam, and locate a 14” (35 cm) length of the foam which is free of holes or imperfections. Cut a straightedge at the beginning of this 14” (35 cm) length of foam, and press this foam edge down on the tape at the position shown in the photo at right, perpendicular to the side of the bar assembly and with one edge of the foam length lined up with one edge of the bar assembly. Wrap the foam length tightly around the circumference of the bar assembly, stretching it slightly to keep it completely flat and lined up with the bar assembly edge. After the foam strip is tightly and completely wrapped around the bar assembly cut another straightedge to mate evenly with the first straightedge, ensuring that there are no gaps or overlaps along the two edges. If necessary, re-stretch and trim the foam strip to mate evenly with the first edge. After once again ensuring a tight wrap of the Oatey foam, secure the two edges with a 3” (76 mm) strip of waterproof tape, as shown in the photo on the previous page.

Gary-Debock-Pest Control-FSL-PL-380-108) Place the assembly in the position shown in the photo at right. Take scissors and trim the loose edge of the Oatey foam so that it is even with the other edge of the bar assembly, as shown in the photo at left. After this trimming both edges of the assembly should be flat, with the assembly forming a perfect cylindrical shape (as shown).

 

9) Refer to the photo below:

Gary-Debock-Pest Control-FSL-PL-380-11Place the assembly on one of its edges, as shown. Take the waterproof tape and tightly wrap one strip along the direct center of the assembly as shown, with the adhesive side out. Ensure that this strip of tape is tight enough so that it will not slide up or down by itself, and then cut the tape with a 2” (51 mm) overlap. If necessary (after wrapping this tape), shift the position of the tape slightly to ensure that it is running along the direct center of the assembly before proceeding with the next step.

10) NOTE: The symmetry of your Litz wire coil will be a major factor in determining the nulling capability of your modified PL-380. When winding the coil keep the Litz wire turns as tight and straight as possible, with no gaps or overlaps.

Gary-Debock-Pest Control-FSL-PL-380-12Refer to the photo on the right. Take the roll of 250/46 Litz wire and measure off 16” (41 cm) from the end. While holding this Litz wire point with one hand pick up the bar assembly with the other hand, and press down the (16”) Litz wire point with the wire parallel to the edge of the tape and 1/8” (3 mm) distant from it, as shown in the photo at left. Keep thumb pressure on this (16”) point while carefully winding a tight first turn of Litz wire around the circumference of the bar assembly, accurately maintaining the 1/8” (3 mm) distance from its edge. After this first Litz wire turn is wound tightly and accurately around the bar assembly it will set the pattern for the remaining turns, which only need to be tightly wound adjacent to the preceding turn.

Since the waterproof tape is wound with the adhesive side out on the assembly, if you need to take a break while winding the Litz wire coil place the assembly down on its edge, not on the adhesive side of the tape. Wrap the second turn tightly adjacent to the first turn, checking around the circumference of the assembly to ensure that there are no gaps or overlaps in the Litz wire turns. Continue this careful process until the entire coil has been wound, as described in the next step.

Gary-Debock-Pest Control-FSL-PL-380-1311) Refer to the photo at right. Continue winding tight, straight turns of Litz wire (with no gaps or overlaps) until the turns are within 1/8” (3 mm) of the other side of the tape. At this point you should have around 21 turns in your Litz wire coil, although the number of turns is not nearly as important as the symmetry of your coil. It should appear completely straight down the center of the assembly, as in the photo at right.

12) Refer to the photo below.

Gary-Debock-Pest Control-FSL-PL-380-14Take the Scotch “Extreme” tape and place a strip across the Litz wire coil at the exact start point (where the 16” point was first pressed down on the tape), ensuring that 16” of loose Litz wire still extends beyond this point for hookup purposes. Ensure that the “Extreme” tape strip is perfectly perpendicular to the Litz wire coil, and that there are no “bubbles” or major wrinkles along its length. Press this tape strip firmly down over the Litz wire coil to secure the coil in a symmetrical position, then trim the ends of the tape even with the edges of the bar assembly.

13) NOTE: To the maximum extent the two ends of the Litz wire coil should be secured by the Scotch “Extreme” tape so that they leave the coil as close together as possible, with no loose runs of single Litz wire along the coil. This factor (along with the use of a grounded shield around the lead-in Litz wires) has proven to have a major effect on the nulling capability of the FSL coil.

Gary-Debock-Pest Control-FSL-PL-380-15Refer to the photo at right. Place a second strip of Scotch “Extreme” tape across the Litz wire coil directly below and within 1/8” (3 mm) of the first strip, securing the other end of the coil where the Litz wire leaves the assembly. Once again ensure that 16” (41 cm) of loose Litz wire extends from the coil, then cut the Litz wire at that 16” (41 cm) point. Ensure that both Litz wires leave the coil freely without binding or kinks, and that the second strip of “Extreme” tape also has no “bubbles” or major wrinkles along its length. Press this second strip of “Extreme” tape firmly down over the coil to finally secure the coil in a symmetrical position, then once again trim the ends of the tape even with the edges of the bar assembly.

