Tag Archives: Airspy HF+ Discovery

Airspy Youloop and Homebrew Passive Loop Antenna designs

Almost two weeks ago, at the 2020 Winter SWL Fest, I gave a presentation called “A New Era in Portable SDR DXing.

The presentation was essentially an in-depth version of an article I published in the January 2020 issue of The Spectrum Monitor magazine (see cover above).

I devoted a good portion of the presentation describing how to build a passive loop antenna design by Airspy’s engineer and president, Youssef Touil. This passive mag loop takes advantage of the Airspy HF+ Discovery‘s exceptionally high dynamic range and is an impressive performer.

The homebrew loop on the balcony of a hotel.

You may recall, I posted a short article about this loop in November after enjoying a little coastal DXing.

In short? This passive loop antenna pairs beautifully with the Airspy HF+ Discovery. I’ve also been very pleased with results using the new SDRplay RSPdx on the mediumwave band where the receiver now sports a high dynamic range mode.

Overdue corrections…

After returning from the Winter SWL Fest last week, I was hit with an upper respiratory bug. No doubt, a souvenir of my travels!  It wasn’t the flu (I was tested), nor COVID-19, but it did knock me off my feet for a few days with fever, coughing, and headaches. You might have noticed a lot less posts last week and almost no replies from me via email. I’m only now feeling totally human again and trying to catch up with my backlog.

Shortly after my SWL Fest presentation, I realized I made (at least!) two mistakes. I had planned to post corrections here on the SWLing Post last week, but the bug delayed all of that, so here you go:

#1 Schematic of my homebrew passive loop antenna

When Youssef started experimenting with passive loop antenna designs, he posted a few schematics of at least three build options.

Although I described how to build my passive loop antenna, I grabbed the wrong schematic for my presentation slides. Many thanks to those attendees who noticed this.

Here is the schematic I should have shared:

Note that the transformer has four turns on both sides (the one in the presentation had 4:2).

Again, apologies for any confusion.

#2 The Airspy Youloop passive loop antenna

If you’re not inclined to build your own passive loop antenna per the diagram above, Airspy is planning to manufacture and sell a lightweight, high-performance loop of a similar design.

Prototype of the Airspy Youloop in the field (note bright blue cable jacket)

During the presentation, I called the future AirSpy antenna, the “Spytenna.” I was incorrect. (Turns out, I got this name from an early antenna schematic and somehow it stuck in my head!)

Airspy is calling their passive loop antenna the Youloop. Youssef posted the following note in the Airspy email discussion group:

We are currently arranging the shipping of the affordable passive version to Airspy.us and RTLSDR Blog.

Btw, It’s called “Youloop”

Many thanks to Richard Langley and a number of other readers who pointed this out last week.

I’ve had a prototype of the Youloop since November and brought it to the SWL Fest and presentation. It’s a quality antenna and incredibly compact when disassembled and rolled up.

When the Youloop is available to order, we’ll post links here on the SWLing Post.

More to come!

Once I catch up here at SWLing Post HQ, I plan to publish detailed construction photos of the homebrew loop antenna.

Many of you have questions about how to tap into the center conductor at the mid-point of the loop. These photos should help guide you.

Stay tuned!

Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

Mike compares the SDRplay RSPdx on mediumwave and longwave

Many thanks to SWLing Post contributor, Mike Ladd with SDRplay, who shares the following videos comparing the new RSPdx with a number of benchmark SDRs:

SDRplay RSPdx and ELAD FDM-S2 weak NDB station

SDRplay RSPdx and ELAD FDM-S2 medium wave selectivity

SDRplay RSPdx and Airspy HF+ Discovery medium wave selectivity

SDRplay RSPdx and Airspy HF+ Discovery weak NDB station

SDRplay RSPdx and Microtelecom Perseus medium wave selectivity

SDRplay RSPdx and Microtelecom Perseus weak NDB station

Spread the radio love

Radio Deal: AirSpy 30% off Black Friday Sale

The AirSpy HF+ SDR

Just discovered through the AirSpy Twitter account that they’re offering 30% off all of their products via their authorized retail outlets.