Gary-Debock-Pest Control-FSL-PL-380-1614) Refer to the photo above. Take the FSL assembly, 8 1/2” x 3/4” strip of aluminum foil and the 7 1/2” length of 1/8” shrink tubing and place them in the positions shown. Place the strip of aluminum foil under the Litz wires, with the Litz wires running about 1/4” from the right edge of the strip of aluminum foil. Starting as close as possible to the FSL coil (where the Litz wires leave the coil), make a lengthwise fold in the aluminum foil from right to left, covering over the Litz wires for the first 7 1/2” of the aluminum foil (leave 1” at the end of the foil, which will not be folded).. Ensure that the Litz wires are within this initial fold for the 7 1/2” length, then make a second lengthwise fold in the aluminum foil from left to right to securely wrap the Litz wires inside the foil for this first 7 1/2” length. Finally form the aluminum foil into a tight circle as shown, ensuring that neither of the Litz wires is exposed throughout this 7 1/2” length of the foil, and that they are both tightly wrapped in the foil. Also ensure that this entire length of the foil-wrapped Litz wires is of a small enough diameter to easily pass through the 1/8” shrink tubing.

Gary-Debock-Pest Control-FSL-PL-380-1715) Refer to the photo at right. Form the 1” end of the aluminum foil (which does not wrap around the Litz wires) into a compact cylindrical shape, as shown (NOTE: the foil is relatively fragile, and should be handled carefully). Take the loose ends of the Litz wires and pass them through the 1/8” shrink tubing, including the prepared end of the aluminum foil as it approaches that point. While grasping the Litz wires on the right side (as shown) carefully slide the shrink tubing toward the FSL coil, ensuring that it smoothly covers over the foil-wrapped Litz wires (if not, continue forming the aluminum foil into a smaller diameter so that the shrink tubing will easily cover over it. This process should go smoothly with proper preparation). When the shrink tubing is completely covering up the foil-wrapped Litz wires the last 1” section of the aluminum foil should be extending out of the right side of the shrink tubing, as shown in the photo. Handle this aluminum foil section with care in the remaining steps—it is relatively fragile, and should never be pulled for any reason.

Gary-Debock-Pest Control-FSL-PL-380-1816) Refer to the photo at right. Place the viously prepared PL-380 and antenna frame assembly flat on the table, with a protective cloth to keep the front panel display from damage. Take the prepared FSL antenna assembly and place it in the position shown, with the shielded Litz wire shrink tubing running along the back side of the antenna frame, and with the lower edge of the FSL assembly next to the top of the antenna frame. Place the two 1” x 1/2” strips of rubber heater hose in the two positions shown, in between the antenna frame and the FSL antenna and also in between the coil and the FSL edges, with the longer rubber strip dimensions parallel to the FSL edges. Start the two 175 lb. test plastic tie wraps in the positions shown (down the center of the rubber spacer strips), ensuring that the rubber spacer strips remain between the FSL assembly and the antenna frame, and that the spacer strips are centered at the very bottom of the FSL assembly. Also ensure that the Litz wires are in the position shown, with no pinching or binding between the FSL assembly and antenna frame. Slowly and carefully tighten the first plastic tie wrap while ensuring that the rubber spacer strip remains in the proper position. Tighten this plastic tie wrap only enough to securely hold the FSL assembly, and do not tighten it to the point where the ferrite bars’ circular pattern becomes distorted. In a similar manner, carefully tighten the other plastic tie wrap while ensuring that the rubber spacer strip remains in the centered position, in between the antenna frame and FSL assembly. Once again, tighten this tie wrap only enough to securely hold the FSL assembly, and not to the point where the ferrite bars’ circular pattern becomes distorted. When this process is complete the large plastic tie wraps’ clamps should be in the position shown, lined up with each other and in a position to support the radio/FSL combination when the model is laying down flat, on a table. Cut off the excess tie wrap lengths.

Gary-Debock-Pest Control-FSL-PL-380-1917) Refer to the photo at right.   Temporarily place the Litz wires down along the radio’s circuit board in the position shown. Locate the detailed circuit board antenna connection points “AN1” and “AN2” in the close up photo at the top of the next page. After locating these two circuit board connection points (with the Litz wires running in the position shown in the photo at left) place one of the Litz wires over the “AN1” circuit board point, and the other Litz wire over the “AN2” circuit board point. Then measure out about 1” (25 mm) extra Litz wire past these two circuit board connection points, and after making sure that the Litz wires are still in the approximate position shown in the photo at the beginning of this step, cut one (shorter) Litz wire 1” (25 mm) past the “AN2” circuit board point, and one (longer) Litz wire 1” (25 mm) past the “AN1” circuit board point.

NOTE: The proper procedure of tinning the ends of the Litz wires requires that all of the individual Litz wire strands be soldered together at the ends. This requires a clean, shiny solder connection all around the circumference of the Litz wire ends for at least 1/8” (3 mm). When preparing the ends of the Litz wires in the next step, ensure that the ends are tinned in this manner before continuing.

Gary-Debock-Pest Control-FSL-PL-380-21

18) Refer to the photo above. Temporarily remove the Litz wires from the PL-380 cabinet and place them in the position shown, with a protective surface over your work table to avoid hot solder damage. Carefully tin the ends of both Litz wires in the manner described above, working around the circumference of the Litz wire ends with a clean soldering iron for at least 1/4” (6 mm). After doing this, cut off the tinned section on both ends to a length of 1/8” (3 mm). When viewing the ends of the Litz wires after tinning, the entire 1/8” (3 mm) length should be bright and shiny all around its circumference, as shown in the photo at the top of the next page. The cut surface of the Litz wire (the circular face) should also be bright and shiny, with one solid surface of melted solder. Do NOT attempt to tin the 1” section of aluminum foil.

Gary-Debock-Pest Control-FSL-PL-380-2219) Refer to the photo above. Position the shrink tubing as shown, with the tubing entering the PL-380 cabinet near the corner where the wrist strap was previously located. Ensure that there will be sufficient slack in the shrink tubing (as shown) to route it through the empty hole left by removal of the wrist strap without binding (after this hole is enlarged to fit the shrink tubing diameter). Take a small, flat screwdriver and carefully pry apart the cabinet clamp as shown—so that it is wide enough to grip the shrink tubing, but not so wide as to break off.

Ensure that the circuit board points “AN1” and “AN2” still have a small amount of melted solder on them (after removal of the PL-380 stock loopstick, as described in the Loopstick transplant article). Also ensure that there is no excessive length in either of the Litz wires, since these both must be positioned as shown (if necessary, cut one or both to the proper length, and re-tin them as described in the previous step). Place the end of the shorter Litz wire (going to the AN2 circuit board point) down in a horizontal position as shown, and using a MINIMUM of heat (and no additional solder), solder the pre-tinned Litz wire end to the AN2 circuit board point while the wire is in a horizontal position. Carefully observe the connection to ensure that there are no solder bridges to the adjacent circuit board components. After ensuring this, following the detailed procedure described for the AN2 connection above, carefully solder the end of the longer Litz wire to the AN1 circuit board point in a horizontal position as shown, using a MINIMUM of heat (and no additional solder). NOTE: After soldering these connections do not attempt to force either Litz wire down in a horizontal position. Re-solder them in a horizontal position if it is necessary to get them flat against the circuit board.

Gary-Debock-Pest Control-FSL-PL-380-2320) Refer to the photo at right. Take the 3” length of #18 hookup wire and strip off 1/4” of insulation from one end, and 3/4” of insulation from the other end. If you are using stranded wire, twist the individual strands together on each end of the wire. Tin a small amount of solder on the shorter (1/4”) bare length. Locate the “GND” marking on the circuit board as shown in the photo, and using maximum care to keep the wire as flat as possible against the circuit board, solder the tinned end of the hookup wire to the large ground connection on the circuit board immediately to the left of the GND marking. Use only a minimum of heat to make a securely soldered connection, and ensure that there are no solder bridges to adjacent areas.

Cut a 3/4” x 1” section of Scotch “Extreme” tape. While holding the other end of the hookup wire next to (and making a secure electrical contact with) the 1” end of the aluminum foil coming out of the shrink tubing, slide the strip of “Extreme” tape under the connection, and securely wrap the tape around the connection (as shown) to permanently secure the two conductors together. MAKE SURE that these two conductors have a good electrical contact under the tape before continuing, since this connection is important for the model’s optimal nulling capability. During this process avoid rough treatment (or pulling) of the aluminum foil, since it is relatively fragile and easily separated.

Gary-Debock-Pest Control-FSL-PL-380-2421) Refer to the photo above. Using small diagonal cutters carefully clip off small pieces of the back cabinet’s wrist strap hole so that it will be of a similar size to that of the shrink tubing, in order to run the shrink tubing through without any pinching or damage. Ensure that the cut pieces do not fall inside the PL-380 cabinet.