This morning, I posted an article featuring their $169 HF+ Discovery. Another AirSpy SDR I highly recommend is the $199 HF+ SDR. This deal would give you 30% off those prices.

According to AirSpy, the coupon code AWARDWINNING2019 will be activated “within a few hours.” I believe this might mean at midnight UTC because they had mentioned a November 26th activation date. Although the sale extends until December 2, 2019, AirSpy states that supplies are limited.

If you’ve been considering an AirSpy product, now would be a good time to grab one!

Click here for a list of participating retailers in your region.

Note that we’re posting all of the holiday radio deals we discover with the tag: Black Friday Radios 2019

Spread the radio love

Coastal DXing with the AirSpy HF+ Discovery and a homebrew passive loop antenna

Last week, we packed the car and headed to coast of South Carolina.

The trip was a bit impromptu but through the creative use of hotel points, we scored a two bedroom ocean front unit with a fantastic little balcony.

The vacation gave me an excuse to test the new passive loop antenna my buddy Vlado (N3CZ) helped me build recently.

The loop design came from AirSpy’s engineer and president, Youssef Touil.

This passive mag loop takes advantage of the new AirSpy HF+ Discovery‘s exceptionally high dynamic range. Youssef had reported impressive results, so I had to build one.

Vlado had a length of Wireman Flexi 4XL that was ideal for this project. The only tricky part was penetrating the shielding and dielectric core at the bottom of the loop, then tapping into both sides of the center conductor for the balun connections.  Being Vlado, he used several lengths of heat shrink tubing to make a nice, clean and snag-free design.

The results were truly exceptional. I spent most of my time on mediumwave from the hotel balcony because I was determined to catch a transatlantic signal.

Check out the spectrum display from my Microsoft Surface Go tablet:

Our ocean front hotel was inundated with noise, but I still managed to null out most of it and maximize reception using the passive loop. I simply suspended the loop on the balcony rocking chair–not ideal, but effective and low-profile.

Want to take a test drive?

If you’d like to experience this portable SDR setup, why not tune through one of the spectrum recordings I made?

Click here to download the spectrum file [1.7GB .wav].

The recording was made on November 17, 2019 starting around 01:55 UTC–I chose it at random and have yet to listen to it myself. You’ll need to open this file in AirSpy’s application SDR# or a third party SDR app that can read AirSpy .wav files.

Stay tuned…

I’m writing an in-depth report of the HF+ Discovery, my experiments with this setup and AirSpy’s soon-to-be-released passive loop antenna for the January 2020 issue The Spectrum Monitor magazine. Spoiler alert: I am truly impressed with the wee little AirSpy HF+ Discovery. It’s a powerhouse!

Do you enjoy the SWLing Post?

Please consider supporting us via Patreon or our Coffee Fund!

Your support makes articles like this one possible. Thank you!

Spread the radio love

AirSpy HF+ vs. HF+ Discovery: Ivan’s blind daytime propagation comparison

Many thanks to SWLing Post contributor, Ivan NO2CW, who shares the following:

I did this video where I compared the two Airspy editions [HF+ and the new HF+ Discovery] only calling them Receiver 1 and Receiver 2:

Click here to view on YouTube.

Using the same W6LVP loop. 3 PM local time daytime propagation. Testing on Medium Wave and Short Wave, no VHF. AM broadcast signals only.

Ivan also included an image comparing the size of the HF+ discovery with other popular SDRs:

From top to bottom: the Microtelecom Perseus, SDRplay RSP, AirSpy HF+, Airspy HF+ Discovery, and the RTL-SDR.com SDR dongle. 

When I demo the AirSpy HF+ to radio clubs, folks are amazed that such a tiny SDR can provide benchmark performance. It’s hard to believe the HF+ Discovery might even provide more performance from an even smaller package!