Take the PL-380’s back cabinet section and carefully bring it close to the radio, as shown in the photo. Ensure that the whip antenna’s lead-in wire is not pinched, and also ensure that the shrink tubing is routed is a position close to the empty wrist strap hole in the back cabinet, as shown. As a first step, carefully mate the radio’s back cabinet to the radio’s right side (the one opposite the wrist strap hole) while continuing to guide the shrink tubing through the wrist strap hole. Finally, using a small, flat screwdriver, center the shrink tubing in the center of the wrist strap hole while mating the remaining (left) side of the cabinets together. Ensure that the shrink tubing is not pinched or extremely tight as it is clamped down in this hole. While holding the two cabinet sides together move the whip antenna up and away from the cabinet screw hole underneath, and insert the first cabinet screw, tightening it temporarily to keep the shrink tubing in position. Then insert and tighten the left upper and left lower cabinet screws thoroughly, while snapping the right lower cabinet sections together. Finally, after ensuring that the shrink tubing is still in the center of the wrist strap hole without any binding or excessive stress, tighten the final cabinet screw near the whip antenna base. Reinstall the two small battery compartment screws and reinsert batteries. This completes the assembly of the 4.25” FSL Tecsun PL-380 model.

Initial Testing

If you are not familiar with the PL-380, make sure that you study the owner’s manual to find the location of basic operating controls. It is important to initially test the radio in a location free of computer noise or other RF pollution—preferably in an outdoor location where its capabilities can be appreciated. Refer to the photo on the next page. Turn on the radio and select the Medium Wave band (530-1700 kHz in North America) and set the AM bandwidth control to the most selective (1 kHz) position (NOTE: This position also provides maximum MW and LW sensitivity for the model, although the higher audio frequencies are limited somewhat by the sharp DSP filtering). If your FSL antenna transplant is working properly you should notice an EXCEPTIONAL increase in the signal strength of weak fringe stations relative to the stock PL-380 model, and a very significant increase in fringe station strength relative to a 7.5” loopstick PL-380 model. Check fringe station strength across the band, and you should notice MW reception far superior to that of any stock portable in your collection. If you are not receiving any MW signals the problem is usually easy to trace—either one of the PL-380 circuit board connections is shorted to adjacent components because of too much solder, or the physical stress on the Litz wires (because they were not soldered in a horizontal position) has caused the circuit board connections to break off and separate from the board. In the first case you can attempt to remove excess solder by turning the circuit board upside down and melting the excess solder onto the tip of your soldering iron (or using a “solder sucker” in a normal position), but in the second case you will probably need a technician to restore proper function to your radio. Fortunately both of these problems are rare, and can be entirely avoided by carefully following the instructions in Step19.

Gary-Debock-Pest Control-FSL-PL-380-25

Operation

The triple advantage of superior FSL sensitivity, sharp DSP selectivity and exceptional nulling capability provide this breakthrough model with unprecedented weak-signal performance for a portable—to the extent that after a few DXing sessions the operator may have the impression that the realm of science fiction has been approached.

During DXing sessions it is a good idea to support both the PL-380 and FSL antenna frame in the same hand (as shown in the photo above), and also to avoid sudden mechanical stress or bumps to the antenna frame. When constructed according to this article the glue bond between the antenna frame and PL-380 is sufficient for routine operations, but the DXer should exercise care to avoid bumps, drops or other stress. The FSL antenna itself is fairly rugged, as constructed.

Refer to the photo above. The PL-380 has many digital search functions and advanced capabilities for a pocket radio, but some of the functions of particular interest to the transoceanic DXer are described here. The “AM Bandwidth” switch allows you to choose different levels of DSP filtering to limit splatter from domestic pests, and is usually left in the 1 kHz position for the narrowest filtering while chasing transoceanic DX (although this position does cut off some of the high frequency audio from the desired DX station). The 9/10 kHz switch allows you to change the tuning steps of the radio from the North American (10 kHz) band system to those of the European/ African/ Asian/ Pacific band system (9 kHz), depending upon your preferred DX targets. The MW / LW switch allows you to switch over to Longwave DXing—and you will be pleasantly surprised to discover that your newly installed 4.25” Bar FSL antenna is FAR more sensitive on the Longwave band than the stock PL-380 loopstick. Finally, the Display switch offers you multiple options while chasing transoceanic DX—you can have a 24 hour clock display, a display of the alarm time set in the radio, a constantly changing readout of DX signal strength and S/N ratio, or a temperature display (in either Celsius or Fahrenheit).

Because the antenna frame has been trimmed to allow full operation of the PL-380’s whip antenna to receive SW and FM signals, it’s possible to check the Shortwave parallels of Medium Wave DX stations (and switch back and forth) within a couple of seconds. In general, this “science fiction” PL-380 model’s sensitivity, selectivity and nulling capability will allow you to experience the most exciting AM-DXing fun that a portable can offer—and do so at an unbeatable price.

Nulling Pest Stations

This modified PL-380 was specifically designed to have unprecedented nulling capability for a portable, and when assembled according to the instructions it is capable of razor-sharp nulls on most semi-local and even local MW broadcast stations. Using the nulling function to maximum advantage takes a little bit of practice, and an understanding of the importance of both a horizontal and vertical null angle for different pest stations. It also helps to be in a clean RF environment, away from computer noise, AC house wiring and other limiting factors.

The horizontal null angle is pretty easy to determine—simply point the side of the FSL antenna toward the pest station’s direction until a minimum signal bearing is found. If you have an extremely powerful pest station that makes this impossible to determine on the fundamental frequency, detune the radio (off the pest station’s frequency) by about 10 kHz and try to find the bearing with the minimum pest station splatter .

Once you determine the horizontal null bearing, hold the radio at that bearing and carefully tilt the radio up and down at a slightly vertical angle to determine the absolute minimum signal point. This will be different for each pest station, so it is helpful to write these vertical null bearings down once you determine them, and memorize them if possible. They can be either positive angles (with the radio tilted upward) or negative angles (with the radio tilted downward). The point where the vertical null bearing intersects with the horizontal null bearing will always be the direction of the absolute minimum signal—you can picture this as two lines intersecting at a single point in space. Once the side of the FSL antenna is directed at that point, the signal of most pest stations will disappear into the noise. Since this point can be razor-sharp, it is often helpful to support one side of the radio on a “Lazy Susan” type assembly to keep the radio directed at the horizontal null bearing while you are finding the vertical null bearing.

The closer you are located to a pest station the tougher it will become to null it down into the noise—although this particular model will give you the best possible chance of success. Of course if you are located right next door to a 50 kW pest, you will probably need a little more “science fiction” than this model can provide J

This hard-wired FSL-enhanced PL-380 model is the second in a series of portables designed to be the ultimate “travel radios,” with DXing potential superior to any stock design. It has been a great thrill to design, construct and introduce these models, which are pretty fanatical in both appearance and DXing capabilities. My hope is that their function will inspire those who build and use them, and help them share my impression that the MW-DXing hobby has a very innovative and exciting future!

73 and Good DX,

Gary DeBock


Gary, again, thank you for documenting this procedure so thoroughly! No doubt, many a mediumwave DXer can benefit from the excellent nulling characteristics of your “Pest Control” FSL antenna!

Click here to view other tutorials and articles by Gary DeBock.

Spread the radio love

How to decode maritime broadcasts in RTTY, Sitor B, and NAVTEX

(Photo Credit: NOAA)

(Photo Credit: NOAA)

Many thanks to SWLing Post contributor, Mario Filippi (N2HUN) for the following guest post:


Maritime Broadcasts in RTTY, Sitor B, and NAVTEX.

By Mario Filippi, N2HUN

(All photos below are courtesy of the author. Click each image to enlarge.)

Non-voice high seas weather broadcasts and safety messages to mariners can be found by spinning your VFO dial to 8.472 MHz USB courtesy of WLO from Mobile, AL, which provides these transmissions continuously. Here on the East Coast it is received with regularity due to it’s strong signal.

Those of you who are neophytes to RTTY or just want to dabble then this is the place to be to try your hand at an old and venerable digital mode. The RTTY (RadioTeleTYpe) parameters used by WLO transmissions are 45.45 bauds, 170Hz shift. These are most commonly used by amateur radio ops too. If you’ve roamed the bands for RTTY signals you’ll find that most are encrypted with a few exceptions, one of which is WLO which is transmitting continuously.

Tabletop SW radio set to WLO; SignaLink USB links radio to computer for decoding.

Tabletop SW radio set to WLO; SignaLink USB links radio to computer for decoding.

On 8.472 MHz you’ll receive weather information from different latitude/longitudes, along with other pertinent information to mariners such as high seas pirates (not radio pirates!) and naval maneuver areas that are important for ships to avoid. It makes for interesting copy.

To decode RTTY signals you’ll need a shortwave receiver with a BFO (Beat Frequency Oscillator), a way to pipe your radio’s audio into your computer’s sound card, and decoding software. There are several RTTY software packages out there, free, and my favorite is MMTTY. More info on MMTTY is at: http://hamsoft.ca/pages/mmtty.php . Old timers will find this software a snap to use, but newcomers will have to fiddle with the controls to get the decoding going. Below is a snapshot of MMTTY decoding a typical weather broadcast.

MMTTY dashboard with WX info. Cross-like indicator on upper right aids in tuning signal.

MMTTY dashboard with WX info. Cross-like indicator on upper right aids in tuning signal.

Another software available for decoding RTTY is Fldigi. Again, you’ll have to input the correct RTTY parameters such as baud rate and shift into the program along with adjusting your VFO carefully. It takes practice, but when the decoding is successful you’ll see Fldigi doing it’s thing as shown below. Both MMTTY and Fldigi have waterfalls displaying a visual image of the received signal. With practice you’ll be able to distinguish the different common RTTY shifts just by looking at the waterfall.