Thanks, Ivan for sharing these comparisons!

Spread the radio love

Fenu-Radio reviews an AirSpy HF+ Discovery prototype

Fernando Duarte of Fenu-Radio has just posted his review of the AirSpy HF+ Discovery SDR prototype.  I trust Fenu’s reviews because they’re always thorough and based on actual listening sessions.

In short, he’s quite impressed with the prototype. In many instances the Discovery outperformed his benchmark Winradio G33DDC Excalibur Pro. Quite an accomplishment for a $169 SDR!

Click here to read Funu-Radio’s full review.

I will evaluate a first production run AirSpy HF+ Discovery. Since it’s incredibly lightweight and compact, I believe I’ll try to even build a small portable SDR station around it. Stay tuned.

Spread the radio love

The Airspy HF+ Discovery: A new high-performance SDR

At the 2019 Hamvention, I stopped by the Airspy.US booth and checked out the specifications of Airspy’s latest SDR: the Airspy HF+ Discovery.

At first glance, the Discovery looks a lot like the Airspy HF+ but even smaller and sporting performance upgrades. Keep in mind, I consider the Airspy HF+ (the Discovery’s predecessor) to be one of the best HF SDR receivers on the market–certainly the best sub $200 HF SDR–so of course the Discovery has piqued my interest.

I wanted to get the scoop directly from the source, so I contacted Youssef Touil with Airspy and asked for more insight. What follows is Youssef’s reply:

This new release of the HF+ aims to improve the overall performance in highly demanding situations while fully automating the gain and filtering control. This frees the operator from the RF front-end details and keeps the focus on the actual signals.

The new filters are implemented using a combination of static LC filter banks and other RC filters implemented in silicon. This considerably improves the overall behavior in a crowded band, while still giving a very low noise floor. Also, the very nature of the Polyphase Harmonic Rejection mixer combined with the integrated IF filtering and the high dynamic range Sigma-Delta ADC act like a roofing filter in a heterodyne system. This architecture is quite original with still very few commercial implementations attempted.

A lot of attention went to improve the far-range IIP2 and IIP3 in practical receive scenarios. Other radios just opt to increase the noise figure of the radio to hide the IMD problem, but this also reduces the sensitivity. We opted not to go this way and fix the problem at its root and preserve the maximum sensitivity benefit. The new intercept points protect the front-end from images originating from various IMD scenarios while still using the maximum gain. The LF and VLF bands also benefited from these improvements.

The PCB layout was also improved to get rid of most of the digital noise. The new PCB has 6 layers filled with ground plans and a metal shield can soldered on top of the RF section. This might look overkill for a HF/VHF radio, but given the MDS we are aiming at, it’s really necessary. The older PCB was 4 layers only.

The radio weighs less than 30 grams and fits inside a 45 x 60 x 10 mm volume (ex. The SMA connector). Given the achieved performance and the form factor, we expect it to interest a lot of our SIGINT partners who are already using the first HF+ design.

As you know, when it comes to high performance, the big players still opt for heterodyne systems in the actual RX path and only use direct sampling for the “eye candy” panoramic view. This was confirmed by Yaesu (FTDX101D) and Elecraft (K4). The reason is evident: Good mixers are still better (and scale better) than state of the art ADCs. I think our Polyphase Harmonic Rejection mixer-based SDR architecture is a step in the right direction, where both goals are achieved without compromises, and in the most economical way. The first version was kind of a revolution for us, but the “Discovery” is the consolidation of a lot of polishing opportunities we discovered since the first release.

Thank you for the details, Youssef–it sounds like a lot of innovation and iterative upgrades have gone into the Discovery receiver design.

Of course, I will plan to grab the HF+ Discovery and review it here on the SWLing Post. In the meantime, check out the excellent RTL-SDR website where Carl has posted a short preliminary review of a pre-production HF+ Discovery.

Click here to check out the HF+ Discovery at Airspy and place a pre-order ($169 US). 

Spread the radio love