Fldigi in action with split screen; RTTY text above, waterfall below.

Fldigi in action with split screen; RTTY text above, waterfall below.

Now to Sitor B (Simplex Teletype Over Radio Mode B), another non-voice mode we can use to decode WLO transmissions. Sitor B sounds a lot like RTTY to the human ear, but requires different decoding software. WLO transmits weather information via Sitor B immediately after RTTY transmissions, switching back and forth, which makes for even more fun! Software that decodes Sitor B is available on the ‘Net as free downloads. One is MultiPSK, the other is YaND.

I like YaND (Yet another Navtex Decoder) which is used to decode NAVTEX (Navigational Telex) transmissions commonly found on 490 KHz and 518 KHz, but it works well for decoding Sitor B. There is a difference in the way messages are processed in NAVTEX versus Sitor B and for further information perform a Google search. But the fastest and easiest way to decode Sitor B transmissions from WLO is to fire up YaND. Below is a recent NAVTEX HF broadcast capture.

WLO HF WX broadcast for NE Gulf on 1/18/16 .

WLO HF WX broadcast for NE Gulf on 1/18/16 .

Well, hopefully some of you will be inspired to check out maritime weather/safety information found on WLO using RTTY/Sitor B/NAVTEX software. However, RTTY can also be found on the ham bands and on shortwave frequencies. Several RTTY stations from Germany are found on frequencies such as 11.039MHz and 14.467MHz. Their weather information format is quite different and will give you an idea of European weather conditions and allow you to practice your German. When not sending weather info they run a RTTY message loop below at 50bauds/425Hz shift.

German RTTY station with message loop. Deciphered via MultiPSK.

German RTTY station with message loop. Deciphered via MultiPSK.

In closing, make sure to also check out the NAVTEX broadcasts found just below the AM broadcast band on 490 and 518 KHz; using YaND or MultiPSK you’ll be able to receive these transmissions, but remember you’re not on HF, you are on MW (medium wave), where signal distances are shorter and present a greater reception challenge. YaND software has a NAVTEX broadcast schedule built in as seen below; you have to identify your specific NAVAREA or navigational area, then look at the times and frequencies to determine when to listen in. My QTH is in NAVAREA 4. Lots of interesting information is passed in these NAVTEX transmissions so listen in and have fun!

YaND NAVTEX schedule for various NAVAREAS.

YaND NAVTEX schedule for various NAVAREAS.

NAVTEX on 518 KHz from station VAR-9, New Brunswick, CAN. Messages begin with “ZCZC.”

NAVTEX on 518 KHz from station VAR-9, New Brunswick, CAN. Messages begin with “ZCZC.

Mario Filippi (N2HUN), is the author of this post and a regular contributor to the SWLing Post. Click here to read Mario’s guest posts.

Spread the radio love

Why Shortwave Radio is Still a Superior Educational Technology

PES-SouthSudan

Children in South Sudan listen to their shortwave radio (Photo: PESS/ETOW)

Reader and contributor Dr. Ed Harris recently authored an excellent article in which he describes why shortwave radio remains a practical and accessible educational technology in today’s world.

And he should know.  Ed––a long-time DXer and world traveler, currently studying to be a ham radio operator––is also a professor of educational leadership at Oklahoma State University College of Education, where he teaches courses in leadership, ethics, and research. Additionally, he oversees the Brock International Prize in Education, which discovers and awards the best ideas in education and showcases them to the world.

Ed is also an Ears To Our World advisory board member––not to mention, a good friend: we’ve travelled together on behalf of Ears To Our World to offer support with educational technologies in parts of the world where they’re needed.

Ed has kindly allowed me to post his full article here on the SWLing Post, as I believe many of you will appreciate this.


whole-earth-catalog

Using  “Whole Earth” Criteria to Explain Why Shortwave Radio is Still a Superior Educational Technology

Ed Harris, Oklahoma State University – College of Education

            As a professor of education, I see concerted efforts across the planet to increase educational opportunities for all global citizens. Governments and institutions are acknowledging that education is vital to social and economic sustainability for everyone, everywhere. For some global citizens, the convergence of the Internet with modern instructional technologies has provided advanced and rewarding educational opportunities.  However, numerous geographical regions are still plagued by educational inequities that result in social and economic disparities.

While there are no quick fixes for these inequities and disparities, the issues can be boiled-down to two interrelated factors:  (1) isolation (i.e., insulation from available and accessible services) and (2) poverty (i.e., insufficient means to procure services). Isolation is a huge problem domestically and abroad. In all parts of the world, rural is rural.  In those areas where people are geographically or politically isolated from available services, the Internet and innovative technologies actually perpetuate educational inequities and widen the digital divide between the have and have-nots.  Moreover, in many areas, the lack of money for basic electricity and Internet subscriptions compound the problem, making educational inclusion virtually impossible.

A few years ago, a colleague and I published an article regarding the above dilemmas in light of the accessibility and sustainability of modern educational technologies.[1] We explained that although we live in the 21st Century, we could benefit significantly from the criteria that “Whole Earth Catalog” used to select sustainable, user-friendly tools for their publications.

For you non-Baby Boomers, the “Whole Earth Catalog” was a collection of creative articles and durable, practical tools published from 1968 to 1972 and sporadically thereafter.[2] Whole Earth editors did not just curate tools; they curated ideas and promoted a philosophy by which to use those tools. Whole Earth technologies were timeless and provided opportunities for personal growth and social development. Before any product was included in the Catalog, it must have met a rigid set of standards:

  1. High quality at a reasonable cost,
  2. Easily accessible,
  3. Useful and relevant to independent or self education, and
  4. Capable of launching a cascade of new opportunities.

Rather than applying the above criteria specifically to radio, we applied them to a wide array of instructional technologies. However, when shortwave radio is held up to the scrutiny of Whole Earth’s standards, readers can see below that radio clearly ascends to the top of the “ed-tech” pyramid.

Standard 1: A Good Tool Offers High Quality at a Reasonable Cost

EtonRadioHigh quality and affordability are obvious factors in any discussion on sustainable technologies. Educators must consider the cost of ownership and return on investment as they seek to adopt new educational technologies. While computers and mobile devices are quite popular in today’s educational settings, their cost prohibits them being used by many across the globe. On the other hand, shortwave radio is relatively inexpensive. Low-cost shortwave receivers can be purchased in almost every part of the world.             Moreover, simple, inexpensive shortwave regenerative receivers can be easily built with a few parts. Even in the most disadvantaged parts of the world, one can find shortwave receivers, and many radios now include hand-cranked devices that provide power without batteries. To add to radio’s cost appeal, listening is absolutely free and does not require special apps or subscription fees.

Standard 2: A Good Tool is Easily Accessible

In the “Whole Earth” days, accessibility was expressed in terms of how easily the technology could be mailed or shipped. For instance, while large harvesting combines were not seen in the publications, sickles, pocketknives and books were prominent. An inaccessible tool is useless, while an accessible tool is invaluable.

Academic fields such as Educational Technology differentiate between (1) availability, which concerns how readily obtainable a technology is, and (2) accessibility, which concerns the skills one needs to successfully employ the technology in the manner intended. An example might be digital library services. Most universities make available a wealth of research materials online for anyone who has university credentials to log in to their system. However, while these materials are available, they are not necessarily accessible to users who are unable to navigate the library website, remember his or her login credentials, or have the search skills to interact efficiently with digital databases. Thus, when adopting new educational technologies, both availability and accessibility must be considered and planned for.

Earth-ClipArtRegarding the accessibility of shortwave transmissions, radio may be the most available and readily accessible technology in the world. Shortwave radio remains the only medium capable of direct communication from one country to listeners in another country without intermediaries such as satellites, cable companies, or Internet providers. Shortwave signals can be accessed anywhere on the planet, and radio is a safe way of providing information to areas of conflict or during an emergency.

Unlike most other radio communications frequencies (such as those used by FM radio, WiFi networks and Mobile Phones) which are limited to local or line-of-sight propagation, shortwave radio signals bounce off the ionosphere and blanket earth with broadcasts and information.  Every corner of the globe can receive shortwave radio broadcasts with even a simple $20 portable radio. When radio is seen as an available, accessible, and affordable educational tool, potential educational opportunities sources dramatically widen and serve to bridge the digital divide.

Standard 3: A Good Tool is Useful for Self-education

ETOW-Uganda-RadioFor educators, self-directed learning (SDL) is a top goal in the educational process. In SDL, the individual learner takes the initiative and the responsibility for what occurs and has the opportunity to choose from a range of available and appropriate resources. Thus, since opportunity and choice can empower a person to grow in his or her capacity to be self-directing, these factors should be nurtured and promoted in educational processes.

The Internet is example of a technology that nurtures self-direction and promotes both informal and formal learning opportunities. However, even the Internet does not surpass radios usefulness in self-education. Research indicates that radio is more than just music, news and entertainment. Rather, radio listening can meet educational needs such as individualized learning, belongingness, self-esteem, independent learning, and even self-actualization in a variety of different ways. Listeners can engage simply by selecting the format type that meets their requirements at any specified period of time.[3]

Moreover, radio listening is edifying because listeners hear current events and ideas from different perspectives across the world. The choices of the learner in radio listening are paramount because he or she can choose the station, choose what they want to get from the experience, and choose with whom they would like to share that experience.

Standard 4: A Good Tool Launches a Cascade of New Opportunities

Opportunity-ClipArtWhole Earth editor Kevin Kelly often reminded readers that all technologies create their own set of problems; however, superior technologies result in new opportunities and ways to solve problems.[4]  Whole Earth was at the forefront of reminding readers of the cycle of  (1) new tool, (2) new challenges, and then back to (3) new tools. In educational terms, when a learner completes a learning cycle, he or she is not only gaining personal and professional knowledge and skills, but impacting future learning as well.[5] The cyclical cascade of opportunities from shortwave radio is impressive. For example:

  • The opportunity of creative imagination and proactive listening. Radio listening feeds imagination and brings an auditory dimension to our lives. It allows for networks of mental associations, and facilitates the listener to vicariously “visit” new places and new cultures. These opportunities serve to facilitate the formation of identity, purpose, and listening skills vital to good communication.[6]
  • The opportunity of connections. Radio listening broadens connections and increases community. Radio listening helps both in making connections of desperate pieces of information and in being connected with each other and to the world. Understanding the interconnection of knowledge is vital in the learning process. Radio listeners hear different perspectives from around the world and are automatically put in the arena of connection making and discernment. Also, radio listening can be a community endeavor in itself.
  • The opportunity of inherent learning about radio. The radio is an educational device, and subjects that can be integrated in radio listening include geography, sociology, politics, mathematics, and a host of others. However, the radio device itself is instructional. Understanding electronics, circuit construction, safety, modes and systems, propagation of radio frequency signals, serving equipment, and progressing host of others.

Summary and Challenge

A good question would be, “Well, did Whole Earth Catalog include shortwave radios in their publications?” The answer is yes. In almost all their publications, radio – i.e., shortwave, amateur, electronics, books/guides, education, and/or communication – was referenced in some way. For example, on page 259 of the special 1994 publication, THE MILLENNIUM WHOLE EARTH CATALOG: Access to Tools and Ideas for the Twenty-first Century, the Sony ICF-SWIOO Receiver was showcased. In that edition, the authors commented, “No alternative yet proposed (satellite radio, personal wireless computer gizmo) offers the same combination of a cheap, portable receiver and program content that crosses borders unfiltered by any government or corporate gatekeeper.”

While technology is constantly evolving, the wisdom of Whole Earth prevails — the wisdom inherent in using technologies that promote a sustainable lifestyle. In education today, we are continually seeking innovative, timeless, and empowering technologies to promote sustained learning for all.  Just as the publishers of Whole Earth Catalog understood, educational technologies are best adopted from grassroots efforts, and those technologies adopted, must empower users to take learning, teaching and research to deeper, more meaningful levels.

The radio has been with us for a long time, is still be a superior instructional technology, and can have an important place in education. However, those of us who have this vision must collaborate to regenerate enthusiasm for this valuable medium as well as devise cost-efficient, user-friendly, and sustainable solutions. Some suggested goals could include the following:

  • Develop school broadcasts that include curriculum-based content and professional development content for educators;
  • Develop and utilize existing language learning programs aimed to teach a variety of languages;
  • Utilize interactive radio technologies that allow for asynchronous feedback and communication;
  • Develop cooperative relationships with regional governments and/or educational institutions to store and broadcast programs for broadcast to the peoples in their respective areas.

Innovative ideas, interconnections through sharing those ideas, and purposeful inclusion of technologies in today’s educational landscape echo the rationale behind Whole Earth Catalog. So in striving for sustainable tools for 21st Century education, as Whole Earth readers were reminded in every issue of the Catalog, we must seek technologies and skills that empower individuals to take ownership of their education, shape their environments, and especially, share the adventure with whoever is interested. When addressing these challenges, shortwave radio is still a viable, superior educational solution.

[1] See Susan Stanberry and Ed Harris’s Back to the future: Revisiting the “Whole Earth” concept of sustainable tools for 21st century education. Journal of Sustainability Education (2015 publication)

[2] While Whole Earth no longer prints a hard-copy version of the Catalog, one can see digital versions at http://wholeearth.com

[3] See Shannon and Brown’s article, Radio Listening as a Function of Basic Human Need: Why Did Maslow Listen to Radio?

[4] See Kelly, K. (2000). “Tools Are the Revolution,” in WHOLE EARTH CATALOG.

[5] Marra, R., Howland, J., Wedman, J., and Diggs, L. (2003). A little TLC (technology learning cycle) as a means to technology integration. TechTrends, 47(2), 15-19. Doi: 10.1007/BF02763419.

[6] See Susan Douglas’s (2004) book, Listening In: Radio and the American Imagination.


Ed Harris can be reached at [email protected] and would love to hear about your ideas of combining education and radio or advice on the ham exam.

Spread the radio love